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A novel method for identifying key 
genes in macroevolution based 
on deep learning with attention 
mechanism
Jiawei Mao 1,3, Yong Cao 1,3, Yan Zhang 2, Biaosheng Huang 1 & Youjie Zhao 1*

Macroevolution can be regarded as the result of evolutionary changes of synergistically acting genes. 
Unfortunately, the importance of these genes in macroevolution is difficult to assess and hence 
the identification of macroevolutionary key genes is a major challenge in evolutionary biology. In 
this study, we designed various word embedding libraries of natural language processing (NLP) 
considering the multiple mechanisms of evolutionary genomics. A novel method (IKGM) based on 
three types of attention mechanisms (domain attention, kmer attention and fused attention) were 
proposed to calculate the weights of different genes in macroevolution. Taking 34 species of diurnal 
butterflies and nocturnal moths in Lepidoptera as an example, we identified a few of key genes 
with high weights, which annotated to the functions of circadian rhythms, sensory organs, as well 
as behavioral habits etc. This study not only provides a novel method to identify the key genes of 
macroevolution at the genomic level, but also helps us to understand the microevolution mechanisms 
of diurnal butterflies and nocturnal moths in Lepidoptera.

Traces of macroevolution are widespread in nature, such as the aquatic to terrestrial evolution of  vertebrates1–3, 
the warm-bloodedness of  mammals4, the origin of bird  wings5, the origin of animal taste  organs6, etc. During 
the evolutionary process that occurs over long time scales, macroevolution was generally the result of synergistic 
action of complex molecular mechanisms at the genome level in addition to environmental  factors7,8. However, 
among these possible molecular mechanisms, it is difficult to identify the key genes that drive the macroevolu-
tion of taxa. Therefore, it has become an important but unsolved problem in evolutionary biology to quantify 
the weight of key functional genes that cause macroevolution of ancestral species.

Previous  studies9–11 have shown that polyploidization (or whole-genome duplication, WGD) is the major 
driver for species formation and macroevolution in plants. However, WGD events are relatively rare and have 
only been found in a few animal taxa, such as euryhaline  fishes12 and  Arachnida13,14. The molecular mechanisms 
involved in animal macroevolution are mainly as follows: (1) Contraction and expansion of gene families; for 
example, the emergence of epithelial tubular organs in vertebrates was associated with contraction and expansion 
of the Claudins gene  family15; the evolution of functional plough nose organs in mammals was associated with 
contraction and expansion of the OR gene  family16. (2) Selective evolution of genes in response to environmental 
stress; for example, the evolutionary rate of genes involved in energy metabolism, low-oxygen adaptation and 
skeletal development was significantly faster in ground tits that occur at high-altitudes compared to the closely 
related  species17; studies of visual proteins in Lepidopteran insects showed that visual genes associated with 
brighter environments evolved faster and were under positive selection in insects from diurnal  taxa18. (3) Struc-
ture variation in genomes, such as the evolution of butterfly wing mimicry duo to the  inversions19.

The above-mentioned studies on the molecular mechanisms of macroevolution are mainly based on tradi-
tional bioinformatics and statistical  methods20–22. Considering the complex mechanisms of multiple key genes in 
the process of macroevolution, it is a challenge to systematically identify the key genes of macroevolution at the 
genome level. In order to obtain new knowledge from huge genomic data, machine learning (ML) has become a 
widely used and successful  approach23–25. The correct performance of traditional ML algorithms relies heavily on 
data representations called features, and different features often need to be constructed for different task objec-
tives. Moreover, deep learning (DL), a subfield of ML, can automatically learn features and patterns from data 
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without the need for manual feature engineering. DL has been applied to various aspects of biological research 
and has shown powerful  capabilities26–30, such as the analysis of gene expression data, and DNA and protein 
sequence data using natural language processing (NLP) related techniques with recurrent neural networks as the 
cornerstone. Despite the excellent results achieved by DL in several areas of bioinformatics, the inference process 
of DL is agnostic. In some bioinformatics scenarios, interpretable inference processes are often as important or 
even more important than excellent results. The attention mechanism (AM)31 can compute different weights for 
different parts of the training sample during the training process. During the inference step without additional 
computation, these weights are generated and considered as the importance of that part to the model. The part 
with high weight was always focused on in the training process of model, and this can explain the inference 
process of DL. Previous studies showed that AM has been applied in the more and more fields of bioinformat-
ics, such as the prediction of  enhancers32, and the prediction of protein  interactions33, etc. However, it is still a 
challenge to use AM to identify the different weights of key genes in the macroevolution of taxa.

In this paper, we develop IKGM, a method based on deep learning with attention mechanisms for identifying 
key genes in the macroevolution of biological taxa, which allows attaching different weights to genes to char-
acterize the importance of these genes in macroevolutionary processes. Using 34 species of diurnal butterflies 
and nocturnal moths as an example, we used IKGM to mine the key genes with high weights and performed 
KEGG enrichment analysis based on these genes. These results should help us to understand the mechanisms 
of macroevolution in Lepidoptera.

Materials and methods
Data source
All the protein sequences of 34 Lepidoptera species were downloaded from InsectBase34 and protein-coding genes 
were used as original samples. These species were labeled into two groups (nocturnal or diurnal) according to the 
diel behavior information in previous  studies18,35 (Supplementary-file2: Table S1). The proteins of these species 
were annotated to obtain the domain information by Pfam database (http:// pfam. xfam. org/).

