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Integrated analysis identities Rho 
GTPases related molecular map 
in patients with gastric carcinoma
Shaowei Ma 1, Ying Wang 2, Weibo Li 1, Shaofan Qiu 1, Xiangyu Zhang 1, Ren Niu 3*, 
Fangchao Zhao 4* & Yu Zheng 1*

The intricate involvement of Rho GTPases in a multitude of human malignancies and their diverse 
array of biological functions has garnered substantial attention within the scientific community. 
However, their expression pattern and potential role in gastric cancer (GC) remain unclear. In this 
study, we successfully identified two distinct subtypes associated with Rho GTPase-related gene 
(RGG) through consensus clustering analysis, which exhibited significant disparities in overall 
survival and the tumor microenvironment. Subsequently, an extensively validated risk model termed 
RGGscore was meticulously constructed to prognosticate the outcomes of GC patients. This model 
was further assessed and validated using an external cohort. Notably, the high RGGscore group was 
indicative of a poorer prognosis. Univariate and multivariate Cox regression analyses unveiled the 
RGGscore as an autonomous prognostic indicator for GC patients. Subsequent external validation, 
utilizing two cohorts of patients who underwent immunotherapy, demonstrated a significant 
correlation between a low RGGscore and improved response to immunotherapy. Additionally, the 
expression levels of three genes associated with RGGscore were examined using qRT-PCR. Taken 
together, a pioneering RGGscore model has been successfully established, showcasing its potential 
efficacy in offering valuable therapeutic guidance for GC.

Gastric cancer (GC) holds the fifth position among the most prevalent malignancies globally and stands as the 
third leading cause of cancer-related mortality, predominantly attributable to its aggressive progression and 
propensity for distant  metastasis1. Despite notable advancements in comprehensive therapeutic approaches, the 
formidable challenge of metastasis persists, posing significant obstacles to achieving favorable clinical  outcomes2. 
In recent times, various therapeutic modalities, particularly immunotherapy, have emerged as indispensable 
constituents of cancer treatment, exhibiting remarkably potent efficacy in tumor  defense3. Nevertheless, there is 
considerable heterogeneity in the response to drugs, even among patients exhibiting similar clinicopathological 
 characteristics4,5, the current classification methods, especially the pathological TNM staging system, appear to 
be inadequate in accurately predicting the response to therapeutic. Therefore, there is an urgent need to develop 
a novel molecular signature that can accurately classify subgroups of GC patients who are more likely to derive 
therapeutic benefits from specific treatment regimens.

Rho GTPases play a crucial role in governing the architecture and kinetics of the cytoskeleton, thereby exert-
ing control over cell adhesion, morphology, and the progression of the cell  cycle6. Rho GTPases serve as pivotal 
molecular switches, transitioning between an inactived state bound to GDP and an activated state bound to GTP. 
This intricate regulatory process is orchestrated by the concerted involvement of guanine nucleotide exchange 
factors (GEFs), GTPase-activating proteins (GAPs), and GDP dissociation inhibitors (GDIs). GEFs play a crucial 
role in promoting the activation of Rho GTPase, while both GAPs and GDIs are instrumental in its  inhibition7. 
Presently, the dysregulation of Rho GTPases has been associated with malignancy induction, cellular viability, 
invasion, and  metastasis8,9. While the primary outcome of dysregulated Rho family signaling is generally recog-
nized as pro-oncogenic effects, it is noteworthy that Rho family proteins may also participate in antitumorigenic 
processes. This intricate involvement of these proteins in cancer complicates their precise role within the context 
of  malignancy10,11. Prior investigations have elucidated the prospective role of Rho family GTPases as therapeutic 
targets in cancer treatment. Nevertheless, a comprehensive investigation of Rho family GTPases in GC remains 
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lacking. Therefore, in our current study, we aimed to systematically evaluate the expression patterns of Rho family 
GTPase-related molecules in publicly available databases, with the intent to ascertain their clinical significance 
and potential therapeutic implications for GC.

