
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20483  | https://doi.org/10.1038/s41598-023-47452-7

www.nature.com/scientificreports

Defining predictors for successful 
mechanical ventilation weaning, 
using a data‑mining process 
and artificial intelligence
Juliette Menguy 1, Kahaia De Longeaux 1,2, Laetitia Bodenes 1, Baptiste Hourmant 1 & 
Erwan L’Her 1,2*

Mechanical ventilation weaning within intensive care units (ICU) is a difficult process, while crucial 
when considering its impact on morbidity and mortality. Failed extubation and prolonged mechanical 
ventilation both carry a significant risk of adverse events. We aimed to determine predictive factors 
of extubation success using data-mining and artificial intelligence. A prospective physiological and 
biomedical signal data warehousing project. A 21-beds medical Intensive Care Unit of a University 
Hospital. Adult patients undergoing weaning from mechanical ventilation. Hemodynamic and 
respiratory parameters of mechanically ventilated patients were prospectively collected and combined 
with clinical outcome data. One hundred and eight patients were included, for 135 spontaneous 
breathing trials (SBT) allowing to identify physiological parameters either measured before or during 
the trial and considered as predictive for extubation success. The Early-Warning Score Oxygen 
(EWSO2) enables to discriminate patients deemed to succeed extubation, at 72-h and 7-days. Cut-off 
values for EWSO2 (AUC = 0.80; Se = 0.75; Sp = 0.76), mean arterial pressure and heart-rate variability 
parameters were determined. A predictive model for extubation success was established including 
body-mass index (BMI) on inclusion, occlusion pressure at 0,1 s. (P0.1) and heart-rate analysis 
parameters (LF/HF) both measured before SBT, and heart rate during SBT (global performance 62%; 
83%). The data-mining process enabled to detect independent predictive factors for extubation 
success and to develop a dynamic predictive model using artificial intelligence. Such predictive tools 
may help clinicians to better discriminate patients deemed to succeed extubation and thus improve 
clinical performance.
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P0,1	� Occlusion pressure at 0,1 s.
PPG	� Photoplethysmography
RMSSD	� Root mean square of successive differences
ROC	� Receiver operating characteristic
RR	� Respiratory rate
SampEn	� Sample entropy
SBT	� Spontaneous breathing test
ShanEn	� Shanon entropy
VAP	� Ventilation associated pneumonia
VLF	� Very low frequency

Acute respiratory failure requiring mechanical ventilation (MV) is frequent within Intensive Care Unit (ICU) 
patients, and a large proportion of these patients will require MV for more than 24-h1. Although lifesaving, MV 
also causes numerous life-threatening complications. MV weaning and endotracheal extubation are a major 
challenge during the ICU stay and might be considered as soon as possible2. From the moment of endotracheal 
intubation, the clinician must consider two difficulties during the weaning decision process which are prolonging 
MV unnecessarily, or extubating the patient earlier, both associated with an inherent risk of increased morbid-
ity and mortality3, 4. Indeed, the longer is the MV duration, the higher is the risk of baro-volotraumatic lesions, 
ventilator-associated pneumonia (VAP) or other infectious complications. Although fast discontinuation of MV 
is the primary goal, premature extubation is also associated with weaning failure and complications4, 5.

In some reports, weaning accounts for more than 40% of the total ventilation period. If 60% patients may 
experiment a simple weaning process of less than 24-h, weaning may be more difficult for the remaining 40% 
patients6, 7. If various strategies such as active weaning either using a once-daily trial of spontaneous breathing 
(SBT), pressure-support ventilation, or automated weaning has proven to reduce the weaning duration and the 
inherent MV complication rate, such a process remains too long and/or still uncertain in terms of outcome8–12. 
In addition, no difference has been shown in favour of one method over another in terms of both weaning test 
technique and weaning test duration13, 14. The protocolization of mechanical ventilation weaning is essentially 
that allows its application and success15, 16.

Indeed, in order to identify the best time for secure extubation, weaning should be considered by daily 
screening for objective clinical improvement criteria (pre-test probability of weaning). Several predictive factors 
of endotracheal reintubation have been assessed in previous studies (rapid-shallow breathing index [RR/Vt], 
MV duration, cough strength)17–20. However, all these indicators depicted insufficient sensitivity/specificity and 
other indicators are mandatory to improve our clinical decision robustness. While the discriminative capacity 
of a 30-min SBT seems important to predict extubation success, failure of endotracheal extubation still occurs 
(15 to 20%)21–24. Causes for MV weaning failure are complex, multifactorial and not only related to the patient’s 
respiratory status25–27.