Pipeline of IKGM
In this study, the diel behavior information of 34 Lepidoptera species is used as the classification labels of experi-
mental samples. The macroevolution phenomenon of nocturnal moths and diurnal butterflies is modeled as a 
classification problem of protein sequences. NLP was used to construct the word embedding libraries based on 
these sequences, and then AM is added to the classification network to compute the weight of different genes 
in the classification process. The pipeline of this paper mainly consists of four important parts (Fig. 1): Data 
pre-processing, Classification Model, Weights calculation, and Evaluation. In this study, three types of attention 
mechanisms (domain attention, kmer attention and fused attention) were developed to calculate the weights 
(weight 1, weight 2 and weight 3 in Fig. 1) of different genes. The details of each part are described in the follow-
ing subsections. In addition, some important symbols in the method are shown in Table 1.

Data pre‑processing
Data augmentation
Considering the prevalence of single nucleotide polymorphisms (SNP), insertion and deletion (InDel) and 
structural variants (SV) in different populations for each species, the original samples of 34 Lepidoptera species 
were expanded by simulating sequence variants to meet the sample requirements of the deep learning algo-
rithm. In addition, we refer to the Neutral Theory of Molecular Evolution (Neutral Theory) proposed by Motoo 
Kimura, and attempt to make random small-scale mutations without selection bias while not changing the over-
all phenology of the species. We performed the simulation in several ways: (1) gene rearrangement, we divide 

Figure 1.  Pipeline of IKGM in this study. The red rectangles (Data pre-processing, Classification model 
construction, Weights fusion, and Evaluation) indicate the four key components of IKGM. Data pre-processing 
part consists of three main sub-modules, which use NLP technology to complete the pre-processing of raw 
protein sequences and feature construction. Classification model construction is the modeling of macroscopic 
evolutionary processes using deep learning and hierarchical attention mechanisms. Weight fusion is the process 
of fusing two different sets of gene weights together using a certain computational strategy (AM), where the 
gene weights represent the importance of the gene in the classification process, also known as the contribution 
to macroevolution. Evaluation is the process of annotation and KEGG enrichment for these genes with high 
weights.

http://pfam.xfam.org/
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the entire genome into multiple parts and perform random interchanges between the multiple parts without 
changing the gene order within each part; and (2) sequence mutations, i.e., random mutations of amino acids 
in a portion of the protein sequence, with an overall frequency of mutations of less than 1% of the genome. In 
addition, considering that the number of samples from the two taxa is uneven, the data are augmented separately 
for the two categories of genomes. In order to ensure that the mutated genomes are as diverse as possible, the 
number of amplifications is kept consistent for each original genome, the number of genomes before and after 
augmentation of each taxon and the number of each individual genome augmented by mutation (as shown in 
Supplementary-file2: Table S2).

Construction of word hierarchies
In natural language, multiple words are arranged in a certain word order to form a sentence with semantic mean-
ing, while multiple sentences arranged in a certain order can form a text with rich semantic meaning. By analogy 
with natural language, the protein sequences of a single species can be considered as a text, while a single protein 
sequence can be considered as a sentence. However, word hierarchies are not clearly represented in proteins, and 
using an amino acid character as a word not only does not reflect the molecular mechanisms that may lead to 
macroevolution, but also leads to excessively long sentences. To address this problem and construct biologically 
meaningful word hierarchies to characterize the evolutionary mechanisms at different scales, we propose two 
methods for constructing word hierarchies:

1) Word hierarchy construction based on domain name (v = 1);
  Given that contractions and expansions of gene family often lead to quantitative differences in functional 

domains, and Pfam annotation of the original samples was performed. The annotated functional domain 
names are then used as word hierarchies to express contractions and expansions of gene families that may 
occur, as shown in Fig. 2a.

2) Word hierarchy construction based on variant kmer (v = 2);
  The selective evolution of genes is often reflected in the sequence differences of amino acids. So, a sliding 

window is performed on all sequences according to the fixed length k and frequency statistics are performed 
on the obtained kmer. Then the high-frequency (greater than the quartile) kmer is selected as the segment 
marker, segment operation is performed on all the protein sequences, and all unequal short sequences 

Table 1.  Description of the meaning of some important symbols.

Symbols Description

HAN Hierarchical Attention Network for genome classification

αi,t Attention score of the t  th word in the i  th sentence in the hierarchical attention network

αi Attention score of the i  th sentence in the hierarchical attention network

v Hierarchy of words

PASv,s Protein attention scores for species s when using word hierarchy v

GASv,T Gene attention scores for taxon T when using word hierarchy v

DASv Attention scores of genes causing differences between the two extant taxa when using word hierarchy v

Figure 2.  Word hierarchy construction. (a) Use the name of the Pfam functional domain contained in a protein 
as a word hierarchy to characterize the protein. (b) Short sequences obtained using the variant-based kmer 
method were used as word hierarchies to characterize the proteins.
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obtained were used as word hierarchies to characterize the possible selective evolution of genes (as shown 
in Supplementary -file 1: Fig. S1). These short sequences can be viewed as unequal short peptides, as shown 
in Fig. 2b.

Word embedding
As mentioned in Sect. “Introduction”, in traditional machine learning methods, it is often necessary to require 
feature engineering, which is usually based on a statistical approach to the original sequence. Their traditional 
features require manual construction, such as counting the spectrum of kmer in the sequence as a feature of the 
input  sequence36. However, this approach does not fully represent all the information contained in the origi-
nal sequence in particular, nor does it reflect the key contextual relationships. With the rise of deep learning, 
feature methods now focus more on the original sequence itself by directly encoding the original sequence to 
vectorize input features, such as one-hot encoding. However, the one-hot encoded vector is too sparse and does 
not express the correlation between the meanings of words in the original sequence. Unlike one-hot coding, 
a technique called word embedding captures the semantic association between words and can help obtain a 
better and more specific representation of sequence features. In this paper, for the data represented by the two 
types of word hierarchies mentioned above, the word embedding pre-training is performed using the Skip-gram 
 algorithm37 to obtain a vector representation of sequences with embedding dimension 200. The internal words 
of each protein sequence are replaced with the word vector representation obtained from the pre-trained model, 
which is converted into a feature matrix by concatenating all word embedding vectors in that protein sequence. 
Similarly, the feature matrix corresponding to each protein sequence is concatenated to obtain a complete vector 
representation of all protein sequences in a species.