Materials and methods
Dataset and preprocessing
Three distinct and independent GC cohorts, obtained from the TCGA and GEO databases, were integrated into 
our analysis. To ensure the integrity and reliability of the data, we applied rigorous inclusion criteria, including: 
(1) primary GC cases, (2) availability of gene expression profiles and complete survival information, (3) absence 
of prior chemotherapy or radiotherapy treatment before surgery, and (4) minimum survival time exceeding 
30 days. Ultimately, the analyzed cohorts consisted of 299 patients in the GSE66229 dataset, 182 patients in the 
GSE15459 dataset, and 339 patients in the TCGA dataset.

The gene expression data from the GEO database was annotated using the Affymetrix platform (GPL570). The 
ComBat algorithm, embedded in the “sva” package, was employed for batch effect removal in the GEO database. 
The newly formed queue was named the microarray cohort. For the TCGA-GC cohort, RNA-seq data in FPKM 
format was converted to TPM and annotated using the GENCODE database (version GRCh38). The cohort after 
sample screening was named RNA-seq cohort. The Rho GTPase-related genes (RGGs) were downloaded from 
the REACTOME_RHO_GTPASE_CYCLE entry in the MSigDB database, encompassing a total of 450 RGGs. 
Immunohistochemistry (IHC) data were exclusively sourced from the Human Protein Atlas (HPA) database. 
HPA database aggregates data from multiple studies, often without specifying the exact number of cases stained 
for each specific marker. Regarding the scoring of staining intensity, we relied on the HPA’s predefined catego-
rization, which classifies staining intensity as negative, low, medium, or high.

Acquisition and processing of the scRNA-seq data
The standardized GC scRNA-seq dataset GSE134520 was downloaded from the single-cell database TISCH. 
Quality control was performed using nFeature_RNA > 200, nFeature_RNA < 4000, and percent.MT < 5. After 
normalizing, the first 2000 height-variable genes of each sample were analyzed and the ScaleData function was 
employed for scaling. The RunPCA function was used to reduce the dimensions of principal component analysis 
(PCA). Then, the FindNeighbors and FindClusters functions were applied for cellular clustering and visual analy-
sis. Each cell cluster was annotated with cellular lineage annotation based on the cellular lineage marker genes.

Consensus clustering
Based on the expression profiles of prognostic RGGs (p < 0.05), an unsupervised consensus clustering analysis 
was conducted using the “ConsensusClusterPlus” software package. The optimal number of clusters was obtained 
according to the cumulative distribution curve and K-means. PCA confirmed the effectiveness of the clustering.

Immunoinfiltration analysis and functional enrichment analysis
The algorithm of single-sample gene set enrichment analysis (ssGSEA) was employed to estimate the abundance 
of immune cells in various samples, thus reflecting the immunological microenvironment status and compar-
ing the mRNA expression levels of immune checkpoint inhibitors (ICIs) among different groups. Differentially 
expressed genes (DEGs) among various subtypes were identified using the R package “Limma”, with the signifi-
cance criterion set as |log2(FoldChange)|> 0.5 and adjusted p value < 0.05. After identifying the DEGs, enrichment 
analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed 
using the “clusterProfiler” package. A P value < 0.05 and q-value < 0.05 were selected as the criteria for discerning 
significantly enriched pathways.

Construction and validation of the risk score model
The RNA-seq cohort was employed for modeling, while the microarray cohort was utilized for external validation. 
Within the RNA-seq cohort, univariate Cox regression analysis was employed to ascertain prognostic-related 
RGGs. The least absolute shrinkage and selection operator (LASSO) model was utilized to eliminate redundant 
genes. Correlation coefficients and gene expression values were obtained through multivariate Cox regression 
analysis, and a risk score calculation formula was established. According to the median score calculated using 
this formula, patients were divided into a high-risk group and a low-risk group. The prognostic value of risk 
scores in the RNA-seq and microarray cohorts was evaluated using univariate and multivariate Cox regression 
analysis. The R package “timeROC” was utilized to depict the receiver operating characteristic (ROC) curve and 
ascertain the area under the curve (AUC), thereby evaluating the prognostic effectiveness.

Immunotherapy dataset
Using two cohorts treated with immune checkpoint blockade (ICB) therapies, namely IMvigor210 and GSE78220, 
to validate the use of a risk model for predicting the efficacy of immunotherapy. The IMvigor210 dataset com-
prised 298 individuals afflicted with advanced urothelial carcinoma who underwent treatment with the anti-
PD-L1 medication,  Atezolizumab12. In the GSE78220 dataset, patients with metastatic melanoma underwent 
treatment with the anti-PD-1 drug,  pembrolizumab13.