Weaning from mechanical ventilation can be divided in 3 steps. The first is to look for objective criteria for 
weaning. The second is to perform a weaning test, and extubation is the last step.

Physiologically, heart rate and blood pressure vary during the respiratory cycle, corresponding to the activity 
of the autonomic nervous system (ANS).

Mechanical ventilation disturbs the intra-thoracic pressure regimes resulting from heart–lung interactions 
and thus their regulation28, 29. The influence of the ANS contributes to the respiratory sinus arrhythmia process 
and heart-rate variability (HRV)30, 31. Several studies have depicted significant HRV variations in patients under 
MV, especially while considering the weaning process, in an attempt to predict clinical evolution32–35. Transposed 
to mechanical ventilation weaning situations, the evaluation of these warning scores to predict the success of 
extubation and thus, limit the complications of prolonged mechanical ventilation or extubation failure might 
be of interest36.

The main objective of this project was to identify parameters associated with a successful weaning. The second 
objective was to create a predictive model for weaning success either during the pre-test and the SBT phases, 
while using artificial intelligence and machine-learning.

Material and methods
Study design
Data analysis was performed on the ReaSTOC database, which is an ongoing prospective physiological and bio-
medical signal data warehousing project including all consecutive patients admitted to our adult medical ICU 
(ClinicalTrials.gov identifier NCT02893462). A previous publication has described the design and conduct of 
the ReaSTOC study37. The protocol #29BRC18.0080 was approved on November the 5th 2019 by the local ethics 
committee of our institution (Comité d’Ethique du CHRU de Brest IRB #2018CE.27). Written informed consent 
was waived according to French legislation (Law n°2012–300 March 5th 2012 also called “Loi Jardé” https://​www.​
legif​rance.​gouv.​fr/​eli/​jo/​2012/3/6), in accordance with the ethical standards of our local human experimentation 
review board and with the Helsinki Declaration of 1975.

Population
All patients included within the database and under MV for more than 24 h were considered eligible for wean-
ing, according to a standardized protocol. A patient could be analyzed for several SBT during his ICU stay, if he 
had not experienced prior extubation; thus, only the first period of invasive MV was considered if endotracheal 
intubation was deemed necessary after an extubation failure.

https://www.legifrance.gouv.fr/eli/jo/2012/3/6
https://www.legifrance.gouv.fr/eli/jo/2012/3/6


3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20483  | https://doi.org/10.1038/s41598-023-47452-7

www.nature.com/scientificreports/

Exclusion criteria were pregnancy, discontinuation of treatment (terminal extubation), participation decline 
by the patient or relatives, time of MV < 24 h, self-extubation, patients under legal protection or without social 
security, or patients with missing cardiac variability data.

Patients were classified in three groups according to their ventilation weaning difficulty, as proposed by the 
6th international consensus conference3.

Group 1 – “simple weaning” included patients who successfully completed the first weaning test, followed 
immediately by extubation. In the literature, this group represents 69% of weaned patients and the prognosis is 
rather favorable with a 5% ICU mortality and a 12% in-hospital mortality.

Group 2 – “difficult weaning” included patients who achieved one to three SBT before extubation, within less 
than 7 days after the first attempt.

Group 3 – “prolonged weaning” included patients requiring more than 3 SBT, or less than 3 tests but within 
more than 7 days after the first attempt, before extubation. Within groups 2 and 3, ICU mortality is equal or 
higher than 25%6, 27.

Weaning protocol
According to a standardized protocol, established for years within our ICU16, the ability of a patient to perform a 
SBT (Pre-Test) was assessed daily by the nursing team while considering the above criteria: no sedation, no or low 
dose of inotropic or vasopressor treatment, adapted response to simple orders, FiO2 < 50% and PEEP ≤ 5cmH2O. If 
these conditions are met, the SBT is initiated by a ventilator disconnection and the use of a T-piece, for a maximal 
30 min duration, using an oxygen flow rate adjusted to a predetermined SpO2 target.

Failure of the SBT was defined by signs of poor clinical tolerance including: respiratory rate (RR) > 35 cycles/
min, SpO2 < 90%, change of > 20% in heart rate (HR) or blood pressure, sweating, agitation or consciousness 
disorders. If any of these conditions occurred, SBT was immediately stopped and the patient was re-placed under 
mechanical ventilation. If none of these conditions were observed and if the patient had an effective cough, the 
SBT was considered successful and the patient was extubated.