Classification model construction and weight calculation
Considering the different protein information using different word hierarchy representations, as shown in Fig. 3a, 
and the two classification networks were trained. After that, the two representations of the original protein 
sequences of each species were input to the two trained models to obtain the domain attention scores (PAS1,s) 
and kmer attention scores (PAS2,s) for each species. Considering the hierarchical structure of the samples and the 
need for attention scores, this paper uses a hierarchical attention classification network to capture the weights 
at different hierarchies. The architecture of the hierarchical attention classification network is shown in Fig. 3b. 
The two sets of PASv,s(PAS1,s and PAS2,s) were fused to obtain the fused attention scores (PAS3,s) using the self-
attention mechanism to reflect the variation mechanisms captured by different word hierarchies simultaneously, 
as shown in Fig. 3c. The details of the hierarchical attention classification network and the self-attention fusion 
module will be described in the next subsections.

Figure 3.  Schematic diagram of classification model and weight calculation. (a) The main process of 
classification, after data pre-processing using two type word hierarchical representations of two data sets 
were pre-trained with word embedding through a hierarchical attention classification network to obtain two 
classification models, and the original protein sequences of each specie were input into the trained classification 
model to obtain the domain attention scores (PAS1,s) and kmer attention scores (PAS2,s). (b) The network 
architecture of the hierarchical attention classification network (HAN) with two attention layers added to the 
basic classification network. (c) Fused attention scores (PAS3,s) based on two sets of weights (PAS1,s and PAS2,s).
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Hierarchical attention classification network
In the classification process, the abstract hidden layer representation of each data segment is obtained by passing 
the data through BiLSTM. The xi,t is the ith word vector in the sequence at time t , and the bidirectional 

−→
hi,t and ←−

hi,t represent the forward and backward hidden layer states of the 
−−→
hi,t−1 and 

←−−
hi,t+1 in the BiLSTM (Eqs. (1), (2)). 

The bidirectional information is integrated to obtain the bidirectional hidden layer state hi,t(Eq. (3)).

The bidirectional information of the word vector xi,t is combined into hi,t and it is inputted into an MLP for 
activation to obtain the nonlinear hidden layer representation ui,t (Eq. (4), h⊺i,trepresents the transpose of hi,t ) 
of the word vector xi,t. In general, different words have different emotional color biases for the sentence, that is, 
they have different importance for a sentence, as shown in Supplementary-file 1: Fig. S2a, in order to make the 
BiLSTM focus on important words, we design the attention mechanism based on word vectors, as formulated 
in Eqs. (5) and (6).

where Ww and bw are the weight matrix and the bias term in the tanh function (Eqs. (4)), respectively. To bet-
ter represent the word importance represented by the attention weights, we normalized the attention weights 
(Eqs. (5)) where ww represents the vector of the context of ui,t , and αi,t denotes the attention weight of the word 
vector xi,t . The sentence vector si represents the weight sum of the product of the word weights and the hidden 
layer state information hi,t . Similar to word-level attention, different sentences have different importance for a 
text, as shown in Supplementary-file 1: Fig. S2b, sentence-level attention is designed so that the classification 
network focuses on the important sentences based on the attention weights.

where 
−→
hi  and 

←−
hi  are the forward and backward implicit variables of 

−−→
hi−1and

←−−
hi+1 for the ith sentence in the text, 

respectively. hi is the implicit variable for the i th sentence in both directions. Similar to the attention mechanism 
at the word level, a sentence attention mechanism is designed for the sentence level, and it is calculated as follows:

where Ws and bs are the weight matrix and bias vector of the tanh function at the sentence level, respectively. ws 
represents the vector of the context of ui , αi is the normalized attention weight of the i th sentence. And P is the 
weight sum of all sentences in the text(genome) and the attention of the sentence is its weight. Finally, P is fed 
to a fully connected layer to calculate the output classification probability ŷ .

Weight acquisition and fusion
The two sets of PASv,s (PAS1,s and PAS2,s) from different v were aggregated according to gene symbols and the 
aggregation results were considered as two sets of feature vectors as shown in Fig. 3c. The similarity between 
these two sets of feature vectors is calculated using cosine similarity (Eq. (14)) and use the multiplication of this 
similarity and the mean of the first two sets of PASv,s as  PAS3,s (Eq. (15)).

(1)
−→
hi,t =

−−−→
LSTM

(
xi,t ,

−−→
hi,t−1

)

(2)
←−
hi,t =

←−−−
LSTM

(
xi,t ,

←−−
hi,t+1

)

(3)hi,t =
[−→
hi,t ,

←−
hi,t

]

(4)ui,t = tanh
(
Wwh

⊺

i,t + bw
)

(5)αi,t =
exp(wwui,t)∑
t exp(wwui,t)

(6)si =
∑

tαi,thi,t

(7)
−→
hi =

−−−→
LSTM

(
si ,

−−→
hi−1

)

(8)
←−
hi =

←−−−
LSTM

(
si ,

←−−
hi+1

)

(9)hi =
[−→
hi ,

←−
hi

]

(10)ui = tanh
(
Wsh

⊺

i + bs
)

(11)αi =
exp(wsui)∑
iexp(wsui)

(12)P =
∑

tαihi

(13)ŷ = softmax(WcP + bc)
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Evaluation and KEGG enrichment
The normalized PASv,s corresponding to protein sequences with the same annotation name are summed as the 
two total contributions of the protein sequences to the taxon GASv,T. The normalized GASv,T of the two taxa are 
summed as the total contribution to the classification process(Eq. (16)).

