
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18260  | https://doi.org/10.1038/s41598-023-45032-3

www.nature.com/scientificreports

Artificial intelligence models 
for methylene blue removal using 
functionalized carbon nanotubes
Abd‑Alkhaliq Salih Mijwel 1, Ali Najah Ahmed 1,2*, Haitham Abdulmohsin Afan 3, 
Haiyam Mohammed Alayan 4*, Mohsen Sherif 5,6 & Ahmed Elshafie 7

This study aims to assess the practicality of utilizing artificial intelligence (AI) to replicate the 
adsorption capability of functionalized carbon nanotubes (CNTs) in the context of methylene blue 
(MB) removal. The process of generating the carbon nanotubes involved the pyrolysis of acetylene 
under conditions that were determined to be optimal. These conditions included a reaction 
temperature of 550 °C, a reaction time of 37.3 min, and a gas ratio  (H2/C2H2) of 1.0. The experimental 
data pertaining to MB adsorption on CNTs was found to be extremely well‑suited to the Pseudo‑
second‑order model, as evidenced by an R2 value of 0.998, an X2 value of 5.75, a  qe value of 163.93 
(mg/g), and a K2 value of 6.34 × 10–4 (g/mg min).The MB adsorption system exhibited the best 
agreement with the Langmuir model, yielding an  R2 of 0.989,  RL value of 0.031,  qm value of 250.0 
mg/g. The results of AI modelling demonstrated a remarkable performance using a recurrent neural 
network, achieving with the highest correlation coefficient of  R2 = 0.9471. Additionally, the feed‑
forward neural network yielded a correlation coefficient of R2 = 0.9658. The modeling results hold 
promise for accurately predicting the adsorption capacity of CNTs, which can potentially enhance their 
efficiency in removing methylene blue from wastewater.

Nanotechnology has been recognized as a highly revolutionary technology due to its ability to unlock new pos-
sibilities in nanoscale engineering, enabling the production and utilization of materials, devices, and systems with 
novel features and  functions1. Nano-adsorbents, which possess a considerable specific surface area, a diminutive 
intraparticle diffusion distance, and a surface that can be chemically manipulated, present a plethora of poten-
tial applications in the domain of water  treatment2. They have the potential to introduce numerous innovative 
uses in the field. Due to the remarkable physiochemical characteristics of nanomaterials and the limitations of 
traditional adsorbents in terms of effectiveness and selectivity, carbon nanotubes (CNTs) have garnered signifi-
cant attention in the industrial and scientific communities as a promising alternative from both technological 
and environmental  perspectives3. To meet stringent environmental regulations, a diverse range of wastewater 
treatment approaches are being developed in response to the recent discharge of hazardous compounds without 
proper  regulation4. Hence, there is a significant imperative to develop efficient, cost-effective, and sustainable 
technologies for screening and treating harmful environmental  pollutants5,6. Adsorption has emerged as one 
of the most successful methods for removing a diverse range of pollutants from aqueous solutions because of 
its low energy requirements, ease of use, and environmental  compatibility7. Extensive research efforts have 
been devoted to water quality forecasting models to enhance management plans and early warning  systems8. 
Nevertheless, a persistent challenge lies in dealing with water-related data, which often involves nonlinear vari-
ables and  fluctuations9. Researchers and developers worldwide are currently directing their attention towards 
artificial intelligence, particularly in the field of civil engineering. The simplicity and cost-effectiveness of AI’s 
applications serve as its primary determinants, as they allow for precise issue estimation, handling of extensive 
and complex data, and solution of highly nonlinear problems that are beyond the scope of empirical equations. 
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Due to their robustness and problem-solving capabilities, AI models have exhibited exceptional performance 
and superiority in processing complex nonlinear  data10. The increasing number of published studies in recent 
years indicates a growing interest in utilizing the AI approach for water treatment  modeling11. The Water Quality 
Index (WQI), which considers various water quality variables such as dissolved oxygen (DO), biological oxygen 
demand (BOD), temperature, total suspended solids (TSS), turbidity, calcium, chemical oxygen demand (COD), 
and pH, is widely used as a primary metric for assessing the performance of water treatment plants. Several 
artificial intelligence (AI) models, including artificial neural network (ANN), Multilinear Regression (MLR), 
Radial Basis Function (RBF), and Support Vector Machine (SVM), have been employed successfully in water 
quality prediction and monitoring. In many studies, neural networks (NNs) have been utilized for monitoring 
and assessing surface water  quality12,13. Due to their complex chemical composition, dyes are resistant to light 
and oxidation, which contributes to their non-biodegradability. Consequently, the presence of dyes in water bod-
ies, even in small quantities, can have detrimental effects on the  environment14. One of the common ecological 
risks resulting from the inappropriate discharge of toxic dyes into water is the depletion of oxygen and hindered 
access to daylight. Methylene blue (MB) is an example of a hazardous dye. Various treatment methods, such as 
photochemical processes, biodegradation, electrochemical methods, synthetic coagulation, reverse osmosis, 
and adsorption, have been employed for azo color removal. In comparison to other physiochemical processes 
discussed in the literature, both human activities and the MB production process contribute to the proliferation 
of MB pollution in the  environment13,15.

