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A novel subject‑wise dictionary 
learning approach using 
multi‑subject fMRI spatial 
and temporal components
Muhammad Usman Khalid 1 & Malik Muhammad Nauman 2*

The conventional dictionary learning (DL) algorithms aim to adapt the dictionary/sparse code 
to individual functional magnetic resonance imaging (fMRI) data. Thus, lacking the capability to 
consolidate the spatiotemporal diversities offered by other subjects. Considering that subject‑
wise (sw) data matrix can be decomposed into the sparse linear combination of multi‑subject (MS) 
time courses and MS spatial maps, two new algorithms, sw sequential DL (swsDL) and sw block 
DL (swbDL), have been proposed. They are based on the novel framework, defined by the mixing 
model, where base matrices prepared by operating a computationally fast sparse spatiotemporal 
blind source separation method over multiple subjects are employed to adapt the mixing matrices 
to sw training data. They solve the optimization models formulated using l

0
/l
1
‑norm penalization/

constraints through dictionary/sparse code pair update and alternating minimization approach. They 
are unique because no existing sparse DL method can incorporate MS spatiotemporal components 
while updating sw atoms/sparse codes, which can eventually be assembled using neuroscience 
knowledge to extract group‑level dynamics. Various fMRI datasets are used to evaluate and compare 
the performance of the proposed algorithms with existing state‑of‑the‑art algorithms. Specifically, 
overall, a 14% increase in the mean correlation value and 39% reduction in the mean computation 
time exhibited by swsDL and swbDL, respectively, over the adaptive consistent sequential dictionary 
algorithm.

Due to its high spatial resolution, fMRI has emerged as an effective neuroimaging technique for capturing brain 
activity during rest or  cognition1. Brain scans from fMRI are usually analyzed using the multivariate general 
linear model (GLM)2, which relies on the experimental paradigm and hemodynamic response function (HRF) 
for its design  matrix3. Consequently, this approach becomes ineffective for the resting-state investigations where 
the dynamics of the experiment are hard to model and when HRF has variations across  subjects4. For such 
complex scenarios, data-driven methods are preferred due to their reduced assumptions about the underly-
ing structure of the  data5. They can adapt to individual and regional hemodynamics across subjects and brain 
regions by learning underlying trends from the training  data6,7. This makes them practical for both task-related 
activation detection and resting-state functional connectivity analysis. In this regard, blind source separation 
(BSS) based matrix decomposition methods that unveil hidden structures in the multivariate data have been 
very consequential for fMRI  studies8–16.

Among the data-driven methods for brain imaging, spatial ICA (sICA) has enjoyed the most  success17. This 
is due to its numerical simplicity and lower spatial variations of fMRI than  temporal18,19. However, it has been 
suggested that independence is questionable for fMRI and that the sparsity of components is a more productive 
 assumption20. A later study refuted this claim and found that both sparsity and independence are valid pre-
sumptions for fMRI  analysis21. Moreover, ICA’s assumption of independence was once more questioned  in22,23, 
where it was found that, in contrast to sparse DL, ICA had trouble retrieving neural dynamics when there were 
moderate to significant overlaps among functional networks. Biological evidence of sparse coding in the  brain24, 
a previous ICA  investigation25, and a more recent evidence of sparse brain  networks26 have all supported the 
sparse assumption. Eventually, a more plausible framework, sparse spatial ICA (ssICA), that can jointly exploit 
both source diversities through step-wise optimization strategy was developed for  fMRI27.
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Since the advent of compressed  sensing28, sparse  representation29 has been extensively utilized to address vari-
ous signal and image processing  problems30–35. It is particularly fruitful for fMRI when combined with sequential/
block dictionary  learning36, which allows representing the blood-oxygen-level-dependent (BOLD) signal by 
means of a few dictionary atoms via sparse code. The data decomposition using sparse DL inspired authors  in37 
to create a pioneering sparse GLM framework for fMRI. Subsequently, numerous DL algorithms have since been 
created, especially for single-subject fMRI  data38–44. However, none of these subject-wise dictionary models have 
the flexibility to accommodate neural variations and complexities across multiple subjects. Due to the statisti-
cal power of the multivariate analysis, incorporating MS-fMRI data into the subject-wise decomposition may 
enhance the estimation efficiency of each individual’s recovered TCs and SMs in terms of signal-to-noise ratio 
(SNR) and spatial sensitivity,  respectively45–47.

Motivated by the recently presented approach that consisted of a common autoencoder that projected each 
subject’s fMRI data to shared embedding space followed by a subject-specific decoder that reconstructed data 
for each  subject47, two new algorithms, swbDL and swsDL for subject-wise as well group-wise source retrieval 
are proposed in this paper. Instead of aggregating the dictionary atoms across subjects in a lower-dimensional 
 space48, we propose that a reverse strategy would be much more optimal due to its ability to take advantage of 
the DL’s data reconstruction model. Considering the spatial and temporal components from multiple subjects 
as preliminary bases, the explicit dictionary/sparse code is obtained by training the representation matrices 
sequentially and block-wise. These spatiotemporal components were obtained using the ssBSS  method49 that 
exploits concurrent feature  extraction48 in a computationally efficient manner.

The proposed model differs from the existing models that consider constructing only the base dictionary 
using DCT  transform40,50. Instead of using a single-cycle learning approach where DCT bases are used as a base 
dictionary to train the representation matrix, a double-cycle, and a double-representation matrix training is 
adopted. In the first cycle, quick explicit implementation is realized to train a base dictionary and the base sparse 
code, and in the second cycle, associated representation matrices are trained. This strategy ensures that both base 
atom/sparse code matrices span their respective signal space from multiple subjects.

Related work
While some features and white noise in fMRI data vary significantly across subjects, responses to experimental 
stimuli and resting-state networks share common features that are jointly discoverable. To synergize the source 
signals recovery across multiple subjects, consider three aspects of the group fMRI data analysis (a) common 
TCs and corresponding common SMs are found only in task-related data, (b) unique TCs and corresponding 
common SMs are found both in task-related and resting-state data, and (c) unique TCs and corresponding unique 
SMs are found both in task-related and resting-state data.