In this paper, we ranked the genes according to DASv (weight of genes) from high to low, and the top 1% of 
genes were used as the key genes for the macroevolution of Lepidoptera. In order to explore the difference of 
high-weight genes between butterflies and moths, we analyzed the evolution of ninaB, GNB1l and eys genes 
obtained by different types of attention mechanisms (domain attention, kmer attention and fused attention). 
The phylogeny tree of 18 butterflies and 13 moths was obtained from Timetree (http:// www. timet ree. org/) (three 
butterfly species are missing in Timetree). NinaB genes were identified based on the annotation of InsectBase 
(http:// v2. insect- genome. com/). Sequence of GNB1l genes was aligned by  MegaX38. Domains of eys genes were 
annotated by Pfam (http:// pfam. xfam. org/). To verify the accuracy of the key genes leading to macroevolution in 
Lepidoptera identified in this paper, the enrichment analysis of the KEGG metabolic pathway and the search of 
the corresponding gene functions were performed. If the enriched metabolic pathways are significantly associ-
ated with differences in Diel behavior or if the functions of certain genes are associated with certain macroscopic 
phenotypes of the two major taxa, then the approach of this paper is proven to be effective.

Result
Data pre‑processing results
After Pfam annotation of all protein sequences of the original 34 Lepidopteran insect species, only proteins with 
functional domains were retained as shown in Fig. 4.

The results of word hierarchy construction are as follows (v = 1): After counting the results of Pfam annota-
tion, there were 6,448 functional domains in all Lepidoptera proteins, and all the functional domain names were 
recorded as a word list. The differences in the number of kmer at different k values can lead to differences in the 
number of split tokens, and thus leads to differences in segmentation results. In order to reduce the occurrence 
of very few words to preserve the integrity of the corpus as much as possible, this paper investigates the retention 
of the corpus under various k-values. as shown in Supplementary-file2: Table S3. In the case of k = 3, the corpus 
is retained to the highest degree, which is about 95% of the original corpus, so the new corpus obtained in the 
case of k = 3 is chosen for word embedding in this paper. Then, Skip-gram algorithm was used to pretrain the 
word embedding of the augmented corpus with an embedding dimension of 200. Then, K-means clustering was 
adopted to the embedded word vector (K = 3, representing tripartite clusters, namely two specific taxa words, 
and their intersection words), and used the PCA algorithm to downscale the word vector to two dimensions 
as shown in Fig. 5. It is obvious from Fig. 5 that the word vectors have a clear separation trend after clustering 
at v = 1, while they do not show a similar separation trend at v = 2. This is caused by the larger scale and more 
obvious features of the functional domain.

Acquisition and analysis of weights (PASv,s, GASv,T and DASv)
The two sets of PASv,s (PAS1,s and PAS2,s)were obtained by inputting all protein sequences of each real species based 
on two word hierarchical representations corresponding to two classification models(the training process of the 
two models is shown in Supplementary-file1: Fig. S3) respectively. Then PAS3,s was obtained by fusing PAS1,s and 
PAS2,s through the self-attention mechanism. The GASv,T obtained after clustering based on protein information 
annotation are shown in Supplementary-file1: Fig. S4. The distribution of top 1% DASv is shown in Fig. 6 and 
detail genetic information and weights at different v are available in Supplementary file 2: Tables S4–S6. Several 
genes with the highest DAS1 values were FPS, GGPS1 and ninaB, corresponding to DAS1 of 0.58, 0.48, 0.21, 
respectively. Several genes with the highest DAS2 values were nfil3 and GNBIL, corresponding to DAS2 of 2.05 
and 0.16 respectively. Several genes with the highest DAS3 values were nfil3 and Fbxo42, corresponding to DAS3 
of 1.03 and 0.38 respectively. In particular, nine genes  (Plc21C39,40  EP30041,  Timeless42,  foxo43,  norpA44,  nfil345, 
 to46,  dyw47 and  Nup15348) were found to relate to circadian rhythms in previous studies (Fig. 6a–c).

Furthermore, we compared the gene number of ninaB with the high DAS1 values (v = 1) between butterflies 
and moths. There are more than two ninaB genes in most species of butterflies, while only one was found in each 
moth species (Fig. 7a). The results suggest that the method of word hierarchy (v = 1) could reflect the quantity 
or position changes of domains, including the contraction and expansion of gene families. Meanwhile, we com-
pared the sequence variation of GNB1l gene with the high DAS2 values (v = 2) between butterflies and moths 
(Supplementary-file3). A few of specific variable sites causing the kmer weight changes were found in GNB1l 
gene between butterflies and moths, which contains several non-synonymous mutations (Fig. 7b). The variant 
kmer method of word hierarchy (v = 2) could reflect the sequence variation, or small InDel in the macroevolu-
tion process of Lepidoptera. For the eys gene with the high DAS3 values (v = 3), hEGF domain showed different 
insertion or deletion between butterflies and moths (Fig. 7c). These diverse domains not only affect the weight of 

(14)similarity = cos(θ) = V1·V2
�V1��V2�

(15)PAS3,s = similarity ∗
(
PAS1,s+PAS2,s

2

)

(16)DASv =
[
normalize

(
GAS

(v,diurnal)

)
+ normalize

(
GAS

(v,nocturnal)

)]

http://www.timetree.org/
http://v2.insect-genome.com/
http://pfam.xfam.org/
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the domain (v = 1) but also the weight of the kmer (v = 2), so this fusion method (v = 3) may reflect the synergistic 
effects of the above two (v = 1 and v = 2).