A review study by Bosu et al.16 explores the use of clay nanocomposites (CNCs) in environmental remedia-
tion of contaminants like agrochemicals and dyes. They discussed the synthesis methods, efficacy parameters, 
and performance assessment methods, additionally discussed machine learning applications for performance 
modeling and the highest sorption uptake.

Consequently, various sources of fresh water, air, landfill leachate, dust particles and wastewater were all 
impacted by MB exposure. The ester link that binds MB polycarbonate and resin molecules in plastic food 
receptacles and bottles undergoes hydrolysis upon contact with water at room temperature, leading to the leakage 
of MB monomer. Dyes are extensively acknowledged as substances that have the potential to cause cancer and 
genetic mutations, resulting in a range of detrimental impacts on human well-being. The immediate exposure 
to methylene blue can give rise to profound health issues, encompassing impairment of the cognitive faculties, 
the nervous system, the renal system, the hepatic system, and the reproductive system. Methylene blue can 
also cause skin photosensitization, resulting in a bluish coloration. Inhalation of methylene blue can cause dif-
ficulty in breathing, while inadvertent ingestion may lead to a burning sensation, along with symptoms such as 
nausea, diarrhea, vomiting, and gastritis. The intricate molecular composition of methylene blue contributes to 
its resistance to light, oxidation, traditional biological and physical oxidation treatments, and amplifies its non-
biodegradable characteristics. The inappropriate discharge of methylene blue (MB) into natural bodies of water 
presents notable environmental hazards as it diminishes oxygen levels and hampers sunlight penetration, thus 
adversely impacting photosynthesis activity in aquatic  plankton17. The objective of this study is to minimize the 
costs associated with isolation and enhance the adsorbent capacity by fabricating a novel type of hybrid carbon 
nanotubes (CNTs) on a substrate of powdered activated carbon (PAC), resulting in the development of multi-
structured materials spanning from the nano to micro scales. The prepared hybrid material exhibits chemical 
homogeneity due to its primarily carbon composition, while also possessing a heterogeneous structure with 
multiscale particles of varying shapes.

Research objectives
This study aims to achieve the following obejctives:

1. To investigate the impacts of pH, the quantity of adsorbent used, and the duration of contact on the efficiency 
of adsorption and the experimental efficacy of methylene blue elimination, we conducted a study utilizing 
artificially engineered carbon nanotubes(CNTs)17.

2. To explore the kinetics and isotherm properties of various adsorbate-adsorbent systems under different 
circumstances.

3. To assess the feasibility of employing an artificial intelligence model to simulate the MB removal ability of 
synthetic carbon nanotubes.

4. To develop multiple prediction models for methylene blue elimination.

Methodology
The present study’s methodology is bifurcated into two segments. The initial segment pertains to the compila-
tion of data, with a specific focus on chemical endeavors. The second segments involves developing the artificial 
intelligence model. The flowchart (Fig. 1) illustrates the steps of the methodology of the study, starting from the 
manufacturing of CNTs and extending to the evaluation of AI models. Each step is discussed in detail in the 
following section.

Materials and chemicals
The study includes a list of reagents and chemicals utilized in this study, along with their suppliers, purity grade, 
and applications. The general properties of Methylene blue are presented in Table 1.
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Batch adsorption experiments
In order to ascertain the adsorption propensity of carbon nanotubes (CNTs) in the context of eliminating Meth-
ylene blue (MB) from water, a series of mass adsorption experiments were carried out. Three investigations were 
carried out, including batch tests with MB pollutants, kinetic studies, and isotherm studies. MB concentrations 
were measured at 665 nm utilizing a UV–visible spectrophotometer. The adsorption experiments were performed 
in 250 mL Erlenmeyer flasks with glass stoppers. The required amount of adsorbate (MB) was dissolved in a 
1000 mL volumetric flask, and deionized water was added to reach the mark, producing the stock solution of the 
adsorbate (MB). Batch adsorption tests were conducted on the carbon nanotubes (CNTs). Each adsorbent was 
added at a fixed dose of 10 mg per 50 mL of contaminant (50 mg/L). The mixture was stirred at a constant speed 
of 180 rpm for 120 min at room temperature, maintaining a pH of 6.0. After the period of adsorption, a specified 
quantity of the solution was extracted and subjected to centrifugation at a rate of 4000 revolutions per minute 
for a duration of 10 min. The content of the sorbate in the resulting liquid above the sediment was estimated by 
observing the wavelength at which the absorbance reached its maximum using a spectrophotometer that operates 
in the ultraviolet–visible range. Following this, the efficiency of removal was determined by utilizing Equation 
to calculate the percentage (1).

Figure 1.  Methodology flowchart.
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whereas  qe (mg/g), Using Equation, the equilibrium contact time adsorbate concentration was calculated 2.

where  Co,  Ct, and  Ce (mg/L) represent the initial liquid-phase adsorbate concentration, adsorbate concentra-
tion at time t (min), and adsorbate concentration at equilibrium time, respectively. While V  is presenting the 
volume of the solution. (in liters), w is presenting the mas for adsorbent, (in grams). Table 2 provides a list of 
the adsorption parameters.