Successful MV weaning was defined as extubation after a successful SBT, without reintubation within 72 h.

Data collection
Demographic and physiological parameters, medical condition prior to ICU admission, length-of-stay and MV, 
as well as hemodynamic and respiratory data before, during and after the weaning test were collected for each 
patient. At the end of the weaning test, the decision whether or not to extubate was recorded and justified in 
the case of non-extubation or reintubation. Decisions to limit treatment or terminally extubate were specified 
and documented.

Weight balance was assessed at the time of SBT and considered as either negative (decrease in body weight 
since admission), neutral (same body weight as admission), or positive (increase in body weight since admission).

Body-Mass Index (BMI) was assessed on admission according to the actual patient’s height and weight. It was 
subsequently divided into 5 classes: low-weight-denutrition (BMI < 18.5 kg/m2), normal (BMI = 18.5–24.9 kg/
m2), overweight (BMI = 25–29.9 kg/m2), obesity (BMI = 30–39.9 kg/m2), or morbid obesity (BMI > 40 kg/m2).

Continuous photoplethysmography (PPG) data were recorded 30-min prior to SBT, during SBT, and 30-min 
after extubation, at a 75 Hz frequency (Phillips Intellivue MP70 monitor) via the SYNaPSE extraction software 
(System for Nonintrusive Physiological Signal Exploration LTSI INSERM UMR 1099). Recording of PPG curves 
was used to perform HRV analysis, in the temporal (RMSSD, triangular index), frequency (VLF, LF, HF, LF/HF), 
and non-linear domains (SD1, SD2, SD2/SD1, Approximate—Sample and Shanon entropies). Such approach 
using plethysmogram has been validated within a prior study37, 38.

The respiratory parameter called Early-Warning Score Oxygen (EWSO2) was defined in the observational 
study by Viglino et al.39 and its variations during the weaning test were collected.

Statistical analysis
In the absence of an a priori hypothesis, no number of subjects was calculated and all available data were used 
for analysis. Results are presented as mean and standard deviation, unless specified otherwise. The comparison 
of quantitative variables in each group was performed using Student or Wilcoxon tests according to distribu-
tion’s normality, and qualitative variables were compared using Khi-2 or Fischer tests. Outcome independent 
predictors were identified by logistic regression; performance of these predictors for a specific cut-off value 
was determined while calculating the area under the receiving operating characteristics curve (AUC for ROC). 
Youden’s J statistic (also called Youden’s index) is a single statistic that captures the performance of a dichotomous 
diagnostic test. Its value ranges from −1 through 1 (inclusive), and has a zero value when a diagnostic test gives 
the same proportion of positive results for groups with and without the disease, i.e. the test is useless. A value of 
1 indicates that there are no false positives or false negatives, i.e. the test is perfect.

Probability of an event for MV weaning was determined using Kaplan–Meier analysis.
All analysis were performed using R +  + (v1.5.03; Zebrys, Toulouse, France). A p-value equal or less than 0.05 

was considered statistically significant.
Predictive models were developed by artificial intelligence and machine learning using the ZGPD model 

(TADA, MyDataModels, Biot, France), that uses evolutionary and genetic algorithms and symbolic regression. 
A model was obtained by search for associations between the variables among 40% of the iterations performed 
on the database. These associations of variables defining the model were subsequently tested on 30% of the data, 
and finally validated on the remaining 30% of the data.

The selection of the most relevant models among all those created was based on the global performance score 
of the model and its relevance to clinical practice. The global performance score reflects the strength of the model 
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and is based on three statistical components: accuracy (ACC), Matthews correlation coefficient (MCC) and the 
area under the curve (AUC).

Results
The data from 108 patients were analysed, representing a total of 135 SBT recordings (Fig. 1). Patients’ physi-
ological characteristics are reported within Table 1, and groups are compared according to the extubation status. 
No significant difference was depicted in between the 2 groups, except for body weight balance (p = 0.0007) and 
immunosuppression status (p = 0.007).

Table 2 reports the clinical and outcome parameters in between groups, while considering the extubation 
status. The causes for SBT failure were cardiovascular (68.4%), respiratory (28.1%), neurological (1.8%) and other 
(1.8%). The different interfaces used after extubation were either room air, O2 via nasal canula, high flow nasal 
oxygen (HFNO), or non-invasive ventilation (NIV). Oxygenation parameters evaluation before and during SBT 
highlights a lower EWSO2, SpO2 values and higher FiO2, RR and O2 flow rate during SBT (p < 0.01 for parameters 
assessed prior to SBT and p < 0.001 for parameters assessed during SBT). Outcomes were also different in between 
groups, according to the extubation status.