KEGG enrichment of key genes with high weights
The above genes (Top 1%) obtained by three types of attention mechanisms (domain attention, kmer attention 
and fused attention) were regarded as the key genes in macroevolution of Lepidoptera. These genes were taken for 
the KEGG enrichment (as shown in Fig. 8). It can be seen that the three groups of genes have some commonal-
ity and are all enriched in some specific pathways, such as Phototransduction—fly (where Negative logarithmic 
P-value is 5.91, 2.37, 0.52, respectively, for a total of 8.80), Phosphatidylinositol signaling system (where Negative 
logarithmic P-value is 6.96, 3.86, 1.30, respectively, for a total of 12.12), Drug metabolism—other enzymes (where 
Negative logarithmic P-value is 10.695, 4.588, 0.21, respectively, for a total of 5.29), Fanconi anemia pathway 
(where Negative logarithmic P-value is 7.3, 2.15, 1.12, respectively, for a total of 10.57), Terpenoid backbone 
biosynthesis (where Negative logarithmic P-value is 6.48, 0.14, 0.62, respectively, for a total of 7.24), etc.

Figure 4.  Pfam annotation results for protein sequences in 34 Lepidoptera species. (a) represent the Pfam 
annotation results for diurnal butterflies. (b) represent the Pfam annotation results for nocturnal moths. 
num_Protein and num_Domain are the number of coding genes and the number of functional domains retained 
in the Lepidopteran genome after Pfam annotation, respectively. Ratio = num_Protein/num_Domain, which is 
the (average) number of functional domains contained in a single coding gene per species.
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Discussion
Phenotypic differences of macroevolution usually represent the synergistic action of multiple key genes in evolu-
tionary  biology49–51. However, there are still some challenges to establish a universal method or model for explor-
ing these key genes of  macroevolution49,52. The first challenge comes from the diversity of biological sequences 
(DNA and proteins). A central issue for machine learning methods is how to design a good representation for 
the biological  sequences53,54. The word embeddings can capture the semantic correlation between words and 
reflect the contextual relationship of the original sequence. We used two characteristic word-level construction 
methods including functional domain (v = 1) and variable length kmer (v = 2). The functional domain embed-
ding can well reflect the domain variations at a large scale, such as gene  duplication15,16, structure  variation19, 
etc. The kmer embedding can well reflect the sequence variation, such as selective  evolution17,18, small InDel, etc. 
Instead of the common kmer  method55–58, the variable length kmer word embedding comprehensively consider 
the kmer with different lengths based on probability. The embedding and partitioning method can better reserve 
the diversity of gene sequences. Therefore, these two methods of word embedding take into account various scales 
of gene variation as well as various relationships with biological sequence location and context. In addition to 
the word hierarchies at both scales (v = 1 and v = 2), a fusion method (v = 3) is proposed to capture the combined 
molecular mechanisms influenced by domain and variant kmer. The second challenge is to clarify the inference 
process of DL  algorithms59. This study focuses on the molecular mechanisms behind macroevolution and models 
it into a computer classification problem using the genomes of taxa that have undergone macroevolution. The 
aim is not just to create a classification model with high accuracy, but to understand the inference process itself, 
specifically which genes are important for classification. To achieve this, the study proposes the inclusion of 

Figure 5.  Word embedding results graph. (a) represents the result of word embedding when using v = 1, i.e., 
using the functional domain name as the word hierarchy. (b) represent the word embedding results of short 
sequences obtained as word hierarchies (v = 2) using k(k = 3) as the sliding window length.

Figure 6.  The distribution of Top 1% DASv values based on different word hierarchies (v). (a) represent the 
distributions of Top 1% DAS1 by domain attention (v = 1); (b) represent the distributions of Top 1% DAS2 by 
kmer attention (v = 2); (c) represent the distributions of Top 1% DAS3 by fused attention (v = 3). The genes with 
red color in this figure have been reported to be associated with circadian rhythms in previous studies.
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AM as a feasible  strategy60. Combining with the hierarchical structural properties of biological sequences, this 
study incorporates a hierarchical AM into the deep classification model, so that the model can focus not only on 
important “words” (Domain/short sequences) but also on important “sentences” (proteins). Interestingly, three 
types of attention mechanisms (domain attention, kmer attention and fused attention) maybe stand for different 
molecular mechanisms of macroevolution in evolutionary biology (Fig. 7).

Previous studies indicated that the two major taxa of butterflies and moths showed significant differences in 
circadian  rhythm61. Our results identified a number of genes with high weights, which were mainly enriched in 
Phototransduction—fly, Phosphatidylinositol signaling system, Inositol phosphate metabolism, Wnt signaling 
pathway, MAPK signaling pathway—fly, Notch signaling pathway as well as FoxO signaling pathway etc. Most 
of these genes have been reported to be associated with the control of circadian rhythms in insects, such as dyw 
(daywake)47, to (takeout)46, EP300 (E1A binding protein p300)41, Plc21C (Phospholipase C at 21C)39,40, norpA 
(no receptor potential A)44, Nup153 (Nucleoporin 153kD)48, Nfil3 (nuclear factor, interleukin 3, regulated)45, foxo 
(forkhead box, sub-group O)43 and Timeless (timeless circadian regulator)42 (Figs. 6, 7). These reported circadian 
rhythm-related genes with high weights proved the validity of our method. Moreover, it is suggested that some 
of the other high-weight genes identified in this paper may also play important roles in the macroevolution of 
Lepidopterans. We found some high weights genes were reported to be associated with senses in Lepidopteran 
 insects18,62, such as ninaB (neither inactivation nor afterpotential B)63, eys(eyes shut)64, and Dscam2 (Down 
syndrome cell adhesion molecule 2)65 related to axonal tiling of the insect visual system, the aop (anterior open) 
gene related to the photoreceptor  rhabdomere66, Itpr (Inositol 1,4,5,-trisphosphate receptor) related to visual and 

Figure 7.  Examples of high-weight genes identified by three types of attention mechanisms. (a) Gene number 
of ninaB in butterflies and moths (identified by domain attention). (b) Non-synonymous mutation site of 
GNB1L genes in butterflies and moths (identified by kmer attention). (c) Domain difference of eys genes in 
butterflies and moths (identified by fused attention).
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olfactory  transduction67, as well as WGN (Wengen) related to photoreceptor cell axon  guidance68. Additionally, 
we also identified many genes that may be involved in these behavioral differences in butterflies and moths, for 
example, y (yellow) and Dop2R (Dopamine 2-like receptor) are involved in male courtship behavior of  insects69,70, 
HCRTR2(hypocretin receptor 2) may be involved in regulating feeding and sleep  behavior71,72. The above genes 
related to circadian rhythms, sensory organs, and behavioral habits should help us to explain the macroscopic 
differences of diurnal butterflies and nocturnal moths in Lepidoptera.