The empirical observations were conformed to various isotherm frameworks, such as Langmuir, Freundlich, 
and Temkin, in order to ascertain the process of adsorption. The initial concentration of MB employed in the 
kinetic assessments was 50 mg/L, and this value was consistently upheld throughout the entirety of the investiga-
tions. Kinetic modeling was employed to predict the appropriate rate expressions for reaction mechanisms and 
estimate the rate of contaminant removal from aqueous effluents through sorption. Similar to batch equilibrium 
studies, kinetic parameters were evaluated, and different contact times were employed to assess the applicabil-
ity of the investigated kinetic  models18. The optimal kinetic models that best matched the experimental data 
were selected based on error functions, including the nonlinear chi-square  (X2) and the linear coefficient of 
determination(R2)19.

Artificial intelligence models
The methodology of the proposed study will be based on the application of artificial intelligence (AI) models. 
This study seeks to assess the efficacy of AI models through the comparison of the results obtained from two 
fundamental models, specifically the feedforward neural network and the recurrent neural network. The adsorp-
tion capacity of functionalized carbon nanotubes in aqueous solutions will be predicted using MATLAB’s NN 
Toolbox R2014a. The independent variables in the experiment are pH, absorbent dosage, and contact time. Arti-
ficial neural networks (ANNs) are advanced statistical techniques utilized in this study. The method employed 
in this research involved creating a logical model consisting of interconnected neurons in a computer network 
that emulates the functioning of the human nervous system. Neural networks are utilized for tackling complex 
test models involving tasks such as pattern recognition, classification, and  estimation20–23. There are two types 
of artificial neural networks (ANNs): supervised and unsupervised. Supervised ANNs are used for classifica-
tion tasks, while unsupervised ANNs are used for regression  tasks24,25. In the supervised model, the network is 
educated using annotated data to modify the optimal weight values across neurons, thus enabling it to produce 
the intended output value(s) upon encountering novel input data. In contrast, the unsupervised model does not 

(1)Removal(%) = (Co − Ct)/Co

(2)qe = (Co−Ce) V/w

Table 1.  The general characteristics and chemical composition of (Methylene blue)17.

Characteristics Values

Molecular formula C16H18 ClN3S

Molecular weight (g/mol) 319.8

λ max (nm) 665

Chemical structure

Space-filling model

Table 2.  Summary for parameters of MB on  CNTs17.

Factor Name units Low High

1 pH 2 11

2 Dose mg 5 20

3 Contact time min 10 120
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have a specific target output value when provided with input data. For this study, the supervised technique was 
employed. To produce multiple data sets for testing and training the ANN model, the prepared data were divided 
into specific percentages. However, the division was structured such that the majority of the data constituted 
the training set. The data was then rearranged within the spreadsheet and examined to ensure the absence of 
any pre-existing combinations of trends or inherent characteristics within the data. In order to analyze layer 
recurrence and feed-forward backpropagation (BP) in the RNN model, several factors were taken into account, 
including the number of neurons, layers, testing and training sets, and the choice of transfer function. The con-
nection weights, denoted as WI, link the input to the hidden layer.

For both the RNN and FFNN models, the weights and biases were initialized to zero and then modified 
iteratively using the stochastic gradient descent (SGD) optimizer, which employed a learning rate of 0.01.

Feedforward neural network
The feedforward neural network (FFNN) is widely recognized as one of the earliest and most influential algo-
rithms in the field of machine learning (ML). It is also known as a multilayer perceptron (MLP) or simply a 
neural network (NN). The FFNN structure comprises three tiers of neurons: the initial tier, one or more concealed 
tiers, and the terminal tier. Every neuron in a specific tier is linked to neurons in additional tiers via weighted 
connections (w). Neurons can be described as mathematical expressions that process information within the 
network. The input layer receives information in the form of input parameters, which are subsequently passed 
on to the next layer, called the hidden layer(s). The hidden layer(s) serves as a crucial component in connecting 
the input and output layers, facilitating the transformation between these two layers. It comprises multiple neu-
rons responsible for carrying out the necessary computations. Each neuron is linked to other neurons through 
weighted connections, which quantify the strength of the connections. The output layer represents the target 
of our study, as it is the layer from which we seek to make predictions. The overall process of the FFNN can be 
summarized as follows: Firstly, each input parameter in the input layer is multiplied by its corresponding weight, 
and then bias is added to each product obtained in the previous step. This helps adjust the inputs to more practi-
cal and meaningful ranges. Subsequently, activation functions are applied to map the features between the input 
and output layers. Finally, by aggregating the results obtained for each neuron in the previous steps, the desired 
outputs are achieved. Figure 2 provides a simple illustration of the model structure for the FFNN, showcasing 
its input and output variables.

Recurrent neural network
This subsection provides a basic overview of recurrent networks without delving into the specifics of the tech-
nique. For training, these networks often utilize a form of backpropagation. Many hydrologic systems demon-
strate geographical and temporal variability, requiring a dynamic estimation approach. Appropriately selected 
artificial neural networks can effectively simulate such dynamic interactions. In the simplest scenario, a node 
computes the cumulative weighted sum of its inputs after being processed by a nonlinear activation function. 
Figure 3 depicts the model structure of an RNN, including the input and output parameters.