Due to their model restricted to realize both (a) and (c) simultaneously by aggregating the common temporal 
dynamics across subjects, hybrid concatenation scheme (HCSDL)51, shared and subject-specific DL (ShSSDL)52, 
low-rank Tucker 2 model (LRT-2)53, sparse group bases (sgBACES)50, and sparse alternating rank-R/1 least 
squares (sRrR1LS)54 merely learn common and subject-specific TCs/SMs and therefore cannot handle resting-
state datasets or produce subject-wise dynamics. On the other hand, multi-subject DL (MSDL)55 conceptualized 
only (b) and to some extent (c), resulting in its applicability to resting-state datasets only, and due to this, cannot 
accurately retrieve subject-wise responses.

For subject-wise analysis, the group-level method must be able to handle (c) independent of (a) or (b). The 
only such methods in the literature are group  sICA18 and compressed online DL (CODL)56. They naturally 
retrieve subject-wise TCs/SMs through the population-level spatial maps. They are most versatile because they 
can entertain all three types of fMRI data analysis mentioned above; however, cgICA might yield inferior basis/
maps when spatial dependence among underlying sources is significant, which can be resolved by replacing 
sICA with  ssICA27. Whereas the DL-based methods such as supervised DL (SDL)57 and supervised stochastic 
coordinate coding (SCC)58 that consist of integrating the model and data-driven approach are capable of subject-
wise learning, but they are unable to capture the diversity of brain activities and networks across subjects for 
TCs/SMs of interest.

Recently, some methods have been developed to exploit statistical dependencies across subjects to enhance 
the sensitivity of brain responses and reduce estimation error for each individual. For instance, a shared response 
model (SRM) was proposed by authors  in45 to decompose each subject’s data into a subject-wise basis and a 
matrix of shared responses, a multi-subject low-ranked (LR) joint model, MS-LR-GLM, was proposed by authors 
 in46 that enabled combining the data variations across subjects to enhance the subject-wise HRF estimation, 
and more recently, a non-linear model named MRMD-AE resulted in higher classification accuracy of stimulus 
relevant fMRI signal due to synergy between multiple  subjects47.

To the best of my knowledge, no dictionary learning method in literature to date can exploit the shared 
responses across subjects to enhance the subject-wise analysis. The proposed algorithms in this paper fill this 
gap elegantly.

Background
The ACSD  algorithm41 had established that instead of relying on the conventional alternating minimization 
approach as proposed in the KSVD algorithm, updating elements of the dictionary and the corresponding sparse 
code jointly by solving a penalized rank one error matrix approximation that promotes an adaptive sparse penalty 
lead to faster convergence and overall higher atom recovery percentage.

For this purpose, consider the fMRI data matrix Y ∈ R
N×V constructed from whole-brain BOLD time series 

that consists of N scans and V voxels. Assuming there is sparseness along the row direction of the fMRI data 
matrix, then according to the ACSD approach, it can be decomposed into a dictionary matrix D ∈ R

N×K whose 
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columns have normalization constraint and the sparse code matrix X ∈ R
K×V  whose entries have adaptive 

sparse penalty expressed as

where ‖.‖F and ‖.‖2 is the Frobenius and l2 norm, respectively, |.| represents the absolute value, hyperparameter �kj  
is the data-driven regularization parameter allocated to each entry of X , N < K signifies overcomplete dictionary, 
and each atom is normalized to avoid scaling ambiguity. The ACSD algorithm aims to solve Eq. (1) by penalizing 
the coefficient row in the full error matrix based rank-1 minimization problem to promote the sparsity of xk as

where Ek = Y−
∑K

i=1,i �=k dix
i is the error matrix for all signals from which the k-th atom/sparse code has been 

removed. The resulting estimate of xk/dk as a pair is given by

where Tυ(z) = sgn(z) ◦ (|z| − υ1/|z|)+ , (z)+ , sgn(.) , and ◦ define the component-wise max between (0, z) , the 
component-wise sign, and the Hadamard product,  respectively59, 1 is a vector of ones, and �k = [�k1, . . . , �

k
V ] is 

obtained using single tuning parameter as �1/|d⊤k Ek| . Figure 1a describes these updates in form of a flow chart. 
For fMRI group analysis Eq. (1) is modified according to the sgBACES  algorithm50 as

where m = {1, . . . ,M} , M is the number of subjects, Dc/Xc stand for the common dictionary/sparse code, and 
Dm/Xm represent the subject-specific dictionary/sparse code. The k-th atom/sparse code update for the subject-
specific dynamics is obtained by considering the subject-level residuals Rm = Ym − DcXc and error matrix for 
all signals Em,k = Rm −

∑Km
i=1,i �=k dm,ix

i
m as

Whereas the k-th atom/sparse code update for the subject-specific dynamics is obtained by considering the 
common-level residuals Rc = 1/M

∑M
m=1 Ym − DmXm and error matrix Ec,k = Rc −

∑Kc
i=1,i �=k dc,ix

i
c as
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Figure 1.  A flowchart describing the ACSD algorithm for (a) subject-wise analysis modeled by Eq. (1)41, and 
(b) multi-subject group analysis modeled by Eq. (2)50.
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The atom/sparse code row in the two equations mentioned above can be solved sequentially as a pair using the 
ACSD algorithm. Figure 1b gives a flow chart of this routine.

Methods
The DL algorithms, ACSD in particular, have shown superior convergence properties and source recovery preci-
sion compared to other BSS methods. Despite this, their applicability is limited to either conventional single-
subject  analysis41 or multi-subject based group  analysis50 as shown in Fig. 1. This paper mainly focuses on 
extending the DL algorithm to multi-subject based subject-wise analysis to enhance the statistical strength of 
the single-subject analysis. This expansion would strengthen the accuracy of subject-wise analysis by exploiting 
hemodynamic variations offered by multiple subjects. It is worth mentioning at this point that  sgBACES50 can 
also be extended to subject-wise analysis by not combining the common-level residuals and performing DL on 
each of those residuals individually; however, this approach will raise the computational complexity and remain 
inapplicable to resting-state data that requires shared spatial maps.