Conclusion
This paper proposes a new method for identifying the important genes of macroevolution using deep learning 
and attention mechanism. Based on this new method, we mined a few of key genes related to the phenotypic 
differences (circadian rhythms, sensory organs, as well as behavioral habits etc) of diurnal butterflies and noc-
turnal moths in Lepidoptera. It not only provides a novel method to identified the key genes of macroevolution 
at the genomic level, but also helps us to understand the microevolution mechanisms of diurnal butterflies and 
nocturnal moths in Lepidoptera.

Data availability
The source data and experiment code for our implementation are available for public access and can be found 
in GitHub (https:// github. com/ Jiawe iMao1 2135/ IKGM). The code is written in Python and serves as a reference 
for the experiments conducted in this paper. We encourage collaboration and feedback from the community 
to improve the code and foster future advancements. Feel free to report any issues or suggest improvements 
by creating an issue in the GitHub repository’s issue tracker. Please note that while we have taken measures to 
thoroughly test the code, unforeseen issues or limitations may still exist. We appreciate your understanding and 
assistance in refining the codebase. By sharing our code, we aim to contribute to the open research community 
and promote reproducibility, allowing others to validate our results and build upon our work.

Received: 27 June 2023; Accepted: 9 November 2023

References
 1. Fish, F. E. Transitions from drag-based to lift-based propulsion in mammalian swimming. Am. Zool. 36, 628–641 (1996).
 2. Ashley-Ross, M. A., Hsieh, S. T., Gibb, A. C. & Blob, R. W. Vertebrate land invasions-past, present, and future: An introduction to 

the symposium. Integr. Comp. Biol. 53, 192–196 (2013).
 3. Zimmer, C. At the Water’s Edge: Fish with Fingers, Whales with Legs, and How Life Came Ashore but Then Went Back to Sea (Simon 

and Schuster, 2014).
 4. Ruiz-Herrera, A. & Robinson, T. J. Chromosomal instability in Afrotheria: Fragile sites, evolutionary breakpoints and phylogenetic 

inference from genome sequence assemblies. BMC Evol. Biol. 7, 199 (2007).
 5. Dececchi, T. A. & Larsson, H. C. E. Body and limb size dissociation at the origin of birds: Uncoupling allometric constraints across 

a macroevolutionary transition. Evolution 67, 2741–2752 (2013).

Figure 8.  KEGG enrichment analysis results of high-weight genes (top 1%). The reference species is silkworm. 
Blue color stands for the domain attention; Yellow color stands for the kmer attention; Green color stands for the 
fused attention.

https://github.com/JiaweiMao12135/IKGM


11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19727  | https://doi.org/10.1038/s41598-023-47113-9

www.nature.com/scientificreports/

 6. Behrens, M., Di Pizio, A., Redel, U., Meyerhof, W. & Korsching, S. I. At the Root of T2R Gene Evolution: Recognition Profiles of 
Coelacanth and Zebrafish Bitter Receptors. Genome Biol Evol 13, evaa264 (2021).

 7. Hannisdal, B. & Peters, S. E. Phanerozoic Earth system evolution and marine biodiversity. Science 334, 1121–1124 (2011).
 8. Mayhew, P. J., Bell, M. A., Benton, T. G. & McGowan, A. J. Biodiversity tracks temperature over time. Proc. Natl. Acad. Sci. U. S. 

A. 109, 15141–15145 (2012).
 9. Doyle, J. J. & Egan, A. N. Dating the origins of polyploidy events. New Phytol. 186, 73–85 (2010).
 10. Clark, J. W. & Donoghue, P. C. J. Whole-genome duplication and plant macroevolution. Trends Plant Sci. 23, 933–945 (2018).
 11. Clark, J. W., Puttick, M. N. & Donoghue, P. C. J. Origin of horsetails and the role of whole-genome duplication in plant macro-

evolution. Proc. Biol. Sci. 286, 20191662 (2019).
 12. Guo, B., Wagner, A. & He, S. Duplicated gene evolution following wholegenome duplication in teleost Fish. Gene Duplic. 27, 36 

(2011).
 13. Schwager, E. E. et al. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC 

Biol. 15, 62 (2017).
 14. Fan, Z. et al. A chromosome-level genome of the spider Trichonephila antipodiana reveals the genetic basis of its polyphagy and 

evidence of an ancient whole-genome duplication event. Gigascience 10, giab016. https:// doi. org/ 10. 1093/ gigas cience/ giab0 16 
(2021).

 15. Baumholtz, A. I., Gupta, I. R. & Ryan, A. K. Claudins in morphogenesis: Forming an epithelial tube. Tissue Barriers 5, e1361899 
(2017).

 16. Hughes, G. M. et al. The birth and death of olfactory receptor gene families in mammalian niche adaptation. Mol. Biol. Evol. 35, 
1390–1406 (2018).

 17. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau | Nature Communications. https:// 
www. nature. com/ artic les/ ncomm s3071.

 18. Sondhi, Y., Ellis, E. A., Bybee, S. M., Theobald, J. C. & Kawahara, A. Y. Light environment drives evolution of color vision genes 
in butterflies and moths. Commun. Biol. 4, 177 (2021).