Cell culture and qRT-PCR analysis
The GC cell lines (HGC-27, SGC-7901, and BGC-823), as well as the human normal gastric mucosal epithelial 
cell line (GSE-1) were kindly provided by the Cell Repository of the Chinese Academy of Sciences (Shanghai, 
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China). All cell lines were cultured in RPMI-1640 medium containing 10% Fetal Bovine Serum (FBS), strepto-
mycin (100 U/mL), and penicillin (100 U/mL) at 37 °C in 5%  CO2 atmosphere.

TRIzol® (1 mL) was used to isolate total RNA from cell lines, and complementary DNA (cDNA) was created 
using reverse transcriptase from avian medulloblastoma virus and random primers according to TAKARA’s 
instructions. SYBR Premix Ex Taq II (Takara, Shiga, Japan) was adopted to perform qRT-PCR. Data were ana-
lyzed using  2−ΔΔCT values. The primer sequences of GADPH were F: 5′-ACA GTC AGC CGC ATC TTC TT-3′ and 
R: 5′-AAA TGA GCC CCA GCC TTC TC-3′. The primer sequences of NCKAP1 were F: 5′-TTG TAC CCC ATA GCA 
AGT CTCT-3′ and R: 5′-GGG CAT TTC TCC ACT GGT CAG-3′. The primer sequences of PIK3R3 were F: 5′-TAC 
AAT ACG GTG TGG AGT ATGGA-3′ and R: 5′-TCA TTG GCT TAG GTG GCT TTG-3′. The primer sequences of 
CPNE8 were F: 5′-ACA TGA CTT TCT GGG ACA AGTG-3′ and R: 5′-GCA TCC CTG CAA CAG TTT AATTC-3′.

Statistical analysis
The statistical analyses were executed using R software (version 4.0.1), as described earlier in this study. The 
significance level was set at a P-value below 0.05, indicating statistical significance.

Results
RGGs exhibit differential expression and prognostic predictive capacity in GC
As depicted in Fig. 1A, a notable proportion of Rho GTPases are subject to regulatory control by GEFs, GAPs, 
and GDIs. Through their influence, these proteins govern the intricate cycling between the active GTP-bound 
conformation and the inactive GDP-bound conformation of Rho GTPases. Additionally, Rho GTPases were 
also regulated by post-translational modifications, including lipid modification, phosphorylation, ubiquitina-
tion, and SUMOylation, which profoundly impact their intracellular localization, stability, and ability to engage 
downstream effectors.

Firstly, we identified the differential expression of RGGs in the RNA-seq cohort. The findings revealed a 
total of 37 differential RGGs. Among them, 21 RGGs were up-regulated in tumor tissues and 16 RGGs were 
down-regulated in normal tissues. Notably, MUC13 up-regulated the most, while CKB down-regulated the 
most (Fig. 1B). Subsequently, in the RNA-seq cohort, univariate Cox regression analysis showed that a total of 
52 RGGs had prognostic indicators, of which CPNE8 was the largest risk factor for HR and SRGAP3 was the 
strongest protective factor (Fig. 1C).

Two distinct situations of Rho GTPase modification in the GC
Firstly, the expression profile comprised of the aforementioned 52 RGGs in the RNA-seq cohort was utilized, 
and all tumor samples were partitioned into k subtypes using the R software package “ConsensusClusterPlus”. 
According to the consensus score of the heat map (Fig. 2A) and the CDF curve (Fig. 2B), it could be inferred that 
k = 2 was the optimal grouping. Furthermore, PCA revealed pronounced transcriptomic heterogeneity in the 
aforementioned two subtypes (Fig. 2C), suggesting the potential existence of two distinct Rho GTPases modi-
fication scenarios within the context of GC. Survival analysis showed that subtype B had the worst prognosis 
(n = 103), while subtype A had the best prognosis (n = 236) (Fig. 2D).

To further validate the robustness of this classification, verification was conducted using a microarray cohort. 
The results demonstrated that the microarray cohort could be classified into two subtypes based on the expres-
sion profile derived from the same 52 RGGs (Fig. 2E). Among them, subtype A contains 292 patients, subtype 
B contains 189 patients, and also subtype B has the worst prognosis (Fig. 2F).