Table 3 depicts the spontaneous breathing tests outcome, reasons for failure which were mainly related to a 
post-extubation cardiovascular failure and mechanical ventilation weaning characteristics and strategies.

Table 4 depicts logistic regression used to identify independent parameters associated with extubation, after 
SBT, and extubation success at 72-h and Day-7. Parameters are presented with their best cut-off value, determined 
by ROC curves analysis.

Table 5 depicts ROC curves analysis enables to detect HRV parameters that may predict the probability for 
a never-weaned patient (SD2/SD1, Sample Entropy, Shanon Entropy).

A Kaplan Meier curve was designed, demonstrating the probability of extubation failure in the 72 h accord-
ing to the ventilation weaning group (Fig. 2). It confirmed that the probability of reintubation was lower in the 
simple weaning group and significantly more riskyr for prolonged and difficult weaning groups, all the more as 
the length of stay increases.

While using machine-learning, the best model to predicting extubation success at 72-h (no reintubation dur-
ing the 3-days following SBT success and extubation) was composed of BMI on inclusion, P0.1 measured before 
the SBT, LF/HF before the SBT, and HR during the SBT (Global performance 70%; Accuracy 83%).

[https://​viewer.​mydat​amode​ls.​com/?​model​Id=​9cb25​56b-​3b9a-​49f4-​adfa-​2cb06​90e36​7e].
This model is accessible in the “live predict” thumb index of the URL. Prediction can be obtained online while 

providing the values for the different parameters.

Figure 1.   Patients’ flow-chart. SBT: Spontaneous Breathing Test; MV: Mechanical Ventilation; EIT: 
Endotracheal Intubation; LOC: Lost of Contact; Success: Successful SBT and no reintubation within 72-h; 
Failure: failure of the SBT, or successful SBT but reintubation within 72-h.

https://viewer.mydatamodels.com/?modelId=9cb2556b-3b9a-49f4-adfa-2cb0690e367e
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Discussion
The current work demonstrated that in a medical ICU patient population, the outcome of mechanical ventilation 
weaning was associated with the duration of mechanical ventilation, ICU and global hospital length-of-stay. The 
data-mining process enabled to detect independent hemodynamic and respiratory predictive factors for extuba-
tion success and to develop a dynamic predictive model using artificial intelligence. These results may suggest 
that a rather simple model assessing physiological status prior to weaning and clinical response to a SBT might 
predict with a good level of confidence the overall weaning outcome. The evaluation of HRV was also confirmed 
as a valuable tool for weaning prediction, when combined with other respiratory parameters.

Choosing the appropriate time for weaning a patient under MV is crucial in order to reduce risks related 
to either prolonged ventilator support and to avoid premature weaning3, 40,41. Rapid-Shallow Breathing Index 
(RSBI) and the outcome of a SBT based on respiratory parameters are the most commonly used methods3, 
even if various RSBI thresholds and sensibilities have been argued in various population42. Until now, no single 
appropriate predictor, especially those only focused on respiratory parameters can be used to accurately predict 
weaning outcome43.

While several authors did use artificial intelligence to develop prediction models44, few authors did integrate 
HRV analysis despite promising results either in adults and premature infants and the fact that it may reflect 
either heart–lung interaction and respiratory command45,46. In a pilot study, the team from Barcelona did recently 

Table 1.   Patients’ physiological characteristics. Results are presented as number (%). A p value equal or below 
0.05 was considered statically significant and depicted in black tone. F: female; M: male; SBT: Spontaneous 
Breathing Test; BMI: Body-Mass Index; SAPS 2: Simplified Acute Physiologic Scale; SOFA: Sequential Organ 
Failure. Significant values are in bold.