Recurrent backpropagation is a neural network approach that can be employed with networks featuring 
arbitrary  connections26. Recurrent back-propagation is briefly described by The technique is briefly outlined 
 by27, including its mathematical properties and implementation details.

Performance criteria
Two competing neural networks, FFNN and RNN, were devised for the development of the ANN model in this 
investigation. Two neural network models, FFNN and RNN, were developed and utilized in this study to con-
struct the ANN model. The variables investigated in the experiment included adsorbent dosage, pH, and contact 
time. Multiple criteria were evaluated to assess the effectiveness of the FFNN and RNN models. The comparison 
between actual and simulated data was conducted to determine the performance of each model. The evaluation 
metrics used for assessing the simulation performance of the models included RE (relative error), MAPE (mean 
absolute percentage error), RMSE (root mean square error), MSE (mean square error) and RRMSE (relative 

Adsorbent dosege(g)

Input layer

hidden
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2

3

n

3

3

3

Contact time
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MB Removal (%)

Adsorption capacity

Figure 2.  FFNN model structure.
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root mean square error). The abbreviations RRMSE, MSE, RMSE, MAPE, and RE represent their respective 
evaluation metrics.

where one-quarter of the exact value of Da(t) Df (t) is equivalent to the computed value, SSres ¼ represents the 
sum of squares for regression, while SStot symbolizes the sum of the squares of residuals. RRMSE, MSE, RMSE, 
MAPE, and RE serve as the metrics utilized to assess the efficacy of the model. Multiple metrics are employed to 
ascertain the precision of the model. These metrics are derived through the comparison of disparities between 
the actual and predicted outcomes.

Findings and discussion
This section presents the findings of the study and provides a comprehensive discussion of the results.

FESEM and TEM analyses
This section is dedicated to the analysis of the synthesized CNTs’ characterization. The morphology of the syn-
thesized CNTs is depicted in Fig. 1 through the FESEM and TEM images. Upon microscopic analysis, it was 
found that the synthesized CNTs predominantly consisted of dense CNTs with tubular structures, as seen in 
Fig. 4a. The TEM image in Fig. 4b revealed CNTs that were well-graphitized and had an outer diameter ranging 
from 10 to 40 nm. It is noteworthy that these CNTs exhibited a closed tip, which was tilted from the vertical 
direction and originated from Ni particles. The Ni particles had an average diameter size of 70 nm. The presence 
of catalytic particle encapsulation at the tip, as shown in Fig. 4c, indicated that the growth of CNTs followed the 
tip growth mechanism. These observations differ from the findings of previous studies, which resulted in the 
production of a singular type of  CNF28.

Adsorption isotherms
As depicted in Fig. 5, the equilibrium adsorption data were assessed using the Langmuir, Freundlich, and Temkin 
models, as denoted by (a), (b), and (c) respectively. Table 3 illustrates the linearized equations and associated 
parameters for these models. Within the experimental conditions, the Freundlich isotherm indicates a favorable 
adsorption of MB onto CNT, as suggested by the values of the Freundlich constants (RL = 0.031 and n = 2.8). 
Conversely, the Langmuir isotherm exhibited the highest correlation coefficient and best fit (R2 = 0.989), with a 
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maximum adsorption capacity of 250 mg/g. This implies that monolayer MB adsorption transpires on the uni-
form surface of the prepared adsorbent. An analogous equilibrium outcome was observed in the adsorption of 
MB onto an economical bio-waste sorbent. The Langmuir model demonstrated the lowest standard deviation, 
signifying a close concurrence with the experimental findings. Thus, it can be contended that the Langmuir 
isotherm offers the most accurate depiction of MB adsorption on the surface of CNT.

Figure 4.  FESEM and TEM images of CNT.

Figure 5.  The isotherm graphs for MB adsorption on CNTs based on the data presented in the (a), (b), and (c) 
Langmuir, Freundlich, and Temkin  models29.

Table 3.  Equations describing the investigated isotherm models for MB adsorption on carbon  nanotubes28.

Model Equation Parameters Values

Langmuir Ce
qe

=
1

KLqm
+

(

1
qm

)