Finally, we demonstrated the correlation between the two subtypes and RGGs and clinical information in the 
RNA-seq cohort. The results showed that the possible reason for the two different Rho GTPases modification 
may potentially stem from differential expression of RGGs, such as subtype B exhibiting elevated expression 
of VIM, FERMT2, and other genes, whereas subtype A displayed heightened expression of ARHGAP44 and 
ARHGEF5 (Fig. 2G).

Immune microenvironment and pathway differences of different Rho GTPases modification 
conditions
We compared the expression patterns of ICIs in different subtypes. Interestingly, subtype B demonstrated higher 
mRNA expression in most ICIs, such as CD276 and HAVCR2. Conversely, certain ICIs showed elevated expres-
sion in subtype A, including TNFRSF14 and LGALS9 (Fig. 3A). Furthermore, we further refined the content of 
various immune cells in different samples by ssGSEA analysis. The box plot showed the difference in the content 
of immune cells in different subtypes. We observed a significant increase in most immune killer cells in subtype 
B. However, MDSC and Treg cells were also significantly up-regulated, which may cause an immunosuppressive 
environment in the tumor and provide a corresponding explanation for its worst prognosis (Fig. 3B).

To explore the reasons for the different survival status and immune landscape caused by different Rho GTPases 
modification, we analyzed the differences between the two subtypes. A total of 524 differentially expressed genes 
were identified, most of which were significantly up-regulated in subtype B, and only 8 genes were up-regulated 
in subtype A, namely RECQL4, MYBL2, UBE2C, MUC13, CCL20, CXCL3, LCN2 and MMP12 (Fig. 3C). Sub-
sequently, we conducted KEGG and GO enrichment analyses on 524 differentially expressed genes. The results 
showed that most of them were concentrated in the extracellular matrix and were highly correlated with focal 
adhesion, ECM-receptor interaction and other pathways (Fig. 3D).

Develop a Rho GTPases-related risk identification system for easy clinical use
Although two different Rho GTPases modifications were identified by the transcription profile of RGGs, and 
the heterogeneity of survival and biological functions was reflected. However, molecular subtyping was based 
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on studies conducted on patient populations, thus rendering it incapable of accurately predicting the individual 
condition of each patient. Therefore, we evaluated the risk score for individual patients based on the expression 
profiles composed of RGGs in single-factor Cox regression analysis, aiming to facilitate clinical application.

Figure 1.  The identification of the candidate RGGs in the RNA-seq cohort. (A) Regulation of Rho GTPases 
and graphical abstract. (B) The heatmap of 37 differentially expressed RGGs in GC tissues. (C) Univariate Cox 
regression of RGGs for the screening of prognosis-related genes.
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First, utilizing LASSO regression analysis in the RNA-seq cohort (Fig. 4A,B), selectively eliminated redun-
dant RGGs, and ultimately incorporated 21 RGGs into a multifactor Cox regression equation. Using the Akaike 
Information Criterion (AIC) to identify models that provided the optimal data explanation while containing the 

Figure 2.  Consensus clustering analysis of 52 RGGs. (A) Heatmap of the consensus matrices for k = 2. (B) The 
CDF curves for clusters at k = 2 to 9. (C) PCA plot for the two clusters in the RNA-seq cohort. Kaplan–Meier 
curves based on two clusters in the RNA-seq cohort (D) and microarray cohort (F). (E) PCA analysis in the 
microarray cohort. (G) Heatmap and the clinical parameters of the two clusters.
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least free parameters. Ultimately, 11 genes were finally screened out and used to construct a risk model named 
RGGscore (Fig. 4C).