Extubation After SBT
YES
67 (49.63%)

NO
68 (50.37%) Overall 135 (100%) p value

Physiological Characteristics

 Sex Ratio (F/M) 25/42 (37.3%) 17/51 (25.0%) 42/93 (31.1%) 0.17

 Age 62.9 (12.1) 62.4 (11.4) 62.7 (11.7) 0.80

 BMI 26.4 (6.3) 27.4 (6.1) 26.3 (6.3) 0.88

 SAPS 2 54.9 (16.4) 53.4 (17.0) 54.2 (16.7) 0.60

 SOFA 3.37 (2.17) 3.79 (2.22) 3.59 (2.20)

Weight Balance 0.0007

 Negative 13 (19.7%) 9 (13.4%) 22 (16.54%) –

 Neutral 20 (30.3%) 5 (7.46%) 25 (18.80%) –

 Positive 33 (50.0%) 53 (79.1%) 86 (64.66%) –

BMI Class 0.49

 Low Weight—Denutrition 5 (7.7%) 4 (6.1%) 6 (6.9%) –

 Normal 25 (38.5%) 20 (30.3%) 45 (34.4%) –

 Overweight 20 (30.8%) 25 (37.9%) 45 (34.4%) –

 Obesity 11 (16.9%) 16 (24.2%) 27 (20.6%) –

 Morbid Obesity 4 (6.2%) 1 (1.5%) 5 (3.8%) –

Medical History

 Cardiac Disease 38 (56.7%) 38 (55.9%) 76 (56.3%) 1

 Respiratory Disease 38 (56.7%) 33 (48.5%) 71 (52.6%) 0.44

 Immunosuppression 2 (3.0%) 13 (19.1%) 15 (11.2%) 0.007

 Smoking 19 (46.3%) 18 (40%) 37 (43.0%) 0.82

 Alcohol Abuse 21 (61.8%) 23 (56.1%) 44 (59.7%) 0.34

Medical Condition

Current Pathology 0.16

 Respiratory 25 (37.3%) 33 (48.5%) 58 (42.96%) –

 Hemodynamic 9 (13.4%) 10 (14.7%) 19 (14.07%) –

 Neurologic 25 (37.3%) 15 (22.1%) 40 (29.63%) –

 Cardiac Arrest 7 (10.4%) 5 (7.35%) 12 (8.89%) –

 Other 1 (1.49%) 5 (7.35%) 6 (4.44%) –

 Hemodynamic Unstability 2 (3.0%) 3 (4.4%) 5 (3.7%) 1

 Atrial Fibrillation 10 (14.9%) 16 (23.5%) 26 (19.3%) 0.29

 Arterial Hypertension 14 (20.9%) 22 (32.4%) 36 (26.7%) 0.19

 Diuretics 9 (13.4%) 11 (16.2%) 20 (14.8%) 0.84

 Vasopressors 56 (83.6%) 57 (83.8%) 113 (83.7%) 1

 Beta-blockers 6 (%) 10 (%) 16 (%) 0.24
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promote the combination of HRV analysis to traditional respiratory parameters measured to improve weaning 
readiness32. The model that best predicts outcome at day-3 either combines physiological characteristics (BMI 
on admission), respiratory drive (P0.1) and HRV status (LF/HF) that may be considered as indicators for a 
severity evaluation of the pathological process and a very simple clinical evaluation of the response to SBT (HR). 
One could note that the most frequent cause for SBT failure within our database was considered to be related 
to a cardiovascular failure, which therefore make sense to monitor a simple cardiovascular function tolerance 
parameter such as the heart rate during the test. Most of these indicators can be assessed prior to the T-tube trial 
on a stabilized patient, which may thus secure either the SBT period and the subsequent endotracheal extubation 
period. In case of severity detection with the model, either delaying extubation, or a systematic use of prophylactic 
measures (HFNC or NIV) might be proposed if SBT was considered a success.

Table 2.   Clinical and outcome parameters. Results are presented as number (%). A p value equal or below 
0.05 was considered statically significant and depicted in black tone. SBT: Spontaneous Breathing Test; 
FiO2: inspiratory oxygen fraction; PEEP: positive end expiratory pressure; VT: volume tidal; P0.1: negative 
pressure measured 100 ms after the initiation of an inspiratory effort performed against a closed respiratory 
circuit; SpO2: pulse oximetry; SAP: systolic arterial pressure; MAP: mean arterial pressure; NIV: noninvasive 
ventilation; MV: mechanical ventilation; VFD: ventilatory free day; LOS: length-of-stay; Hs: hospital; NA: not 
applicable. Significant values are in bold.