Proposed model
The proposed algorithms secure the swiftly extracted underlying spatial/temporal components from multiple 
subjects using the ssBSS method and adapt them to subject-wise analysis resulting in increased source recovery 
performance for each individual. In this regard, consider that each signal in fMRI dataset Ym ∈ R

N×V from m-
th subject can be represented as a linear combination of a few atoms from subject-wise dictionary Dm ∈ R

N×K 
according to the sparse signal strength in each column of the subject-wise coefficient matrix Xm ∈ R

K×V . How-
ever, these subject-wise matrices are constructed using multi-subject atoms/sparse code, which can be accounted 
for by the multi-subject smooth dictionary Dq ∈ R

N×MP and the multi-subject sparse code Xq ∈ R
MP×V treated 

as base dictionary and base sparse code, respectively. This leads to Dm = DqAm and Xm = BmXq . The proposed 
model in its basic form is given as

where Am ∈ R
MP×K and Bm ∈ R

K×MP are the representation matrices, am,k and bkm are the k-th column of Am 
and k-th row of Bm , respectively, K < N < MP < V  , and M is the number of subjects. The next subsection 
describes how to quickly train Dq and Xq.

Proposed preliminaries
The ssBSS  method49 proposed the following optimization model by considering that dataset Ym can be decom-
posed into temporal source matrix Tm ∈ R

N×P and spatial source matrix Sm ∈ R
P×V as

where Tm = TpCm accounts for the smoothness of the BOLD signal by storing DCT bases in Tp ∈ R
N×Kp , and 

cm,p is the p-th column of the sparse representation matrix Cm , P < Kp < N . ‖.‖0 is the l0 norm that induces spar-
sity by counting the number of non-zero elements, ‖Sm‖1 is the l1 norm on Sm given as 

∑K
k=1

∑V
j=1 |s

k
m,j| , and �1 is 

the sparsity hyperparameter that regulates the coefficient values. To solve Eq. (4) efficiently, blind source separa-
tion theory is employed that breaks it into the following pair of spatial and temporal source separation problems

where the unknowns Qm ∈ R
P×K and Zm ∈ R

K×P are the mixing matrices, Xm,t ∈ R
N×K and Xm,s ∈ R

K×V 
contain the temporal and spatial features in the reduced dimension, respectively, and �1/�2/�3 are the sparsity 
regularization hyperparameters. For this article, both mixing matrices are assumed non-sparse, and hence their 
associated sparsity parameters �1/�2 can be ignored, and the simplified model is given as

The feature matrices are obtained using singular value decomposition (SVD), and the unknowns are solved using 
alternating least squares and soft thresholding via Neumann’s alternating projection lemma.
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Proposed algorithms
swbDL
In order to reinforce the fidelity of subject-wise recovered temporal dynamics, the autocorrelations of each 
dictionary atom at lag-1 are considered. Instead of directly incorporating the delayed time  series50, the temporal 
correlation structure between the current and lagged dictionary is penalized so that for some sufficiently large 
α , most of the entries that define the difference between the correlation structure α

∥

∥

∥
DqAmA

⊤
mD

⊤
q − D0D

⊤
0

∥

∥

∥

2

F
 

will shrink to zero. Thus, to update representation matrices Am and Bm , problem (3) can be modified as 
follows

where D0 is a time-delayed version of the original dictionary. To solve (7), a computationally efficient block update 
of representation matrices Am and Bm is considered. Hence an alternating optimization approach is adopted 
where one of the two unknown variables is updated while the other is fixed. For this purpose, Am is fixed then 
the minimization objective reduces to

The update for B in Eq. (8) is obtained using soft thresholding and least squares as

Next, Bm is fixed, DqAm is replaced by Dm to solve for it before obtaining an update for Am , and the minimiza-
tion function becomes

A relaxation variable U is introduced in the above equation, and it is reformulated as

This can be solved using the ADMM algorithm that provides the closed-form solution for both Dm and U , 
admits only one tuning parameter and converges for all of its positive  values60. The augmented Lagrangian for 
Eq. (10) is given as

where W is the Lagrangian multiplier and β is the tuning parameter. Due to normalization constraint on diction-
ary, all columns of Dm and U are normalized during each iteration. Initially setting U and W to zero, the solution 
to (11) is obtained by computing each of the following until convergence

An update for Am is obtained during each iteration of the algorithm as

The accompanying algorithm for swbDL is given in Table 1

swsDL
In contrast, to block update, the sequential approach is presented in this section for a more precise update of 
the unknowns. To achieve this, instead of deploying the observed data matrix based decomposition, the rank-1 
minimization problem based on the error matrix of all signals is considered where adaptive sparse penalty term 
is introduced for a fairer assignment of penalty to each entry in bkmxq,j . Accordingly, to update representation 
matrices Am and Bm , problem (3) is reformulated as follows
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where �k2,j is a data-driven regularization parameter allocated to each entry of bkmXq , and error matrix is

The l0 constraint on representation matrices implements the regularization of dictionary atoms and sparse code 
through sparse basis expansion where bases have been constructed using components extracted from the ssBSS 
method. The update for am,k and bkm is obtained by solving the Lagrangian expression for (14) given as

Solving this equation with respect to bkm we obtain

Because dm,k = Dqam,k due to the definition, d⊤m,kdm,k = 1 due to normalization constraint on dictionary col-
umns, and xq,j can be extracted out of the third term as its a constant, then the above equation further unfolds as
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Table 1.  Algorithm for solving the minimization problem (7).
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Considering X⊤
q =

∑V
j=1 |xq,j| then

This can be further simplified using the soft thresholding  approach59 as

which can be rewritten in simplified form as
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 , where the indices set ϑ can be found using thresholded cor-
relation values whose related algorithm is described  in50,61,62. Solving Eq. (16) with respect to am,k , following 
solution is obtained

where d*m,k = dm,k + 1/xkmx
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 , dm,k = Dqam,k , and xkm = bkmXq . By considering the l0 norm on am,k 
the Eq. (19) as a constrained problem is given as
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)

 admits only the non-
zero entries of the coefficient row through indices set ε50 leading to a reduced error matrix and reduced compu-
tational cost. The swsDL algorithm is described in Table 2.