According to the median, it was divided into high-risk and low-risk groups. Table 1 displayed the coeffi-
cients within the equation. To verify the accuracy of RGGscore, we computed the risk score for each patient in 

Figure 3.  Analysis of immune microenvironment and pathway enrichment. (A) Differences in the abundance 
of immune-checkpoint-related genes between two subtypes. (B) Different immune cell infiltrations were 
compared between two subtypes. (C) Volcano plot showing DEGs between two subtypes. (D) GO and KEGG 
enrichment analyses of DEGs between two subtypes. ns not significant, *p < 0.05, **p < 0.01, ***p < 0.001.
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the microarray cohort using the identical equation parameters. It was interesting to note that the ROC curves 
demonstrated the accuracy (ACU > 0.6) of survival prediction for 1, 3, and 5 years in both the RNA-seq cohort 
(Fig. 4D) and the microarray cohort (Fig. 4E). Similarly, survival analysis revealed that in the RNA-seq cohort 
(Fig. 4F) and microarray cohort (Fig. 4G), the prognosis of the high RGGscore group was inferior to that of the 
low RGGscore group.

To assess its prognostic predictive capacity, we conducted univariate and multivariate Cox regression analyses 
by incorporating additional clinical factors into the RNA-seq cohort (Fig. 4H,I). The results demonstrated that 
RGGscore possessed autonomous prognostic indicatory capacity and, moreover, exhibited the highest HR value 
of 1.811 among the factors under regression analysis. Similarly, within the microarray cohort, a multifactorial 
Cox regression analysis revealed that RGGscore (HR = 2.9) possessed the most robust capacity for independent 
prognostic indication (Fig. 4J).

The risk identification system associated with Rho GTPases can provide guidance for 
immunotherapy
The emergence of immunotherapy, typically represented by PD-1/PD-L1 checkpoint inhibitors, signified a sig-
nificant milestone in the treatment of tumors. Considering the potential therapeutic effects of immunotherapy, 
particularly PD-1 and PD-L1 immune checkpoint inhibitors, in various malignancies, including GC, we further 
assessed the predictive role of RGGscore in the IMvigor210 and GSE78220 cohorts.

On one hand, we assessed the correlation between RGGscore and immune therapy response in the IMvigor210 
cohort, consisting of patients with advanced urothelial carcinoma undergoing PD-L1 blockade treatment. Com-
pared to patients in the high RGGscore group, patients in the low RGGscore group exhibited evident survival 
advantages (Fig. 5A). The RGGscore of patients in the progressive disease (PD)/stable disease (SD) group were 
significantly higher compared to the partial response (PR)/complete response (CR) group (Fig. 5B). It is worth 
noting that the proportion of PR/CR in the high RGGscore group was significantly lower than that in the low 
RGGscore group. However, the proportion of PD/SD patients demonstrated an opposing trend, indicating that 
RGGscore could unveil patients’ response to ICB therapy (Fig. 5C).

On the other hand, we conducted a similar analysis within the GSE78220 cohort comprising patients with 
melanoma undergoing PD-1 blockade therapy. Similarly, in comparison to patients in the high RGGscore group, 
those in the low RGGscore group exhibited conspicuous survival advantages (Fig. 5D). The RGGscore of the 
PD group was significantly higher compared to the PR/CR group (Fig. 5E). It was noteworthy that the low 
RGGscore constituted the predominant subtype (73%) within the PR/CR group, whereas the high RGGscore 
was a significant subtype (62%) within the PD group. This indicated that RGGscore held promise as a hopeful 
predictive indicator for the immunotherapeutic response in GC patients (Fig. 5F). Moreover, in TCGA cohort’s 
results, we found that not only the expression of PD-L1, but also among other immune checkpoints that were 
statistically significant, mRNA was higher in the low-RGGscore group (Supplementary Fig. 1), which may rep-
resent a better therapeutic response.

Characterization of the single-cell level of the Rho GTPases-associated risk recognition system
In order to further characterize the expression patterns of Rho GTPase-associated risk factors in different cells, 
we conducted an exploration using the GC single-cell data from the GSE134520 dataset. The findings revealed 
that the cells in this dataset could be classified into 23 subgroups (Fig. 6A). Using the annotation files from the 
TISCH database, the 23 subgroups were further divided into 9 cellular clusters, including CD8 T cells, dendritic 
cells, fibroblasts, glandular mucous cells, malignant cells, mast cells, myofibroblasts, pit mucous cells, and plasma 
cells (Fig. 6B).

Subsequently, we examined the expression of genes involved in the risk recognition system of Rho-GTPases, 
and the findings unveiled significant expression of NCKAP1, PIK3R3, and CPNE8 in malignant cells (Fig. 6C). 
Similarly, we conducted RGGscore for various cells, and the outcomes revealed that cells with high RGGscore 
exhibited characteristics of malignancy and glandular mucus, aligning with our suppositions (Fig. 6D).