Ce

Qm 250.0

KL 0.645

R2 0.989

RL 0.031

S.D % 13.80

Freundlich lnqe = lnKf +
1
n lnCe

R2 0.855

Kf 85.038

N 2.832

S.D % 18.89

Temkin qe = B1lnKT + B1lnCe

S.D % 25.69

KT 2.695

B1 39.401

R2 0.859
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Adsorption kinetics
The data obtained from the experiment were subjected to fitting procedures according to different kinetic equa-
tions. The distinctive parameters of each of these models, including the linear coefficient of determination (R2) 
and non-linear Chi-square (X2), were consolidated and presented in Table 4. The illustrations of the analyzed 
dynamic models can be observed in Fig. 6. A considerable R2 value and a diminutive X2 value signify a com-
mendable concordance between the dynamic model and the empirical  information28. As stipulated in Table 4, the 
pseudo-second-order kinetic model offers the most proficient elucidation for the adsorption of MB onto CNT, 
as it showcases the utmost correlation coefficient. This is supported by the smallest R2 and X2 values (0.988 and 
5.75, respectively) compared to other models. Therefore, the MB adsorption onto the CNT adsorbent follows 
the pseudo-second-order kinetics model, which precisely describes the system’s behavior. This observation is 
consistent with previous findings on the MB adsorption kinetics of carbon dioxide  adsorbents17,29,30. The chemi-
cal sorption that takes place during the adsorption of MB onto CNT is considered to be the rate-controlling 
phase, as per the Pseudo-second order model. This sorption involves valence forces that arise from the sharing 
or exchanging of electrons between the pigment and the  adsorbent31–33. Additionally, Fig. 6c displays a relatively 
linear graph acquired through the regression analysis of qt against t from the regression analysis of qt versus t0.5, 
which yields an  R2 value of 0.914. However, the disparity between the line and the origin implies that external 
mass transfer could potentially play a significant role in the adsorption process, in addition to intraparticle 
 diffusion28,31. The observation is supported by the noteworthy intercepts witnessed in the linear segment of the 
graph (C = 101.79), which signifies a notable involvement of the CNT surface in the removal of MB and empha-
sizes the significance of diffusion in the boundary  layer33. A comparison of the utmost adsorption capacity of 
MB on different adsorbents is exhibited in Table 5.

Carbon nanotubes (CNTs) are considered to be suitable candidates as adsorbents for the pre-concentration 
and elimination of pollutants from large volumes of wastewater. The comprehensive findings derived from the 
investigation propose that the primary mechanism of adsorption for both cationic and anionic dyes on carbon 
nanomaterials (CNMs) is attributed to the interaction of the electron donors (such as highly polarizable graphene 

Table 4.  Linearized equations of investigated kinetic models for MB adsorption on activated carbon 
nanotubes  CNT31.

Model Equation Parameters Values

Pseudo-first-order ln
(

qe − qt
)

= lnqe − K1t

R2 0.884

X2 16.91

K 0.012

qe 51.79

Pseudo-Second-Oder t
qt

=
1

K2q2e
+

1
qe
t

R2 0.988

X2 5.75

K2 6.34 ×  10–4

qe 163.93

Intraparticle diffusion qt = Kdt
1
2 + C

R2 0.914

X2 7.1

Kd 4.08

C 101.79

qe (experimental) = 166.11 mg/g

Figure 6.  (a) Pseudo-first order, (b) Pseudo-second order, and (c) Intraparticle diffusion.
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sheets) with the electron acceptors (aromatic molecules) present in carbon nanomaterials. Furthermore, there is 
a strong occurrence of surface complexation between ions and functional groups that are present on the CNMs, 
as depicted in Fig. 7. Furthermore, the higher MB adsorption under basic condition may be attributed to the 
electrostatic attraction between the cationic species of MB with the negatively charged surfaces. The surface 
charge assessed by the point of zero charge  (pHPZC) is defined as the point where the zeta potential is zero. When 
pH <  pHPZC, the surface charge is positive, and when pH >  pHPZC, the surface charge is negative. In this case, the 
 pHPZC of CNTs determined by the pH drift method is about 8.0 (see Fig. 8).

FFNN modeling and performance
The data was modeled using artificial neural networks. The performance of each model was assessed using indica-
tors such as RRMSE, MSE, MAPE, RMSE, and RE%. These indicators were compared among the models, and the 
one with the lowest values was considered the optimal model. During the process of data validation, the number 
of neurons in the concealed layer was altered within the range of 3 to 12. The most effective number of neurons 
was ascertained by evaluating the minimal values of RRMSE, MSE, MAPE, RMSE, and RE%, in conjunction with 
the maximal value of R2. The outcomes of this particular selection process can be observed within Tables 6 and 7.

Table 5.  Comparison of the maximal adsorption capacity  (qm) for MB removal between CNT and other 
reported adsorbents.

Adsorbent qm (mg/g) References

CNM-PAC 250 The present work

CA-APT 207.48 34

MMT@C nanocomposites 194.2 35

Attapulgite / bentonite (50%) 168.63 36

Titanate nanotubes 133.33 33

Activated carbon/NiFe2O4 182.82 37

Powdered activated carbon 91.0 38

Oxidized MWCNTs 188.68 29

CNTs from acetylene cracking 35.4–64.7 39

Activated carbon/OPW 90.1 40

Luffa cylindrica fibers 49.0 41

Palygorskite 50.80 42

halloysite nanotubes (HNTs) 84.32 43

Figure 7.  Schematic illustration of the possible interaction between MWCNTs and methylene blue: (a) 
electrostatic attraction and (b) π–π stacking.
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The MSE value was observed to be 1081.72 for 3 neurons in the hidden layer. However, the MSE increased to 
1382.90 when 4 neurons were utilized. Interestingly, the application of 5 hidden neurons resulted in a significant 
decrease in the MSE to 14.54, indicating a more stable network. This trend is illustrated in Fig. 9R1. Subsequently, 
with the implementation of 6 hidden neurons, the MSE value sharply increased to 703.93. For 7 neurons, the MSE 
decreased to 32.86, but it significantly increased to 343.84 with 8 neurons in the hidden layer. However, when 
9 neurons were employed, the MSE decreased to 87.61. Finally, with the application of 10, 11, and 12 hidden 
neurons, the MSE values displayed a gradual increment to 271.53, 439.38, and 755.14, respectively.