Proposed framework
Since the proposed model is applied to multiple subjects, group-level analysis was also implemented in addition 
to the subject-wise inferences. In this context, (i) modeled HRF (MHRs) were produced by using the convolution 
operation between the task stimuli and canonical HRF from the statistical parametric mapping (SPM)  toolbox63, 
and (ii) resting-state network templates (RSNs) (R1-R10) were obtained from  Smith64. While both MHRs and 
RSNs were used to accomplish group analysis of task-related data, only RSNs were used for group analysis of 
resting-state data. The following steps were involved in achieving both subject-wise and group-level analysis 

1. Preparing the preliminary bases: Source components Tm and Sm obtained using the fast ssBSS method were 
concatenated along the spatial (horizontal) and temporal (vertical) dimension, respectively, to construct 
base dictionary Dq and base sparse code Xq as 

2. Performing subject-wise analysis: Subject-wise Dm/Xm were trained using either swbDL or swsDL algorithm 
as described in the previous section.

3. Performing group-level analysis: For this, the following scenarios were considered 
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(a) For task-related stimuli, the atoms in all subject-wise dictionaries that were most correlated with 
MHRs were assembled along with their corresponding sparse codes in matrices Dr/Xr to obtain 
group-level dynamics through rank-1 decomposition via SVD as follows 

where r = {1, . . . ,R} , R is the number of MHRs, jm(r) represents the indices of the most correlated 
atom in m-th dictionary with r-th MHR, m = {1, . . . ,M} , M is the number of subjects, and Dg is the 
group-level dictionary.

(b) For resting-state networks, the subject-wise sparse code rows from all subjects that were most cor-
related with RSNs were assembled as 

 where jm(r) represents the indices of the most correlated coefficient row in m-th sparse code matrix 
with r-th RSN, and Xg is the group-level sparse code.

The proposed framework in form of a block diagram is given in Fig. 2.

(22)
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Table 2.  Algorithm for solving the minimization problem (14).
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Ethical approval
This study’s block-design and resting-state fMRI datasets are open-access and shared on the human connectome 
website https:// www. human conne ctome. org/ study/ hcp- young- adult. The condition for using these datasets is 
properly acknowledging the funding source and citing relevant publications, which we have in the acknowledg-
ment and experiment sections. Therefore, we do not need any approval from the ethics committee of respective 
institutes.

Experiments
This section evaluates the proposed algorithms to determine their capability compared to the existing state-of-
the-art data-driven algorithms. For this purpose, data analysis was conducted using three different fMRI data-
sets, one synthetic and two experimental. The participating algorithms are cgICA, sgICA, CODL, ACSD, ssBSS, 
swbDL, and swsDL. The main reason for not incorporating sgBACES and ShSSDL algorithms in the comparison 
study is their inability to extract subject-wise dynamics. The Simtb  toolbox65 was utilized to generate the synthetic 
fMRI dataset of four subjects. The Human Connectome Project (HCP)66,67 was availed to acquire eight subject’s 
block design fMRI dataset from its quarter 3 release, and eight subject’s resting-state fMRI dataset from its S500 
and S900 release. These datasets allowed us to assess the performance of all participating algorithms in terms of 
their potential to retrieve the ground truth.

Synthetic dataset
In this section, a realistic fMRI dataset of four subjects was generated using the Simtb toolbox. Eighteen distinct 
temporal sources, each consisting of 300 timepoints with a repetition time (TR = 1 sec ) and twelve distinct spatial 
sources, each consisting of size 50× 50 voxels, were used to obtain these four datasets. The source IDs for the 
spatial components were set to {3, 6, 8, 10, 22, 23, 26, 30, 4, 12, 5, 29} . Overall, nine spatiotemporal sources out 
of all source signals were used to generate each subject’s fMRI data. With some variability across subjects, the 
first six temporal and six respective spatial sources were present in all subjects; the following two spatial sources 
were also common, but their temporal patterns were unique to each subject, and the last source’s both spatial 
and temporal features were unique to each subject as shown in Fig. 3.

For common temporal sources, the variability across subjects was introduced by varying the HRF param-
eters, such as delay/dispersion of response/undershoot. Similarly, the intersubject variability for the common 
spatial maps was established by using parameters of the Gaussian distribution (mean ( µ ) and standard devia-
tion (std) ( σ )) that allowed controlling the location, orientation, and spread of the activations. This was realized 
by random translation in x and y direction ( µ = 0, σ = 1.5 ), random rotation ( µ = 0, σ = 0.9 ), and random 
scaling ( µ = ρ, σ = 0.05 ) as shown in Fig. 3. Here ρ , the Gaussian distribution’s mean, is considered the spread 
parameter using which the spatial extent of the activations was controlled to create five unique cases of spatial 
overlaps. The corresponding spatial maps with moderate to substantial dependence are shown in Fig. 4a–e.

The first subject’s common and unique spatiotemporal sources and three other unique spatiotemporal sources 
from the remaining three subjects are assembled and treated as the ground truth TCs and SMs for group-level 
analysis as shown in Fig. 3 under the heading all source SMs/all source TCs. The other subfigures show the spatial 
and temporal sources that are used to generate all four datasets where each of the main temporal sources TC7 
and TC8 consists of four unique temporal patterns. Using a linear mixture model, these sources were utilized to 
generate each subject’s dataset as Y =

∑8
i=1(tci + ψi)(sm

i + φi) , where the noise generating matrices � ∈ R
300×9 

and � ∈ R
9×2500 were produced using Gaussian distribution ∼ N (0, σ 2 = nt) and ∼ N (0, 0.01) , respectively, 

where nt represents the variance of the temporal noise. Depending on the value of ρ , nt , and trial number, the 
datasets YM

m=1 (where M = 4 ) were then produced and employed by all algorithms for source retrieval.

Figure 2.  A block diagram of the proposed framework where the ssBSS method extracts the base components 
and the rest of the blocks attempt to recover subject-wise and group-level TCs and SMs either block-wise or 
sequentially.

https://www.humanconnectome.org/study/hcp-young-adult
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Synthetic dataset dictionary learning
The parameter values were kept consistent across all algorithms wherever feasible to produce a fair comparison. 
In contrast to experimental fMRI data, the ground truth about the number of source signals is known; therefore, 
the same number of components as the number of generating sources were trained for the simulated dataset. 
Since the cgICA/sgICA/CODL were applied to the grouped data, the total number of components to be extracted 
was set to 12. In comparison, it was set to 9 for ACSD/ssBSS/swbDL/swsDL, which were applied subject-wise. 
In contrast to CODL, which iterated for 30 iterations, all other dictionary learning algorithms, including ssBSS, 
were run for 15 iterations. After evaluating different strategies, the optimal dictionary initialization for each 
algorithm was supplied. Concatenated data, random numbers drawn from the standard normal distribution, 
and DCT bases were employed for CODL, ssBSS, and ACSD/swbDL/swsDL, respectively.