Furthermore, based on the IHC data from the HPA database, we further examined the chromosomal locali-
zation of NCKAP1, PIK3R3, and CPNE8, revealing their pronounced staining within the glandular regions. 
This finding served to further substantiate our conclusion (Fig. 6E). Finally, based on cellular lineage validation, 
it was confirmed that NCKAP1, PIK3R3, and CPNE8 exhibited markedly elevated expression in GC cell lines 
compared to normal gastric mucosal epithelial cells (Fig. 6F-H).

Discussion
Members of the Rho family of GTPases assume pivotal roles in a diverse range of cellular processes, including 
but not limited to cell proliferation, motility, cytoskeletal regulation, establishment of cellular polarity, and 
transcriptional  regulation14–16. Several investigations have revealed the pivotal role of this gene family in both 
the initiation and progression of tumorigenesis as well as developmental  processes14. They possess the capability 
to both facilitate tumor growth and inhibit tumor  development17. To date, the relationship between overall sur-
vival, clinical characteristics, and the expression of Rho family GTPases in GC remains unexplored. Additional 
investigations are required to authenticate the exact function of these gene families in GC. This study aimed 
to conduct bioinformatics analyses in order to investigate the expression profile and prognostic significance of 
RGGs in GC, with the objective of improving the accuracy of prognosis prediction.

We employed a robust methodology to identify RGG subtypes using consensus clustering algorithms. This 
approach enabled us to capture a broad and representative spectrum of gene expression patterns associated with 
GC, thereby enhancing the relevance and applicability of our model. The findings of our study elucidate the 
significance of RGGs in GC, as we identified two distinct molecular subtypes based on the expression profiles 
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Figure 4.  Development and validation of Rho GTPases related risk identification system. (A, B) LASSO Cox 
regression analysis to develop the prognostic model. (C) Forest plot of the 11 target genes that compose the 
RGGscore model. Time-dependent ROC of the RNA-seq cohort (D) and microarray cohort (E). Kaplan–
Meier curves of the RNA-seq cohort (F) and microarray cohort (G). (H) Univariate Cox regression analysis of 
RGGscore in the RNA-seq cohort. Multivariate Cox regression analysis of RGGscore in the RNA-seq cohort 
(I) and microarray cohort (J). *p < 0.05, **p < 0.01.
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of 52 RGGs. Notably, patients belonging to subtype A exhibited more favorable survival outcomes and clinico-
pathological characteristics. Furthermore, notable disparities in TME features were observed between the two 
subgroups. Subtype B exhibited a “hot” tumor phenotype characterized by heightened immune cell infiltration 
and elevated expression of ICIs mRNA, suggesting a potential enhanced responsiveness to immunotherapeutic 
interventions.