Extubation After SBT
YES
67 (49.63%)

NO
68 (50.37%)

Overall
135 (100%) p value

Respiratory parameters

Before SBT

 FiO2 (%) 26 (6) 30 (8) 28 (7) 0.002

 PEEP (cm H2O) 5.2 (1.0) 5.2 (1.3) 5.2 (1.1) 0.99

 VT (mL/kg) 7.5 (0.7) 7.5 (0.7) 7.5 (0.7) 0.19

 P0.1 (cm H2O) 1.7 (1.0) 2.2 (1.6) 2.0 (1.4) 0.11

 Respiratory Rate (b/min) 24 (6) 26 (6) 25 (6) 0.02

 SpO2 (%) 95 (3) 94 (3) 95 (3) 0.002

 Heart Rate (b/min) 89 (19) 95 (20) 92 (20) 0.07

 SAP (mmHg) 133 (24) 133 (22) 133 (23) 0.94

 MAP (mmHg) 88 (14) 87 (14) 88 (14) 0.47

 EWSO2 17.9 (6.9) 14.1 (5.8) 16.0 (6.6) 0.005

 SBT number 2 (3) 2 (2) 2 (2) 0.79

During SBT

 O2 flow (L/min) 2.6 (1.4) 3.9 (1.9) 3.2 (1.8)  < 0.0001

 Heart Rate (b/min) 91 (17) 101 (21) 96 (20) 0.008

 Respiratory Rate (b/min) 26 (7) 33 (8) 29 (8)  < 0.0001

 SpO2 (%) 95 (3) 91 (5) 93 (5)  < 0.0001

 SAP (mmHg) 140 (27) 145 (26) 142 (27) 0.25

 MAP (mmHg) 93 (15) 95 (17) 94 (16) 0.25

 EWSO2 14.8 (5.3) 9.9 (4.4) 12.4 (5.4)  < 0.0001

After SBT

 O2 flow (L/min) 4.1 (9.5) NA NA NA

 Heart Rate (b/min) 94 (21) NA NA NA

 Respiratory Rate (b/min) 25 (8) NA NA NA

 SpO2 (%) 95 (3) NA NA NA

 SAP (mmHg) 138 (23) NA NA NA

 MAP (mmHg) 91 (16) NA NA NA

 EWSO2 9.8 (9.5) NA NA NA

Outcomes

 Overall MV duration (days) 7.0 (8.6) 14.2 (13.3) 10.5 (11.7) 0.0004

 VFD in ICU (days) 2.8 (3.2) 3.4 (3.7) 3.1 (3.5) 0.29

 VFD at Day28 (days) 21.6 (9.3) 14.6 (10.8) 18.1 (10.7) 0.0001

 ICU LOS (days) 13.5 (12.4) 24.3 (16.9) 18.8 (15.7)  < 0.0001

 Hs LOS (days) 38.5 (41.8) 39.8 (35.4) 39.1 (38.6) 0.85

 Reintubation ≤ 72h (n) 14 (20.9%) 19 (31.1%) 33 (25.8%) 0.26

 Reintubation ≤ Day7 (n) 14 (20.9%) 18 (29.5%) 32 (25.0%) 0.36

 Never Weaned (n) 0 (0%) 8 (12.1%) 8 (6.0%) 0.002
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Table 3.   Spontaneous breathing test outcome and weaning characteristics. Results are presented as number 
(%). A p value equal or below 0.05 was considered statistically significant and depicted in black tone. SBT: 
spontaneous breathing test; AA: ambient air; HFNC: high flow nasal canula; NIV: noninvasive ventilation; NA: 
not applicable. Significant values are in bold.

Extubation After SBT
YES
67 (49.6%)