The tuning parameters were handled by experimenting with their various combinations. Those values were 
considered that produce the best results in terms of similarity between the recovered sources and their respective 

Figure 3.  The top two rows show all spatial sources with respect to the first subject, the location and shape of 
each of the twelve spatial sources, and their variability across subjects. In contrast, the bottom two rows show 
the respective temporal sources where TC7 and TC8 have four unique patterns.

Figure 4.  Using five different values of the spread parameter ρ , moderate to substantial spatial overlaps were 
created by controlling the size of twelve different activation blobs.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20201  | https://doi.org/10.1038/s41598-023-47420-1

www.nature.com/scientificreports/

ground truth. Twelve components were kept after each of the two PCA reductions in the case of cgICA/sgICA. 
The best sparsity and smoothing parameter for sgICA was 3 and 50000, respectively. For a fair comparison with 
other dictionary learning methods, CODL’s batch size was adjusted to b = 2500 , and its temporal reduction was 
avoided, whereas its sparsity parameter was set to 1.5. For ACSD, the best sparsity parameter was found to be 
12. For ssBSS, the tuning parameters were set as �1 = 6 and ζ1 = 30 , Kp = 150 , nine components were obtained 
from PCA, and nine were retained for iterative routine. For swbDL, the tuning parameters were set as �2 = 8 
and α = 1 . For swsDL, the best sparsity parameters were found to be ζ2 = ζ3 = 24 and �2 = 16.

Synthetic dataset results
The multi-subject dataset generation and the learning process were repeated several times for different noise 
realizations to demonstrate the robustness and consistency of the proposed algorithms. To achieve this, the 
experiment, which included both data generation and learning process, was repeated for (i) two different variance 
(square of the standard deviation) values of the temporal noise set as nt = {0.3, 0.9} , (ii) five values of ρ that were 
varied from 4 to 8 to gradually increase activation overlaps as shown in Fig. 4a–e, and (iii) 150 different trials.

Moreover, the source recovery was performed in regards to both subject-wise and group-wise analysis. Under-
lying source TCs/SMs were obtained by keeping the indices with the highest correlation values after correlating 
every algorithm’s trained dictionary atoms/sparse code rows with the ground truth TCs/SMs. These correlation 
values were computed with respect to ground truth SMs and are retained as cTC/sSM. For each of the five spa-
tial overlap scenarios and two noise realizations, the mean of the cTC/cSM values over all nine spatiotemporal 
sources are saved as mcTC/mcSM, their mean mmcTC/mmcSM over 4 subjects, and the mean of mmcTC/
mmcSM over 150 trials are plotted in Fig. 5A for subject-wise analysis, and in Fig. 5B for group-wise analysis 
(where the mean of correlation values over the subjects has been excluded). The convergence rate and the progres-
sion of correlation values for the proposed algorithms as functions of algorithm iterations are shown in Fig. 6. 
The component-wise visual comparison among participating algorithms for source recovery is provided in Fig. 7.

From Fig. 5, one can conclude that the swsDL algorithm consistently outperformed all other algorithms for 
all source recovery scenarios, including spatial/temporal feature, subject-wise/group-level analysis, and spatial 
overlap cases. It attained the highest recovery performance for low noise levels and spatial dependence. Although 
this performance dropped as noise intensity and spatial overlaps increased, it remained superior to all other com-
peting algorithms. Its block variant swbDL emerged as a runner-up for the subject-wise analysis, whereas ACSD 
seems to have replaced its runner-up position for the group-level analysis. Moreover, sgICA has outperformed 
cgICA by exhibiting lower standard deviation and better recovery precision. The sgICA, for high spatial overlap 
and noise variance, even surpassed the ACSD algorithm for group-level analysis. It is also noticeable that both 
proposed algorithms performed relatively superior for subject-wise analysis.

It can be deduced from Fig. 6a that the swbDL algorithm, compared to ssBSS, ACSD and swsDL, converged 
faster and only needed a few iterations to produce the desired results. This trend also manifests in Fig. 6b, where 
the correlation strength nearly stopped accumulating for swbDL after the fifth iteration. In contrast, ssBSS, 
ACSD and swsDL algorithms converged slowly and showed source recovery improvement as the number of 
iterations increased.

In order to produce component-wise visual comparison, the experiment was repeated for subject-wise analysis 
using parameter settings as nt = 0.3 and ρ = 5 . For swbDL, the tuning parameter value was changed to α = 0.75 . 
Due to a lack of space and inferior results from CODL and cgICA, they have been dropped for this particular case. 
The results were extracted for all four subjects; however, the first nine components were selected from subject 
1, and components {10, 11, 12} belonged to subject {2, 3, 4} ninth component. The results of this experiment are 

Figure 5.  For noise variance 0.3/0.9, (A) subject-wise analysis’s mean values of (a)/(c) mmcTC and (b)/(d) 
mmcSM computed over 9 components, 4 subjects, and 150 realizations, and (B) group-level analysis’s mean 
values of (a)/(c) mcTC and (b)/(d) mcSM computed over 9 components and 150 realizations. The deviation 
from the mean values has been plotted as error bars.
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Figure 6.  Over all trials, spatial overlap cases, noise realizations, and subjects, the mean of the (a) convergence 
rate and (b) correlation values between the ground truth and retrieved sources for subject-wise dictionary 
learning shown as a function of algorithm iterations.

Figure 7.  (A) Ground truth TCs/SMs, and the recovered TCs/SMs by (B) sgICA, (C) ACSD, (D) swbDL, and 
(E) swsDL, along with the absolute temporal and spatial correlation values ( γ ) for each source, and the sum of 
these correlation values shown on the left. The highest correlation value for each source is shown in a different 
colour.
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shown in Fig. 7. It can be depicted from this figure that swsDL defeated all other algorithms in source recovery 
strength for both spatial and temporal features while swbDL was the second best. The correlation values are 
written at the bottom of each source, with the best values highlighted in red.

