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Performance enhancement 
in clustering cooperative spectrum 
sensing for cognitive radio network 
using metaheuristic algorithm
Vikas Srivastava 1,2, Parulpreet Singh 1*, Shubham Mahajan 3,4,5, Amit Kant Pandit 6, 
Ahmad M. Alshamrani 7 & Mohamed Abouhawwash 8,9

Spectrum sensing describes, whether the spectrum is occupied or empty. Main objective of cognitive 
radio network (CRN) is to increase probability of detection  (Pd) and reduce probability of error  (Pe) for 
energy consumption. To reduce energy consumption, probability of detection should be increased. 
In cooperative spectrum sensing (CSS), all secondary users (SU) transmit their data to fusion center 
(FC) for final measurement according to the status of primary user (PU). Cluster should be used to 
overcome this problem and improve performance. In the clustering technique, all SUs are grouped 
into clusters on the basis of their similarity. In cluster technique, SU transfers their data to cluster 
head (CH) and CH transfers their combined data to FC. This paper proposes the detection performance 
optimization of CRN with a machine learning-based metaheuristic algorithm using clustering CSS 
technique. This article presents a hybrid support vector machine (SVM) and Red Deer Algorithm 
(RDA) algorithm named Hybrid SVM–RDA to identify spectrum gaps. Algorithm proposed in this 
work outperforms the computational complexity, an issue reported with various conventional cluster 
techniques. The proposed algorithm increases the probability of detection (up to 99%) and decreases 
the probability of error (up to 1%) at different parameters.

The fast growth of wireless communications has resulted in many new sorts of services or applications for 
humans. The proliferation of various communication equipment causes the public frequency band to become 
increasingly  congested1.In the 5G communication system, the role of cognitive radio is essential. Cognitive 
radio senses and detects free channels and enhances the radio spectrum through opportunistic and dynamic 
access. CRN has two types of users: PU means licensed users, and SU means unlicensed  users2,3. SU senses radio 
spectrum and recognizes channels that primary licensed users do not occupy at a particular location and  time4. 
SUs can use spectrum holes to avoid interference with PU. Many spectrum sensing techniques have been used 
to detect the spectrum. Examples are energy detection, matched filter, Euclidean distance, autocorrelation, and 
cyclostationary feature  detection5–8. One of the essential technologies in the CR system based on channel predic-
tion and radio spectrum distribution is spectrum sensing. If spectrum detection accuracy is low, it may cause 
significant interference to primary network users, limiting the development and use of cognitive radio technology.

Sensing performance is affected by noise, multipath fading or shadowing, uncertainty, and spatial diversity. 
SU receiver sensitivity should be high enough to detect weak and noisy PU signals. For this, complex and expen-
sive hardware is required. Costly and complex hardware requirements are the  problem9. The solutions to these 
problems are CSS. CSS discusses the sensing efficiency of each SU. SUs share their information and take a joint 
decision that is beneficial for all SUs. Decision accuracy and sensing efficiency are increased by exploiting links 
among SUs in the same environmental  area10,11. Many CSS techniques have been proposed. First is the distributed 
CSS technique, in which every SU exchanges its results with sensing  spectrum12. The problem with this technique 
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is that it requires considerable processing time to get the final decision. Second, the centralized CSS technique 
was proposed to overcome this problem, requiring an FC to send and receive data to and from  SUs13 The FC is 
a key component of cognitive radio networks. By fusing the local sensing decisions of the SUs, the FC can make 
more accurate decisions about the presence or absence of PUs. This can help to improve the overall performance 
of the cognitive radio network. The FC in a cognitive radio network is a central node that collects local sensing 
decisions from SUs and fuses them to make a global decision about the presence or absence of a PU. The FC can 
be formulated in a number of ways, but the most common approach is to use a decision fusion rule. A decision 
fusion rule is a mathematical function that takes as input the local sensing decisions of the SUs and outputs a 
global decision. There are many different decision fusion rules like AND rules, OR rules, and Majority rules. 
The choice of decision fusion rule depends on the application. For example, if the application requires a very 
low false alarm rate, then the AND rule may be a good choice. If the application is more tolerant of false alarms, 
then the OR rule or the majority rule may be a better choice. In addition to the decision fusion rule, the FC can 
also use a number of other parameters to fuse the local sensing decisions of the SUs. These parameters include 
are weights and threshold. The choice of weights and threshold depends on the application and the desired per-
formance. In terms of detection rate, CSS is better than non-cooperative spectrum sensing. The disadvantages 
of CSS are extra power consumption, system overhead, more significant data exchange, and higher processing 
time. To overcome these problems, an advanced FC requires the processing of high-level computational signals. 
The channel state is determined based on sensing data forwarded by SUs to the FC. The requirement for an FC 
produces high computational capability. To overcome this problem, we use cluster-based spectrum sensing. In 
cluster, SUs transmit their data to cluster head. In the traditional energy detection method, SUs compare received 
signal results with the prior threshold and decide. If noise exists, the threshold is mismatched with the correct 
threshold, and the FC gets the wrong result. The author  in14 discussed CSS based on dual-threshold to remove 
the limitation of threshold mismatch in energy detection. Here the author used credibility metric for sensing the 
results of SUs. These reliable sensing results lie in the decision zone. So,  in14, the author discussed the dynamic 
dual-threshold CSS technique to enhance detection performance and remove sensing breakdown problems 
under noise power uncertainty. No detection occurs when energy falls between two thresholds, resulting in poor 
performance, such as a decrease  Pd and a longer spectrum sensing time. To solve these issues, adaptive double 
threshold CSS using historical energy detection was suggested to solve  them15. It is shown  in16 that calculates 
the optimum threshold level value for improving spectrum sensing performance while maintaining the lowest 
possible error probability. To minimize the combined impacts of noise uncertainty and asynchronous primary 
user occurrences within the sensing period of the SU in a heterogeneous cognitive network, it is necessary first 
to identify the SU’s sensing interval.