NO
68 (50.4%

Overall
135 (100%) p value

Reason for SBT Failure

 Cardiovascular – 39 (68.4%) – NA

 Respiratory – 16 (28.1%) – NA

 Neurologic – 1 (1.75%) – NA

 Other – 1 (1.75%) – NA

Interface after Extubation

 AA 14 (21.2%) – – NA

 O2 36 (54.5%) – – NA

 HFNC 1 (1.75%) – – NA

 NIV 15 (22.7%) – – NA

Weaning Classification  < 0.0001

 Easy 37 (55.2%) 0 (0%) 37 (27.2%) –

 Prolonged 13 (19.4%) 39 (57.4%) 52 (38.2%) –

 Difficult 17 (25.4%) 29 (42.6%) 47 (34.6%) –

Table 4.   Independent outcome predictors identified by logistic regression. A p value equal or below 0.05 was 
considered statistically significant. Parameters with an AUC higher than 0.70 are depicted in black tone. Cut-
off: best value for the parameter, determined by ROC Curve analysis; ROC: Receiver Operating Characteristic; 
AUC: Area Under the Curve; Se: Sensibility; Sp: Specificity; PPV: Positive Predictive Value; NPV: Negative 
Predictive Value; SBT: Spontaneous Breathing Test; SD1: Poincaré plot standard deviation perpendicular the 
line of identity; SD2: Poincaré plot standard deviation along the line of identity; LF: peak frequency of the 
low-frequency band of the plethysmography signal (0.04–015 Hz); SpO2: pulse oximetry; EWSO2: early-
warning score oxygen; BMI: body-mass index; P0.1: negative pressure measured 100 ms after the initiation of 
an inspiratory effort performed against a closed respiratory circuit; SAP: systolic arterial pressure; MAP: mean 
arterial pressure; estimated FiO2: estimated oxygen inspiratory fraction, derived from the mean oxygen flow 
rate. Significant values are in bold.

P Cut-off AUC​ Youden’s Index Se Sp PPV NPV

Extubation after SBT

Weight Balance (kg) 0.01 0.5 0.64 0.28 0.79 0.49 0.61 0.70

SD1 before SBT (ms) 0.03 25.8 0.57 0.18 0.49 0.69 0.62 0.56

SpO2 during SBT (%) 0.04 91.5 0.76 0.41 0.56 0.85 0.78 0.67

EWSO2 before SBT 0.001 12.8 0.67 0.28 0.47 0.81 0.71 0.60

EWSO2 during SBT 0.006 11.1 0.80 0.50 0.75 0.76 0.75 0.76

Extubation Success 72-h

BMI  < 0.0001 23.6 0.67 0.33 0.61 0.73 0.44 0.84

P0.1 before SBT (cmH2O) 0.02 3.3 0.53 0.28 0.30 0.98 0.88 0.73

SpO2 during SBT (%) 0.007 95.5 0.61 0.24 0.87 0.24 0.31 0.89

MAP during SBT (mmHg) 0.02 104.5 0.72 0.35 0.52 0.83 0.50 0.84

SAP during SBT (mmHg) 0.02 145.5 0.68 0.33 0.69 0.64 0.38 0.86

EWSO2 during SBT 0.03 11.9 0.61 0.23 0.74 0.49 0.33 0.85

SD2 prior SBT (ms) 0.01 19.9 0.58 0.22 0.82 0.41 0.33 0.86

Estimated FiO2 after extubation (%) 0.03 29.0 0.60 0.27 0.54 0.74 0.33 0.87

EWSO2 after extubation  < 0.0001 16.2 0.72 0.43 0.91 0.52 0.29 0.96

Extubation Success Day-7

BMI (kg/m2)  < 0.0001 23.6 0.67 0.36 0.63 0.73 0.44 0.85

MAP before SBT (mmHg)  < 0.0001 93.5 0.68 0.29 0.56 0.73 0.42 0.83

SAP before SBT (mmHg)  < 0.0001 142.5 0.63 0.33 0.59 0.74 0.44 0.84

EWSO2 before SBT  < 0.0001 22.3 0.54 0.17 0.94 0.23 0.29 0.92

EWSO2 during SBT  < 0.0001 12.4 0.61 0.22 0.77 0.45 0.31 0.86

EWSO2 after extubation  < 0.0001 16.2 0.72 0.43 0.91 0.52 0.29 0.96

LF before SBT (Hz) 0.03 120.0 0.57 0.18 0.78 0.40 0.31 0.84
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The interest of the present work relies on its originality and methodology. To the best of our knowledge, no 
similar study using a prospective data-warehousing project has ever been performed in the ICU environment. 
Using such an approach enables to collect numerous parameters without any a priori, and the final analysis of so 
many parameters is made possible by artificial intelligence algorithms. Moreover, the creation of dynamic predic-
tive models by machine learning is also innovative, while after validation of the derivation process such models 
may subsequently be used easily in clinical routine, at the patients’ bedside on any laptop, or even smartphones. 
It may thus enable to promote an optimized and more personalized approach for MV weaning.

Principal component analysis and neural networking are some other popular machine-learning methods that 
enable to explore connexion and correlation in between various parameters types that cannot be assessed while 
using conventional statistical approaches. The machine-learning methods that were used herein, while aiming 
to achieve similar goals, are slightly different while they promote genetic and evolutionary algorithms, that as 
compared to the previous methods are intrinsically compact, mathematically simplified, uses less power and 
also enable the use of small sample sizes, thus making it valuable for healthcare and clinical bedside evaluations.