Figure 8.  Determination of the point of zero charge of the CNTs by the pH drift.

Table 6.  The performance indicators for FFNN models to predict R1.

Model Neurons Structure RRMSE MSE MAPE RMSE RE% R2

M1 3 (3-3-1) 0.523 1081.72 39.94 32.88 125.10 0.0617

M2 4 (3-4-1) 0.463 1382.90 43.12 37.18 −61.87 0.0321

M3 5 (3-5-1) 0.045 14.54 3.37 3.81 −10.20 0.9658

M4 6 (3-6-1) 0.648 703.93 40.15 26.53 180.68 0.153

M5 7 (3-7-1) 0.081 32.86 4.417 5.73 23.12 0.9297

M6 8 (3-8-1) 0.458 343.84 24.99 18.54 117.81 0.2543

M7 9 (3-9-1) 0.152 87.61 9.06 9.36 43.67 0.7874

M8 10 (3-10-1) 0.226 271.53 18.74 16.47 −48.86 0.5474

M9 11 (3-11-1) 0.523 439.38 26.04 20.96 189.78 0.2038

M10 12 (3-12-1) 0.507 755.14 33.84 27.47 146.02 0.006

Table 7.  The performance indicators for FFNN models to predict R2.

Model Neurons Structure RRMSE MSE MAPE RMSE RE% R2

M1 3 (3-3-1) 0.152 647.05 11.09 25.43 41.21 0.776

M2 4 (3-4-1) 0.130 597.58 11.02 24.43 22.11 0.7862

M3 5 (3-5-1) 0.162 609.55 12.40 24.68 41.76 0.8065

M4 6 (3-6-1) 0.132 454.60 7.40 21.32 42.11 0.836

M5 7 (3-7-1) 0.303 3200.20 25.50 56.57 −51.48 0.6835

M6 8 (3-8-1) 0.391 4720.98 30.73 68.70 87.07 0.4568

M7 9 (3-9-1) 0.223 2574.11 13.42 50.73 60.94 0.1693

M8 10 (3-10-1) 0.185 1414.75 17.63 37.61 −28.24 0.6492

M9 11 (3-11-1) 0.173 839.35 14.55 28.97 34.37 0.7315

M10 12 (3-12-1) 0.660 10,770.53 46.69 103.78 196.60 0.2837
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The MSE value was found to be 647.05 for 3 neurons in the hidden layer. However, the MSE decreased to 
597.58 when 4 neurons were utilized. With the application of 5 hidden neurons, the MSE increased to 609.55. 
Interestingly, the implementation of 6 hidden neurons resulted in a lower MSE value of 454.60, indicating a more 
stable network. This is depicted in Fig. 9R2. However, when 7 and 8 hidden neurons were used, the MSE values 
significantly increased to 3200.20 and 4720.98, respectively. On the other hand, with 9 neurons in the hidden 
layer, the MSE decreased to 2574.11. Further improvement was observed with 10 neurons, resulting in an MSE 
of 1414.75, and with 11 neurons, resulting in an MSE of 839.35. However, with the application of 12 hidden 
neurons, the MSE value increased to 10,770.53.

The scatter plots comparing the FFNN data with the experimental data were based on selecting the model 
with the minimum MSE value and the maximum correlation coefficient  (R2). The model with the lowest MSE 
value of 14.54 and a high correlation coefficient  (R2) of 0.9658 is considered the best model for predicting R1, 
as depicted in Fig. 10R1.

Similarly, for predicting  R2, the model with the minimum MSE value of 454.60 and the maximum correlation 
coefficient (R2) of 0.836 is considered the best model. This model demonstrates a strong correlation between the 
actual and predicted values, as shown in Fig. 10R2.

Among the indicators used to assess the accuracy of the predicted values by the model, the relative error 
stands out. By conducting measurements and making comparisons between the anticipated values and the real 
values, one can assess the calculations in relation to their precision and accuracy. Accuracy denotes the degree 
to which the projected value corresponds with the actual value, whereas precision pertains to the uniformity 
of values within the set. The maximum relative error values for  R1 and  R2 can be identified from the results 
illustrated in Fig. 11.

RNN modeling and performance
The performance indicators were used to evaluate the best RNN models for predicting R1. Among these indica-
tors, RRMSE and MAPE had the highest values of 0.682 and 45.35, respectively, when 3 neurons were used in 
the hidden layer. On the other hand, the RMSE indicator had the highest value of 39.00 when 8 neurons were 
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Figure 9.  Show the correlation between the number of concealed layer neurons and the MSE obtained to 
predict (R2, R1).
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employed in the hidden layer. The largest value for the RE indicator was 193.69 when 5 neurons were utilized in 
the hidden layer. In contrast, the lowest values were observed for all indicators: RRMSE (0.143), MSE (51.63), 
MAPE (10.11), RMSE (7.18), and RE (43.39). These results are offered in Table 8.