Utilizing DEGs, we constructed a robust prognostic model termed RGGscore, which is founded on a panel 
of RGGs. The RGGscore was meticulously calculated based on the expression levels of the identified genes. We 
ensured that this score was reflective of the overall survival disparities observed in GC patients. To confirm the 
reliability and accuracy of the RGGscore, we validated our model with external patient cohorts. This validation 
not only confirmed the reproducibility of our findings but also demonstrated the model’s effectiveness across 
different patient populations. This novel model aims to accurately predict the individualized prognosis of GC 
patients. The model consists of NCKAP1, PARD6A, ARHGEF18, PIK3R3, STARD8, FLOT2, CKAP4, CPNE8, 
MSI2, SPATA13, and NHS. NCKAP1 was first discovered in patients with Alzheimer’s disease (AD), which 
has been proved to drive metastasis in human non-small-cell lung  cancer18. PARD6A has been established 
as an oncogene, and its association with multiple cancer types has been extensively  validated19. ARHGEF18/
p114RhoGEF is involved in tumorigenesis but the specific function has not been well  investigated20. PIK3R3 has 
been shown to inhibit tumor cell senescence through p53/p21  signaling21. STARD8, a recently identified Rho 
GTPase-activating protein, exhibits downregulation in various malignancies and exerts inhibitory effects on 
tumor cell  proliferation22. FLOT2 has been shown to assume a pivotal role in cancer cell proliferation, invasion, 
and migration, underscoring its significance in the progression of malignant  diseases23,24. CKAP4 functions as a 
receptor for Dickkopf1 and participates in tumor  progression25. CPNE8 has been implicated in the promotion of 
gastric cancer metastasis by modulating the focal adhesion pathway and the tumor  microenvironment26. MSI2 
plays a substantial role in tumorigenesis, rendering it a valuable prognostic marker and predictive indicator for 
chemotherapy  response27. A previously conducted investigation has unveiled the involvement of Rho-family 
GEF Asef2 (SPATA13) in the modulation of cellular adhesion and actin dynamics, and thereby regulation of cell 
 migration28. The function of NHS in non-small cell lung cancer has been identified as significantly associated with 
the processes of invasion and the development of liver  metastasis29. As a result, the model incorporating these 
11 genes exhibits promising potential for prognostic evaluation in GC. Robust evidence from both univariate 
and multivariate Cox regression analyses substantiated the RGGscore as an independent prognostic predictor, 
capable of providing valuable insights into the survival outcomes of GC patients. The ROC analysis further 
substantiated the robust predictive capacity of the RGGscore model for 1-, 3-, and 5-year OS in GC patients. 
Consequently, the RGGscore demonstrates considerable reliability as a prognostic indicator, offering valuable 
insights into the prognosis of GC patients.

Furthermore, accumulating evidence suggests that Rho GTPases contribute to the intricate crosstalk between 
tumor cells and their microenvironment. Through intricate interplay with various signaling molecules, Rho 
GTPases influence the tumor microenvironment, fostering an ecosystem that promotes cancer cell survival, 
immune evasion, and therapeutic resistance. This interplay underscores the intricate and dynamic nature of 
the tumor-stroma interaction, emphasizing the significance of Rho GTPases as potential therapeutic targets. 
The emergence of immunotherapy, typically represented by PD-1/PD-L1 checkpoint inhibitors, signified a sig-
nificant milestone in the treatment of tumors. Considering the potential therapeutic effects of immunotherapy, 
particularly PD-1 and PD-L1 immune checkpoint inhibitors, in various malignancies, including GC, we further 
assessed the predictive role of RGGscore in the IMvigor210 and GSE78220 cohorts. Further validation was pro-
vided by correlating the RGGscore with the response to immunotherapy in two additional patient cohorts. The 
significant correlation observed underscored the potential of the RGGscore in guiding therapeutic decisions, 
thereby supporting its prognostic utility. On one hand, we assessed the correlation between RGGscore and 
immune therapy response in the IMvigor210 cohort, consisting of patients with advanced urothelial carcinoma 
undergoing PD-L1 blockade treatment. Compared to patients in the high RGGscore group, patients in the low 
RGGscore group exhibited evident survival advantages. The RGGscore of patients in the PD/SD group were 
significantly higher compared to the PR/CR group. It is worth noting that the proportion of PR/CR in the high 

Table 1.  Results of prognosis related genes in RGGs in multivariate Cox regression.

id coef HR HR.95L HR.95H p value

NCKAP1 0.5330 1.7040 1.0743 2.7027 0.0235

PARD6A − 0.2693 0.7639 0.5822 1.0024 0.0520

ARHGEF18 − 0.4716 0.6240 0.3770 1.0329 0.0666

PIK3R3 − 0.5442 0.5803 0.3850 0.8747 0.0093

STARD8 0.4334 1.5425 1.0103 2.3551 0.0447

FLOT2 0.5168 1.6766 1.1256 2.4974 0.0110

CKAP4 0.2722 1.3128 0.9878 1.7447 0.0607

CPNE8 0.3093 1.3624 0.9696 1.9144 0.0747

MSI2 − 0.3074 0.7354 0.5014 1.0786 0.1157

SPATA13 − 0.3043 0.7377 0.4973 1.0943 0.1305

NHS 0.3518 1.4216 1.1134 1.8150 0.0048
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RGGscore group was significantly lower than that in the low RGGscore group. However, the proportion of PD/
SD patients demonstrated an opposing trend, indicating that RGGscore could unveil patients’ response to ICB 
therapy. On the other hand, we conducted a similar analysis within the GSE78220 cohort comprising patients 
with melanoma undergoing PD-1 blockade therapy. Similarly, in comparison to patients in the high RGGscore 
group, those in the low RGGscore group exhibited conspicuous survival advantages. The RGGscore of the PD 
group was significantly higher compared to the PR/CR group. It was noteworthy that the low RGGscore con-
stituted the predominant subtype (73%) within the PR/CR group, whereas the high RGGscore was a significant 
subtype (62%) within the PD/ group. This indicated that RGGscore held promise as a hopeful predictive indicator 
for the immunotherapeutic response in GC patients.