Experimental fMRI dataset
Experimental fMRI dataset preprocessing
The HCP had already preprocessed the resting-state datasets using their preprocessing tools; therefore, they were 
excluded from our preprocessing routine. On the other hand, block design datasets were preprocessed using the 
SPM-12  toolbox63. The steps involved in the preprocessing of this dataset, such as realignment, normalization, 
spatial smoothing, and masking, are described in depth  in50,68,69. Firstly, functional images were realigned to the 
first image to remove motion artifacts. Secondly, all images were spatially normalized to a Tailarach template, 
resampled to 2× 2× 2 mm3 voxels, and spatially smoothed using a 6× 6× 6 mm3 full-width at half-maximum 
(FWHM) Gaussian kernel. Thirdly, the masking step attempts to remove any data outside the scalp. Next, for 
each subject, the four-dimensional dataset was reshaped and saved as a 2-dimensional matrix called Ym to be 
considered a whole brain dataset, where m = {1, . . . , 8} . This resulted in the size of each subject’s Y matrix being 
279× 236115 for the block design dataset and 400× 230367 for the resting-state dataset. Temporal filtering was 
performed on both types of datasets as the next step. This consisted of DCT based high-pass filter to remove 
low-frequency trends and FWHM based low-pass filter to eliminate high-frequency physiological noise. The 
cutoff for a DCT filter was set to 1/150 Hz for block design and 1/128 Hz for resting-state datasets, and a cutoff 
for FWHM was set to 1 sec for both block design and resting-state datasets. After executing the aforementioned 
steps, all columns of Y were normalized to have zero mean and unit variance.

Block design dataset
In this section, we employed the motor task 3T MRI raw block design dataset obtained from the quarter 3 release 
of the  HCP66,67. An experiment was conducted for 204 secs to acquire this dataset to map the brain’s motor cortex. 
During the experiment, the subjects were instructed to tap their right or left fingers, pinch their right or left toes, 
or move their tongues in response to visual stimuli. Following a three-second visual cue, subjects underwent 
a specific movement task lasting 12 seconds. Ten movement tasks were considered consisting of two tongue 
motions, left/right finger, and left/right toe movements. As a result, there were a total of 13 blocks, including 
three fixation blocks of 15 secs . Six modeled HRFs (MHRs) were created utilizing the canonical HRF and task 
stimuli associated with five different movement types: left toe (LT), left finger (LF), right toe (RT), right finger 
(RF), tongue (T), and visual type cue (VC) to acquire ground truth TCs. Each subject had their fMRI scans 
taken using a Siemens 3 Tesla (3T) scanner. The acquisition’s specifications were echo time (TE) = 33.1 ms , TR 
= 0.72 secs , field of view (FOV) = 208× 180 mm , flip angle (FA) = 52o , matrix size = 104× 90 , slice thickness 
= 2 mm with 72 contiguous slices, and 2 mm isotropic voxels, BW = 2290 Hz/Px , echo spacing = 0.58 ms , and 
284 EPI volumes were collected where first 5 were considered dummy and discarded. The block design dataset 
of eight subjects aged between 22 and 35 years was used in our analysis.

Block design dataset dictionary/component learning
For dictionary initialization, concatenated data, random numbers, and DCT bases were employed for CODL, 
ssBSS, and ACSD/swbDL/swsDL, respectively. The total number of iterations for all dictionary learning algo-
rithms was set to 15 except for CODL and ssBSS, for which this number was set to 30. While performing dimen-
sionality reduction, 100 components were kept from PCA, and 60 were retained when PCA was applied for the 
second time, and these many were extracted using cgICA and sgICA. These numbers and other parameters in 
this section were selected after trying their different combinations and considering that the selected ones must 
produce the best results in terms of correlation strength between the retrieved source and the ground truth. For 
sgICA, the sparsity parameter was set to 5 while the smoothing parameter was 50000. The total number of dic-
tionary atoms to be trained using CODL was set to 70 with the sparsity parameter set to 6 with batch size equal 
to the data dimension. Using ACSD, 40 dictionary atoms were trained for each subject with a sparsity parameter 
set to 60. For ssBSS, 60 components were retained from PCA, and 40 were trained; its other parameters were set 
as �1 = 16 , ζ1 = 50 , and Kp = 60 . For both swbDL and swsDL, 40 atoms were trained, tuning parameters were 
set as �2 = 12 and α = 3000 for swbDL, and tuning parameters were set to ζ2 = ζ3 = 48 and �2 = 25 for swsDL.

Block design dataset results
In this section, the absence of activation maps for task-related components encouraged us to choose temporal 
analysis using six constructed MHRs. Similarly, the absence of temporal profiles for resting state networks moti-
vated us to choose some of Smith’s templates from R1-R10. The analysis was based on two strategies, i) subject-
wise and ii) group-level. For subject-wise analysis, the TCs/SMs obtained by ACSD, ssBSS, swbDL, and swsDL 
for each subject were considered, whereas individual TCs/SMs for cgICA, sgICA, and CODL was obtained by 
back reconstruction. In contrast, for the group-level analysis, the group-level TCs/SMs obtained by all compet-
ing algorithms were used as a reference for further evaluation. Eventually, these TCs were correlated with the 
MHRs and SMs with RSNs, and the highest correlation values and the respective atoms/sparse codes were saved. 
Group-level correlation values are specified in Table 3, and the average correlation values over all subjects are 
mentioned in Table 4. The highest values in these tables have been highlighted in bold.

Resting state dataset
The resting-state dataset of all participating subjects was acquired from the first set of 3T MRI preprocessed S500 
and S900 release of the  HCP66,67. The resting-state dataset was obtained using acquisition parameters identical to 
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the block design dataset. During the experiment, subjects were instructed to maintain fixation on a bright cross-
hair displayed in a darkened room, and 1200 scans were recorded twice in a single session for two different phase 
encoding directions. The second run, which featured left-to-right phase encoding, was considered for our study. 
Only 400 scans were kept for analysis, while the first 20 and the last 780 scans were discarded. The preprocessed 
resting-state data also went through spatial smoothing using 6× 6× 6 mm3 FWHM Gaussian kernel, followed 
by temporal smoothing using DCT and temporal FWHM filter. The resting-sate dataset of eight subjects aged 
between 26 and 35 years was used in our analysis.