The RRMSE indicator obtained the largest value of 0.458 when 9 neurons were used in the hidden layer. 
On the other hand, for the indicators MSE, MAPE, RMSE, and RE%, the highest values were observed when 5 
neurons were used: 7873.31, 39.54, 88.73, and 100.52, respectively. It is worth noting that all indicators achieved 
their lowest values with 8 neurons: RRMSE (0.062), MSE (172.08), MAPE (3.850), RMSE (13.11), and RE% 
(−18.49). These results are presented in Table 9.

The MSE value for the network with 3 neurons was found to be 1051.21. However, when the number of 
neurons increased to 4, the MSE significantly decreased to 193.06. On the other hand, with the application of 
5 hidden neurons, the MSE increased to 955.74. Subsequently, when 6 hidden neurons were used, the MSE 
decreased to 51.63, as depicted in Fig. 12R1. However, with the application of 7 and 8 hidden neurons, the MSE 
values increased to 1032.76 and 1521.05, respectively. For 9 hidden neurons, the MSE decreased to 586.399, 
while for 10 hidden neurons, it was 302.27. Furthermore, with 11 hidden neurons, the MSE decreased to 157.98. 
However, when 12 hidden neurons were utilized, the MSE increased to 625.33.

The MSE value for the network with 3 neurons was found to be 2438.08. However, when the number of neu-
rons increased to 4, the MSE sharply decreased to 365.43. On the other hand, with the application of 5 hidden 
neurons, the MSE increased to 7873.31. With the addition of another neuron in the hidden layer (6 neurons), 
the MSE decreased to 1053.30. However, when 7 hidden neurons were used, the MSE increased to 1271.06. 

Figure 10.  The correlation coefficient between the actual and the predicted values, presented for (R1, R2).
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Figure 11.  illustrates the model’s precision of R1, R2.

Table 8.  The performance indicators for RNN models to prediction of  R1.

Model Neurons Structure RRMSE MSE MAPE RMSE RE% R2

M1 3 (3–3-1) 0.682 1051.21 45.35 32.42 177.12 0.2499

M2 4 (3–4-1) 0.299 193.06 14.18 13.89 111.03 0.5468

M3 5 (3–5-1) 0.666 955.74 41.54 30.91 193.69 0.0037

M4 6 (3–6-1) 0.143 51.63 10.11 7.18 43.39 0.9002

M5 7 (3–7-1) 0.404 1032.76 36.02 32.13 −60.22 0.0109

M6 8 (3–8-1) 0.475 1521.05 44.61 39.00 −61.13 0.0863

M7 9 (3–9-1) 0.329 586.39 24.47 24.21 −62.5 0.4068

M8 10 (3–10-1) 0.404 302.27 25.20 17.38 100.28 0.2951

M9 11 (3–11-1) 0.237 157.98 18.10 12.56 47.54 0.734

M10 12 (3–12-1) 0.335 625.33 26.39 25.00 −65.75 0.2855
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Interestingly, with the application of 8 hidden neurons, the MSE sharply decreased to 172.08, as shown in 
Fig. 12R2. Furthermore, for 9 hidden neurons, the MSE increased to 5728.90. For 10 hidden neurons, the MSE 
was 275.67. Gradual increment in the MSE was observed when increasing to 11 hidden neurons (MSE = 1035.15). 
Finally, with the application of 12 hidden neurons, the result of the MSE increased to 1240.00.

The scatter plots compare the information obtained from the RNN with the experimental data. The best 
performance in terms of correlation coefficient  (R2) was achieved when the network structure had 6 hidden 
neurons in the hidden layer, resulting in an  R2 value of 0.9002. This model is considered the best for predicting 
R1, as shown in Fig. 13R1. Similarly, for predicting  R2, the best performance in terms of correlation coefficient 
 (R2) was observed with 8 neurons in the hidden layer, yielding an  R2 value of 0.9471. This model is considered 
a better fit for predicting  R2, as shown in Fig. 13R2.

Based on the results depicted in Fig. 14R1, the maximum error for R1 is found to be less than 43.39%. Simi-
larly, for R2, the maximum error is less than 18.49%, as revealed in Fig. 14R2. The initial experimentation for 

Table 9.  The performance indicators for RNN models to prediction of  R2.