An additional noteworthy aspect of this study involves the in-depth exploration of the potential role of RGGs 
through the comprehensive analysis of single-cell data. This approach enables a finer-grained examination of the 
cellular heterogeneity and molecular dynamics underlying the influence of RGGs in the context of the studied 
disease. Through single cell clustering, the findings unveiled significant expression of NCKAP1, PIK3R3, and 
CPNE8 in malignant cells. Similarly, we conducted RGGscore for various cells, and the outcomes revealed that 

Figure 5.  Correlation of RGGscore with immunotherapy response in two cohorts. Kaplan–Meier curves 
for patients with high and low RGGscore groups in the IMvigor210 cohort (A) and GSE78220 cohort (D). 
Difference in RGGscore among two immunotherapy response groups in the IMvigor210 cohort (B) and 
GSE78220 cohort (E). The distribution of immunotherapy response in indicated groups stratified by RGGscore 
in the IMvigor210 cohort (C) and GSE78220 cohort (F). **p < 0.01, ***p < 0.001.
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Figure 6.  Validation of the expression of the signature genes in GC. (A) The results of the dimension 
reduction cluster analysis are shown in the UMAP diagram. (B) Cells were annotated into 9 different types of 
cells. (C) Expression of different risk genes in different cells. (D) The expression of Risk score in different cells. 
(E) The protein expression of the three genes in GC tumor tissues and normal tissues. (F–H) Further verification 
of the mRNA expression levels of three signature genes in human GC cancer cell lines and human normal 
gastric epithelial cell line by qRT-PCR analysis. **p < 0.01, ****p < 0.0001.
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cells with high RGGscore exhibited characteristics of malignancy and glandular mucus, aligning with our sup-
positions. We validated the expression levels of the genes used in the model using qRT-PCR to ensure that the 
RGGscore was based on accurately measured gene expression data and that expression changes had occurred 
during tumorigenesis. Similarly, qRT-PCR was used to verify that the expression of NCKAP1, PIK3R3, and 
CPNE8 in GC cell lines was significantly higher than that in normal gastric mucosal epithelial cells. It is gratify-
ing that the IHC data in the HPA database further prove our conclusion.

However, it is important to acknowledge the limitations of our research. Firstly, our developed model com-
prises a set of 11 genes, which may impose certain constraints on its wider clinical applicability. The current 
AUC value of our model, while promising, does not yet reach an optimal level. Therefore, further comprehensive 
analyses of RGGs are warranted to enhance the overall prognostic accuracy of our model. Future investigations 
should delve deeper into the intricacies of RGGs, aiming to refine and improve its predictive capabilities. Further 
investigations are also warranted to elucidate the molecular mechanisms underlying the impact of these signa-
ture genes on diverse prognostic indicators in patients with GC. Moreover, the data we collected and analyzed 
for RGGscore development were solely transcriptomic. We did not have access to corresponding IHC data that 
would allow us to directly measure protein expression levels, including PD-L1.

Conclusion
In this study, we conducted a comprehensive and systematic analysis of RGGs, resulting in the development 
of a prognostic model referred to as RGGscore. This novel model was employed to investigate the prognostic 
implications, immune cell infiltration patterns, and potential immunotherapeutic responses in GC patients. Our 
findings offer valuable insights into the significance of RGGs and hold promise in the identification of novel 
therapeutic targets for the management of GC.

Data availability
The original data for this study were obtained from the TCGA (https:// portal. gdc. cancer. gov) and GEO (https:// 
www. ncbi. nlm. nih. gov/ geo/) databases. All data generated or analysed during this study are included in this 
published article and its supplementary information files. Further inquiries can be directed to the correspond-
ing authors.
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