Resting state dataset dictionary/component learning
Similar to synthetic and block design datasets, concatenated data, random numbers, and DCT bases were 
deployed for CODL, ssBSS, and ACSD/swbDL/swsDL, respectively, while initializing their respective dictionar-
ies. Both CODL and ssBSS were iterated for 30 iterations due to their slow convergence, whereas ACSD/swbDL/
swsDL were run for 15. For cgICA and sgICA, 100 components were retained using PCA, followed by keeping/
extracting 50 components for the second PCA and ICA/sICA algorithm. Similar to the last two datasets, this 
section’s parameter selection also depended on the correlation strength between the recovered sources and the 
ground truth. The sparsity parameter was set to 5 and the smoothing parameter to 30000 for sgICA. The number 
of dictionary atoms for CODL was set to 70, the sparsity parameter to 6, and the batch size equal to the data 
dimension. For ACSD, 40 dictionary atoms were trained with sparsity parameters set to 30 for each subject. 
For ssBSS, 60 components were preserved from PCA, and 40 were trained; its tuning parameters were set as 
�1 = 10 , ζ1 = 90 , and Kp = 150 . For both swbDL and swsDL, 40 atoms were trained, tuning parameters were 
set as �2 = 10 and α = 500 for swbDL, and tuning parameters were set to ζ2 = ζ3 = 80 and �2 = 50 for swsDL.

Resting state dataset results
Due to the absence of task-related components, our analysis in this section was based solely on Smith’s resting 
state  templates64. Similar to the previous two datasets, this study was also conducted for two different scenarios 
(i) subject-wise and (ii) group-wise. For subject-wise analysis, the SMs obtained using subject-wise ACSD, 
ssBSS, swbDL, and swsDL were taken into account, and for cgICA, sgICA, and CODL group-level SMs were 
considered to back reconstruct individual SMs. In contrast, for the group-level analysis, the shared SMs obtained 
by all competing algorithms were used as a reference for further evaluation. Eventually, these SMs were corre-
lated with the RSN templates, the highest correlation values, and the respective atoms/sparse codes were saved. 
Group-level correlation values, along with their mean, are specified in Table 5 where the highest values have 
been highlighted in bold.

Table 3.  For the block design dataset, correlation values of the most correlated group-level dictionary 
atom with six MHRs and most correlated common spatial maps with RSN templates obtained using seven 
competing algorithms, including the proposed.

Algos VC LT LF RT RF T R1 R2 R3 R4 R9 R10 Mean

cgICA 0.838 0.909 0.864 0.758 0.838 0.889 0.689 0.596 0.393 0.412 0.392 0.402 0.665

sgICA 0.846 0.911 0.863 0.775 0.829 0.882 0.684 0.588 0.412 0.522 0.425 0.524 0.688

CODL 0.913 0.887 0.837 0.754 0.816 0.876 0.709 0.602 0.369 0.488 0.372 0.374 0.666

ACSD 0.884 0.750 0.832 0.601 0.831 0.843 0.632 0.726 0.442 0.556 0.434 0.482 0.668

ssBSS 0.902 0.840 0.855 0.731 0.844 0.857 0.471 0.737 0.462 0.481 0.403 0.474 0.671

swbDL 0.914 0.939 0.872 0.790 0.853 0.875 0.543 0.742 0.458 0.481 0.437 0.474 0.698

swsDL 0.940 0.920 0.867 0.833 0.859 0.895 0.570 0.753 0.465 0.519 0.441 0.441 0.709

Table 4.  For six different block design tasks, correlation values of the most correlated back reconstructed 
component/atom with MHRs using cgICA/sgICA/CODL and averaged correlation values over the most 
correlated subject-level dictionary atom with MHRs obtained using ACSD/ssBSS/swbDL/swsDL.

Algos VC LT LF RT RF T Mean

cgICA 0.628 0.715 0.741 0.610 0.674 0.788 0.693

sgICA 0.626 0.711 0.731 0.635 0.664 0.777 0.691

CODL 0.731 0.743 0.685 0.630 0.667 0.757 0.702

ACSD 0.680 0.574 0.607 0.455 0.611 0.729 0.610

ssBSS 0.712 0.680 0.688 0.483 0.642 0.671 0.646

swbDL 0.757 0.815 0.718 0.657 0.698 0.695 0.723

swsDL 0.831 0.819 0.752 0.711 0.749 0.785 0.775
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Table 5.  For resting-sate data, correlation values of the most correlated common spatial maps with RSN 
templates obtained using seven competing algorithms, including the proposed.

Algos R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Mean

cgICA 0.754 0.657 0.604 0.517 0.313 0.381 0.353 0.460 0.410 0.528 0.497

sgICA 0.758 0.656 0.673 0.474 0.224 0.402 0.340 0.466 0.530 0.579 0.510

CODL 0.837 0.694 0.527 0.652 0.456 0.350 0.458 0.475 0.388 0.458 0.529

ACSD 0.704 0.687 0.571 0.675 0.365 0.436 0.463 0.446 0.530 0.579 0.546

ssBSS 0.694 0.693 0.649 0.680 0.308 0.462 0.506 0.467 0.542 0.610 0.561

swbDL 0.725 0.741 0.635 0.697 0.380 0.445 0.502 0.428 0.587 0.634 0.577

swsDL 0.758 0.739 0.685 0.712 0.393 0.421 0.543 0.492 0.591 0.608 0.594

Figure 8.  The thresholded fourth subject’s activation maps at a random field correction p < 0.001 extracted for 
the left and right finger movement tasks of the block design dataset using (a) sgICA, (b) CODL, (c) ACSD, (d) 
swbDL, and (e) swsDL, respectively. Table 4 provides the related averaged correlation values.