 19. Timmermans, M. J. T. N., Srivathsan, A., Collins, S., Meier, R. & Vogler, A. P. Mimicry diversification in Papilio dardanus via a 
genomic inversion in the regulatory region of engrailed-invected. Proc. Biol. Sci. 287, 20200443 (2020).

 20. Hayward, A., Cornwallis, C. K. & Jern, P. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proc. Natl. 
Acad. Sci. U. S. A. 112, 464–469 (2015).

 21. Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 
(2014).

 22. Li, H. et al. Panoramic insights into microevolution and macroevolution of a prevotella copri-containing lineage in primate guts. 
Genom. Proteom. Bioinform. 20, 334–349 (2022).

 23. Larrañaga, P. et al. Machine learning in bioinformatics. Brief. Bioinform. 7, 86–112 (2006).
 24. Leung et al. Machine Learning in Genomic Medicine: A Review of Computational Problems and Data Sets. (2015).
 25. Hroza & Jiří. Protein secondary structure prediction by machine learning methods. Bioinformatics 14, 892–893 (2005).
 26. Min, S., Lee, B. & Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 18, 851–869 (2017).
 27. Li, Y. et al. Deep learning in bioinformatics: Introduction, application, and perspective in the big data era. Methods 166, 4–21 

(2019).
 28. Wang, W. & Gao, X. Deep learning in bioinformatics. Methods 166, 1–3 (2019).
 29. Li, H. et al. Modern deep learning in bioinformatics. J. Mol. Cell Biol. 12, 823–827 (2020).
 30. Berrar, D. & Dubitzky, W. Deep learning in bioinformatics and biomedicine. Brief. Bioinform. 22, 1513–1514 (2021).
 31. Attention is all you need Proceedings of the 31st International Conference on Neural Information Processing Systems. https:// doi. 

org/ 10. 5555/ 32952 22. 32953 49.
 32. Hong, J., Gao, R. & Yang, Y. CrepHAN: Cross-species prediction of enhancers by using hierarchical attention networks. Bioinfor-

matics https:// doi. org/ 10. 1093/ bioin forma tics/ btab3 49 (2021).
 33. Fergadis, A., Baziotis, C., Pappas, D., Papageorgiou, H. & Potamianos, A. Hierarchical bi-directional attention-based RNNs for 

supporting document classification on protein-protein interactions affected by genetic mutations. Database (Oxford) https:// doi. 
org/ 10. 1093/ datab ase/ bay076 (2018).

 34. Mei, Y. et al. InsectBase 2.0: A comprehensive gene resource for insects. Nucleic Acids Res. 50, D1040–D1045 (2022).
 35. Barber, J. Diel behavior in moths and butterflies: A synthesis of data illuminates the evolution of temporal activity. Organ. Divers. 

Evol. https:// doi. org/ 10. 1007/ s13127- 017- 0350-6 (2018).
 36. Chen, L., Fish, A. E. & Capra, J. A. Prediction of gene regulatory enhancers across species reveals evolutionarily conserved sequence 

properties. PLoS Comput. Biol. 14, e1006484 (2018).
 37. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. Distributed Representations of Words and Phrases and their Compo-

sitionality. Preprint at http:// arxiv. org/ abs/ 1310. 4546 (2013).
 38. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing 

platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
 39. Ogueta, M., Hardie, R. C. & Stanewsky, R. Non-canonical phototransduction mediates synchronization of the drosophila mela-

nogaster circadian clock and retinal light responses. Curr. Biol. 28, 1725-1735.e3 (2018).
 40. Ogueta, M., Hardie, R. C. & Stanewsky, R. Light sampling via throttled visual phototransduction robustly synchronizes the dros-

ophila circadian clock. Curr. Biol. 30, 2551-2563.e3 (2020).
 41. Curtis, A. M. et al. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 279, 7091–

7097 (2004).
 42. Cai, Y. D. & Chiu, J. C. Timeless in animal circadian clocks and beyond. FEBS J. 289, 6559–6575 (2022).
 43. Zheng, X., Yang, Z., Yue, Z., Alvarez, J. D. & Sehgal, A. FOXO and insulin signaling regulate sensitivity of the circadian clock to 

oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 104, 15899–15904 (2007).
 44. Saint-Charles, A. et al. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low 

light. J. Comp. Neurol. 524, 2828–2844 (2016).
 45. Liu, W. et al. Dibutyl phthalate disrupts conserved circadian rhythm in Drosophila and human cells. Sci. Total Environ. 783, 147038 

(2021).
 46. So, W. V. et al. takeout, a novel Drosophila gene under circadian clock transcriptional regulation. Mol. Cell. Biol. 20, 6935–6944 

(2000).
 47. Yang, Y. & Edery, I. Daywake, an anti-siesta gene linked to a splicing-based thermostat from an adjoining clock gene. Curr. Biol. 

29, 1728-1734.e4 (2019).
 48. Jang, A. R., Moravcevic, K., Saez, L., Young, M. W. & Sehgal, A. Drosophila TIM binds importin α1, and acts as an adapter to 

transport PER to the nucleus. PLoS Genet. 11, e1004974 (2015).
 49. Pagel, M., O’Donovan, C. & Meade, A. General statistical model shows that macroevolutionary patterns and processes are consist-

ent with Darwinian gradualism. Nat. Commun. 13, 1113 (2022).
 50. Molecular phylogeny and macroevolution of Chaitophorinae aphids (Insecta: Hemiptera: Aphididae). Systematic Entomology 

(2021) doi:https:// doi. org/ 10. 1111/ syen. 12531.
 51. Bagchi, B. et al. Sexual conflict drives micro- and macroevolution of sexual dimorphism in immunity. BMC Biol. 19, 114 (2021).

https://doi.org/10.1093/gigascience/giab016
https://www.nature.com/articles/ncomms3071
https://www.nature.com/articles/ncomms3071
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.1093/bioinformatics/btab349
https://doi.org/10.1093/database/bay076
https://doi.org/10.1093/database/bay076
https://doi.org/10.1007/s13127-017-0350-6
http://arxiv.org/abs/1310.4546
https://doi.org/10.1111/syen.12531


12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19727  | https://doi.org/10.1038/s41598-023-47113-9

www.nature.com/scientificreports/

 52. Alencar, L. R. V. & Quental, T. B. Exploring the drivers of population structure across desert snakes can help to link micro and 
macroevolution. Mol. Ecol. 28, 4529–4532 (2019).