Another methodological question that raises from the results section is the difference between the final AI 
model and the independent predictors detected using logistic regression. Such difference is explained by the fact 
that evolutionary algorithms uses multiple iterations over the dataset (from at least 100 to 1000 iterations), each 
time changing the reference population, thus constructing a more important population of candidate solutions 
and possibly explaining final differences in between predictors. However, while initially constructing models, 
all independent predictors defined by logistic regression were combined with other parameters considered of 
interest from a clinical point of view.

The clinical application of these various models is actually under process within our ICU to validate their 
usability in a daily life situation as well as to evaluate their interest in terms of clinical practice and prognosis 
improvement. Additional parameters such as non-invasive tidal volume evaluation using a time-of flight camera 
will be analysed, thus combining RSBI calculation to other parameters.

Table 5.   ROC curves characteristics for heart rate variability parameters and selected physiological 
characteristics in never-weaned patients. AUC: area under the curve; PPV: positive predictive value; 
NPV: negative predictive value; SBT: spontaneous breathing test; SD1: Poincaré plot standard deviation 
perpendicular the line of identity; SD2: Poincaré plot standard deviation along the line of identity; SampEn: 
sample entropy; ShanEn: Shanon entropy: Youden’s J: statistic value for performance of dichotomous 
diagnostic test: Cut-off: best value for the parameter, determined by ROC curve analysis.

SD2/SD1 during SBT SampEn during SBT ShanEn during SBT BMI admission P0.1 before SBT HR during SBT

AUC​ 0.74 [0.50, 0.97] 0.74 [0.50, 0.99] 0.74 [0.52, 1.0] 0.52 [0.32, 0.73] 0.74 [0.39, 1.0] 0.57 [0.37, 0.77]

Youden’s J 0.52 0.59 0.50 0.20 0.63 0.24

Sensibility 0.86 [0.06,0.87] 0.86 [0.03,0.94] 0.71 [0.07,0.96] 0.44 [0.25, 0.84] 0.80 [0, 1.0] 0.3 [0.48, 0.99]

Specificity 0.66 [0.43, 1.0] 0.73 [0.14, 1.0] 0.79 [0.29, 1.0] 0.75 [0, 0.7] 0.84 [0.4, 1.0] 0.94 [0, 0.6]

Cut-off 1.50 1.63 2.96 22.7 2.5 69.5

PPV 0.14 [0.11, 0.67] 0.17 [0.12, 0.64] 0.18 [0.11, 0.60] 0.12 [0.07, 0.21] 0.27 [0.16, 0.6] 0.30 [0.10, 0.58]

NPV 0.99 [0.96, 1.0] 0.99 [0.96, 1.0] 0.98 [0.96, 1.0] 0.95 [0.94, 1.0] 0.98 [0.95, 1.0] 0.94 [0.93, 1.0]

Figure 2.   Kaplan–Meier Curve for weaning Probability according to the classification group. Weaning 
classification in 3 groups according to the Consensus definition clearly depicts weaning outcome3.
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Our study may have several limitations. The first one is the monocentric characteristic of our medical ICU 
population. A more diversified population will be mandatory, prior to generalization of the algorithms. The 
second one is the accessibility and availability of HRV monitoring within most ICUs. Despite the robustness 
and the generic calculation of these parameters, they are not yet available in routine practice, while raw data are 
accessible within most medical datafiles but fewly exploited. Moreover, prediction dynamic models such as the 
ones developed herein may be considered as useful at the bedside while they integrate multiple and continuous 
changes in the patients’ clinical status overtime47, even if they cannot entirely eliminate the deviation caused by 
external factors, nor then reduce the risk of applying false prediction to an individual level. A third limitation 
of this work is that the type of oxygen therapy support used during SBT and after the extubation period was 
not studied. Furthermore, while we are routinely using T-tube SBT, the RSBI was not routinely available for our 
patients.

Conclusion
If weaning from MV is a process well standardized within the general ICU population, uncertainty remains for 
several patients that will fail extubation. Various parameters have been studied within literature to predict extu-
bation outcome. In this prospective datamining study, we were able to develop comprehensive dynamic models 
combining respiratory parameters to systemic ones. Further clinical studies will be mandatory to validate any 
clinical impact of such models on a clinical routine.

Data availability
All data and material related to the manuscript may be accessible from the corresponding author on reasonable 
request.
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