Figure 9.  For the block design dataset’s left toe (A), left finger (B), right toe (C), and right finger (D) movement 
tasks, thresholded common activation maps at a random field correction p < 0.001 obtained using (a) sgICA, 
(b) CODL, (c) ACSD, (d) swbDL, and (e) swsDL. The corresponding correlation values are given in Table 3.
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Discussion
There were quite a few activation maps and temporal dynamics for the block design dataset, but only a few have 
been shown to avoid increasing the paper length. Spatial maps for left and right finger tapping tasks recovered by 
five algorithms for subject 4 are given in Fig. 8. A series of 2D images assembled to render 3D volume for left/right 
toe pinching and left/right finger tapping group-level tasks are shown in Fig. 9. The common temporal dynamics 
for visual cue and tongue and their MHR are plotted in Fig. 10. Tables 3 and 4 show that the proposed swsDL 
algorithm overall outperforms all other algorithms by yielding atoms/sparse codes having the highest correlation 
with the ground truth, while swbDL being the second-best for both group-level and individual analysis. From 
spatial maps in Figs. 8 and 9, it is pretty evident that the activations revealed by ACSD, swbDL, and swsDL are 
more specific to the motor area compared to the rest of the algorithms. Nevertheless, group-level maps revealed 
by swsDL are comparatively less specific and more sensitive.

Only some results from the resting-state analysis have been shown here. For instance, (i) TCs obtained for the 
first five subjects using each of the five competing algorithms for medial visual and frontoparietal left network 
are shown in Fig. 11, (ii) the SMs for occipital pole visual and default mode network for subject 1 are shown 
in Figure 12, and (iii) group-level SMs for medial visual, occipital pole visual, lateral visual and default mode 
network are shown in Fig. 13. From Table 5, it can be concluded that overall, swsDL triumphed over all other 
algorithms in terms of correlation values. This is also visually supported by Figs. 12 and 13, where the spatial 
maps by swsDL appear more specific than maps by other algorithms.

For block design and resting-state datasets, Fig. 14 shows the convergence rate and correlation strength accu-
mulation of ACSD, ssBSS, swbDL, and swsDL algorithms, and computational and source retrieval performance 
of all competing algorithms. The time values have been normalized to show correlation values and computation 
time in the same graph. It is also worth mentioning that the computation time is the mean of the time consumed 
by all three datasets, and the source recovery strength is the mean of subject-wise and group-wise correlation 
values for all three datasets.

Figure 14a shows that the ssBSS and ACSD algorithm and their proposed variants consistently converged 
over all iterations; however, this uniformity was less evident for swbDL. Figure 14b shows the steady develop-
ment of correlation strength over all iterations for ssBSS, ACSD, and swsDL. In contrast, this progression seems 
to have stagnated for swbDL after the first few iterations. From these two subfigures, it becomes evident that 
compared to swbDL, both ACSD and swsDL gained from the increasing number of iterations. Figure 14c shows 
that although swsDL has outperformed all its predecessors, its computational performance is not very impressive. 
In contrast, swbDL has emerged as a runner-up in source recovery performance while having a relatively low 

Figure 10.  The most correlated group-level dictionary atom with MHR retrieved using (a) sgICA, (b) CODL, 
(c) ACSD, (d) swbDL, and (e) swsDL for the (A) visual cue, and (B) tongue movement task of the block design 
dataset. In Table 3, the corresponding correlation values are listed.
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numerical burden. This characteristic makes swbDL more favorable over swsDL/ACSD/ssBSS for FPGA-based 
implementation of DL algorithms in the  future70,71.

Conclusion
This paper has presented two new dictionary learning algorithms, swbDL, and swsDL, explicitly designed for 
subject-wise and group-wise analysis. Unlike the conventional group analysis, the proposed algorithms’ main 
advantage lies in their applicability to both task-related and resting-state fMRI data. Their efficacy has been 
illustrated using synthetic and experimental fMRI datasets, where their performance was found to be robust 

Figure 11.  The TCs for subject number 1–5 shown in sub-figures a-e respectively extracted using sgICA, 
CODL, ACSD, swbDL, and swsDL for the (A) medial visual, and (B) frontoparietal left networks of the resting 
state dataset. Table 5 contains the corresponding correlation values and their means.

Figure 12.  For the resting-state dataset’s RSN template 2 (A) and RSN template 4 (B), thresholded first subject’s 
activation maps at a random field correction p < 0.001 obtained using (a) sgICA, (b) CODL, (c) ACSD, (d) 
swbDL, and (e) swsDL.
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and unwavering across experiments. The computational simplicity of swbDL associated with lesser calls to data 
and lesser arithmetic operations makes it more favorable over all other DL algorithms. Both of the proposed 
algorithms are promising alternatives to ACSD, ShSSDL, and sgBACES algorithms. Reducing computational 
complexity associated with swsDL and its extension to hardware realization will be carried out in the future.

The strategy adopted for the proposed algorithms, where dictionary atoms and sparse codes are trained using 
the base spatiotemporal dynamics, is unprecedented. This approach allows incorporating similar components 
from the reduced-dimension space across subjects resulting in enhanced statistical power attained due to spa-
tiotemporal variability offered by multi-subject data. The proposed model that considers this strategy through 
the training of representation matrices and base/dictionary sparse code is computationally intensive to solve. 
However, by exploiting the fast ssBSS method, block-wise update, and some performance compromise, a com-
putationally efficient solution was reached via swbDL. On the other hand, an iterative approach was pursued 
using sequential learning that yielded higher source recovery precision at the cost of greater learning time. The 
convergence of both algorithms was guaranteed due to the sustenance of finite basis injective property and a 
strict sparsity  pattern72.

Data and code availability
The experimental fMRI datasets used in this study are open-access and shared on the human connectome 
website. The Matlab code implemented for this study will be available from the corresponding author upon 
reasonable request.

Figure 13.  Thresholded group-level activation maps at a random field correction p < 0.001 for the (A) RSN 
template 1, (B) RSN template 2, C) RSN template 3, and D) RSN template 4 obtained using (a) sgICA, (b) 
CODL, (c) ACSD, (d) swbDL, and (e) swsDL.

Figure 14.  As a function of algorithm iterations, the mean of the (a) convergence rate and (b) correlation values 
over all subjects for subject-wise dictionary learning, and (c) time consumption and source retrieval strength by 
all competing algorithms.
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