Model Neurons Structure RRMSE MSE MAPE RMSE RE% R2

M1 3 (3-3-1) 0.203 2438.08 14.35 49.37 −45.49 0.2826

M2 4 (3-4-1) 0.111 365.43 7.53 19.11 27.36 0.875

M3 5 (3-5-1) 0.446 7873.31 39.54 88.73 100.52 0.1628

M4 6 (3-6-1) 0.162 1053.30 7.77 32.45 −47.32 0.6957

M5 7 (3-7-1) 0.113 1271.06 4.69 35.65 −42.35 0.5717

M6 8 (3-8-1) 0.062 172.08 3.85 13.11 −18.49 0.9471

M7 9 (3-9-1) 0.458 5728.90 35.59 75.68 123.67 0.2282

M8 10 (3-10-1) 0.103 275.67 7.43 16.60 27.22 0.9044

M9 11 (3-11-1) 0.188 1035.15 13.75 32.17 52.15 0.7893

M10 12 (3-12-1) 0.208 1240.00 14.60 35.21 53.50 0.6106
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Figure 12.  Show the correlation between the number of concealed layer neurons and the MSE obtained to 
predict (R1, R2).
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FFNN primarily aimed to investigate the number of hidden layer neurons in order to determine the optimal 
configuration for the network structure. Additionally, it aimed to identify scenarios where the network fails to 
make accurate predictions. The evaluation metrics MSE and RMSE achieved their lowest values of 14.54 and 3.81, 
respectively, while obtaining the highest correlation coefficient value of 0.9658 when the hidden layer contained 
5 neurons for R1. For R2, the lowest values of MSE and RMSE were observed as 454.60 and 21.32, respectively, 
along with the best correlation coefficient value of 0.836 when the hidden layer contained 6 neurons. These 
findings are presented in Table 10.

In summarizing the modeling performance of both FFNN and RNN models, it can be concluded that the 
model structure significantly impacts their performance. Fluctuations in error can be observed for both R1 and 
R2, which can be attributed to the complex relationship between input variables and output. The FFNN model 
demonstrated better performance with a smaller number of neurons in the hidden layer, while the RNN model 
required a slightly higher number of neurons to achieve optimal performance. Furthermore, it is evident that 
increasing the number of neurons negatively affected the performance of both models. This can be attributed 
to overparameterization and the distribution of weight values when using the SGD optimizer. To enhance the 

Figure 13.  The correlation coefficient between observed and predicted values of R1, R2.
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performance of both FFNN and RNN models, it is recommended to employ advanced optimizers instead of 
SGD optimizer. This can help overcome the computational challenges associated with SGD when increasing the 
number of neurons.

The second experiment followed a similar approach to the first one, but this time the RNN algorithm was 
utilized. The results of this experimentation, as presented in Table 11, generally yielded the lowest values for 
the indicators RMSE and MSE, namely 7.18 and 51.63, respectively. The best value of the correlation coefficient 
(0.9002) for  R1 was achieved when 6 neurons were applied in the network structure. Similarly, for  R2, the low-
est values for RMSE and MSE were 13.11 and 172.08, respectively, with the best correlation coefficient value of 
0.9471. These results were obtained when the network structure included 8 neurons.
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Figure 14.  demonstrates the accuracy of the  R1,  R2.

Table 10.  The performance indicators for FFNN models to prediction of R1. R2.

FFNN R1 R2

Model Structure MSE RMSE R2 MSE RMSE R2

M3 (3-3-1) 1081.72 32.88 0.061 647.05 25.43 0.776

M4 (3-4-1) 1382.90 37.18 0.032 597.58 24.43 0.786

M5 (3-5-1) 14.54 3.81 0.965 609.55 24.68 0.806

M6 (3-6-1) 703.93 26.53 0.153 454.60 21.32 0.836

M7 (3-7-1) 32.86 5.73 0.929 3200.20 56.57 0.683

M8 (3-8-1) 343.84 18.54 0.254 4720.98 68.70 0.456

M9 (3-9-1) 87.61 9.36 0.787 2574.11 50.73 0.169

M10 (3-10-1) 271.53 16.47 0.547 1414.75 37.61 0.649

M11 (3-11-1) 439.38 20.96 0.203 839.35 28.97 0.731

M12 (3-12-1) 755.14 27.47 0.006 10,770.5 103.78 0.283
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Conclusion
The purpose of this study was to evaluate the efficacy of Feedforward Neural Network (FFNN) and Recurrent 
Neural Network (RNN) architectures in forecasting Response 1 and Response 2 values. Various performance 
metrics including RRMSE, MSE, MAPE, RMSE, and RE% were employed to assess the performance of these 
models. The goal was to minimize these metrics and maximize  R2 values to identify the optimal model. The 
results indicated that increasing the number of neurons in the hidden layers had a positive impact on the model’s 
performance. This highlights the significance of selecting an appropriate neuron count for achieving accurate 
predictions. Moreover, the correlation coefficients between the actual data and predictions served as an indica-
tor of the success of each model. Notably, a model with a correlation coefficient of 0.9002 accurately predicted 
Response 1, while another model with a correlation coefficient of 0.9471 exhibited outstanding performance in 
forecasting Response 2. The FFNNs also demonstrated strong performance, achieving a high correlation coef-
ficient value of 0.9658 and a low MSE of 14.54. Therefore, based on this study, it can be concluded that both RNNs 
and FFNNs are highly capable in data prediction applications, particularly for anticipating Responses 1 and 2. 
Additionally, valuable insights regarding modeling methodologies have been provided. Once the AI models have 
demonstrated their high accuracy in prediction, it is recommended for future research to explore the potential of 
utilizing AI models for input optimization. This can involve identifying the best input variables that maximize the 
value of removal. Furthermore, future research can explore different neural network topologies or incorporate 
additional features into the analysis to further enhance the predictive performance.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon 
reasonable request.
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