 53. Zou, Q., Xing, P., Wei, L. & Liu, B. Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine 
sites from mRNA. RNA 25, 205–218 (2019).

 54. Hoinka, J. & Przytycka, T. M. Embedding gene sets in low-dimensional space. Nat. Mach. Intell. 2, 367–368 (2020).
 55. Wen, J., Chan, R. H. F., Yau, S.-C., He, R. L. & Yau, S. S. T. K-mer natural vector and its application to the phylogenetic analysis of 

genetic sequences. Gene 546, 25–34 (2014).
 56. Fletez-Brant, C., Lee, D., McCallion, A. S. & Beer, M. A. kmer-SVM: a web server for identifying predictive regulatory sequence 

features in genomic data sets. Nucleic Acids Res. 41, W544-556 (2013).
 57. Zhu, Z. et al. Predicting the receptor-binding domain usage of the coronavirus based on kmer frequency on spike protein. Infect. 

Genet. Evol. 61, 183–184 (2018).
 58. Villacrés-Vallejo, J. et al. Using full chloroplast genomes of ‘red’ and ‘yellow’ Bixa orellana (achiote) for kmer based identification 

and phylogenetic inference. BMC Genom. 21, 544 (2020).
 59. Sheehan, S. & Song, Y. S. Deep learning for population genetic inference. PLoS Comput. Biol. 12, e1004845 (2016).
 60. Xuan, P., Cao, Y., Zhang, T., Kong, R. & Zhang, Z. Dual convolutional neural networks with attention mechanisms based method 

for predicting disease-related lncRNA genes. Front. Genet. https:// doi. org/ 10. 3389/ fgene. 2019. 00416 (2019).
 61. Brady, D., Saviane, A., Cappellozza, S. & Sandrelli, F. The circadian clock in lepidoptera. Front. Physiol. 12, 776826 (2021).
 62. Vogt, R. G., Große-Wilde, E. & Zhou, J.-J. The Lepidoptera Odorant Binding Protein gene family: Gene gain and loss within the 

GOBP/PBP complex of moths and butterflies. Insect Biochem. Mol. Biol. 62, 142–153 (2015).
 63. Voolstra, O. et al. NinaB is essential for Drosophila vision but induces retinal degeneration in opsin-deficient photoreceptors. J. 

Biol. Chem. 285, 2130–2139 (2010).
 64. Husain, N. et al. The agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the Drosophila retina. 

Dev. Cell 11, 483–493 (2006).
 65. Millard, S. S., Flanagan, J. J., Pappu, K. S., Wu, W. & Zipursky, S. L. Dscam2 mediates axonal tiling in the Drosophila visual system. 

Nature 447, 720–724 (2007).
 66. Nam, S.-C. & Choi, K.-W. Interaction of Par-6 and Crumbs complexes is essential for photoreceptor morphogenesis in Drosophila. 

Development 130, 4363–4372 (2003).
 67. Yoshikawa, S. et al. Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in Drosophila melanogaster. 

J. Biol. Chem. 267, 16613–16619 (1992).
 68. Ruan, W., Unsain, N., Desbarats, J., Fon, E. A. & Barker, P. A. Wengen, the sole tumour necrosis factor receptor in Drosophila, 

collaborates with moesin to control photoreceptor axon targeting during development. PLoS One 8, e60091 (2013).
 69. Massey, J. H., Chung, D., Siwanowicz, I., Stern, D. L. & Wittkopp, P. J. The yellow gene influences Drosophila male mating success 

through sex comb melanization. Elife 8, e49388 (2019).
 70. Love, C. R., Gautam, S., Lama, C., Le, N. H. & Dauwalder, B. The Drosophila dopamine 2-like receptor D2R (Dop2R) is required 

in the blood brain barrier for male courtship. Genes Brain Behav. 22, e12836 (2023).
 71. Sakurai, T. et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that 

regulate feeding behavior. Cell 92, 573–585 (1998).
 72. Yin, J. et al. Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat. Struct. Mol. Biol. 23, 

293–299 (2016).

Author contributions
J.W.M. and Y.C. designed this study and wrote the main manuscript text. Y.J.Z. offered the related devices. and 
B.S.H. and Y.Z. collected the data, analyzed the data and prepared figures. Y.J.Z. and Y.C. helped for interpreting 
the results. Y.J.Z. and Y.Z. helped for editing the language. All of the authors contributed to the interpretation of 
the results and the writing of the manuscript.

Funding
This work was funded by National Natural Science Foundation (31960142, 61962055 and 32360388).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 47113-9.

Correspondence and requests for materials should be addressed to Y.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.3389/fgene.2019.00416
https://doi.org/10.1038/s41598-023-47113-9
https://doi.org/10.1038/s41598-023-47113-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A novel method for identifying key genes in macroevolution based on deep learning with attention mechanism
	Materials and methods
	Data source
	Pipeline of IKGM
	Data pre-processing
	Data augmentation
	Construction of word hierarchies
	Word embedding

	Classification model construction and weight calculation
	Hierarchical attention classification network
	Weight acquisition and fusion

	Evaluation and KEGG enrichment

	Result
	Data pre-processing results
	Acquisition and analysis of weights (PASv,s, GASv,T and DASv)
	KEGG enrichment of key genes with high weights

	Discussion
	Conclusion
	References