The  article17 attempts to minimize the combined impacts of noise uncertainty and asynchronous primary user 
occurrences within the SU’s sensing period in a heterogeneous cognitive network. So, as a result, an asymmetrical 
scale sampling criterion-based double threshold energy detection technique was suggested. A CRN suggested 
the greedy algorithm and particle swarm optimization to improve spectrum  sensing18.  In19, mathematical mod-
elling and critical assessment of detection probability for energy detection-based spectrum sensing at low SNR 
in an uncertain, noisy environment are presented. A mathematical model has been suggested to calculate two 
thresholds for reliable sensing when measured energy is smaller than noise power uncertainty.

Here, a cluster-based CSS scheme is proposed. It depends on the cluster technique to increase performance 
of CRNs by increasing the probability of detection and decreasing probability of error with help of a machine 
learning-based metaheuristic algorithm. The probability of error is a combination of the probability of missed 
detection and the probability of false alarm. Clustering is a process of dividing a large network into smaller 
groups, or clusters, in order to improve performance and scalability. In CRNs, clustering is often used to form 
a virtual backbone, which can help to reduce communication overhead and improve the overall efficiency of 
the network. There are a number of different ways to create clusters in CRNs. One common approach is to use a 
centralized algorithm, in which a central node is responsible for assigning nodes to clusters. Another approach 
is to use a distributed algorithm, in which nodes themselves are responsible for selecting their own CHs.

Once clusters have been created, they need to be maintained in order to ensure that they continue to func-
tion properly. This involves tasks such as keeping track of the cluster members, electing new CH if necessary, 
and resolving conflicts between clusters. If the CH of a cluster becomes unavailable, then the cluster needs to 
be re-elected. This can be done using a number of different methods, such as a round-robin election or a voting 
algorithm. The key considerations for cluster creation, maintenance, and re-election in CRN are performance, 
scalability, robustness and security. Benefits of clustering in CRNs are scalability, efficiency and robustness. This 
paper proposed a novel combination of SVM and the RDA.

The organization of this paper is as follows:  “Related work and problem formulation” Section provides 
related work regarding cluster-based CSS techniques and problem formulation. “Theoretical background” Section 
describes the theoretical foundation. “Proposed SVM–RDA Algorithm” Section describes conventional RDA 
and SVM algorithms. “Proposed methodology” Section describes methodology. “Results” Section discusses 
simulation results and compares the proposed technology with other technologies. “Performance analysis” Sec-
tion describe performance analysis. Finally, the conclusion is part of “Conclusion” Section.

Related work and problem formulation
One of most challenging issues facing CRN is spectrum  sensing20. An enormous amount of scientific inter-
est has been generated. The literature has developed several narrowband spectrum sensing methods based on 
matched filtering, energy  detection5, and cyclostationary feature  detection8. To address the inaccuracies of the 
sensing technique, multiple detection thresholds should be used. For example,21 suggested energy detection with 
2 thresholds to increase sensing decision accuracy. That is called CSS. CSS has two types, i.e., centralized and 
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distributed. Forwarding sensing information to an FC is called centralized spectrum  sensing21, and distributed 
spectrum sensing involves nodes sharing information among themselves to form a decentralized decision about 
spectrum  holes22. Multiband joint  detection23 and wavelet-based spectrum  sensing24 are techniques to improve 
the performance of narrowband techniques across a broad bandwidth. Several methods have been suggested 
to reduce the need for such a high sample rate. As a result, several narrowband sensors detect the wideband at 
the same time.

In CRN, illegal SU access free permitted channels while there is less interference with PU and other  SU25. The 
SUs are equipped with an unexpected and dynamic  environment26. Energy detection methodology is considered 
due to its simplicity and low computational cost. For detection of PU, use proper energy  threshold27. The author 
 of28 investigates the impact of energy detection, CSS on CRN, and threshold selection in a fading atmosphere. 
 Umebayashi29 presented a hierarchical CSS method using a dual-threshold energy detection mechanism. The 
 author30 investigates a device to devise communication that combines 2 secondary links, 1 primary link, and a 
relay network and discusses the cluster relay selection method for secondary and primary transmission. Unfor-
tunately, L1 norm minimization is unsuitable and mathematically expensive for many real-time applications. 
Threshold optimization matching pursuit (TOMP) is time-consuming due to the large number of projections. 
Cooperative sensing in a wireless environment reduces shadow and multipath fading  effects31.  In32, with help of 
TOMP algorithm, the sparse wideband spectrum signals are  reconstructed33,34. With use of wavelet-based edge 
detector, boundaries between spectrum bands are  estimated24 originally introduced  in35. Fast matching pursuit 
(FMP) is an accurate and fast threshold-based greedy recovery algorithm for compressed sensing. The main aim 
of fast matching pursuit is to reconstruct a sparse signal from samples collected at a much lower rate than the 
Nyquist rate, as accurate and fast as possible, and apply it in a wide range of CRN applications. Unlike related 
works, FMP exploits the spectrum signal in the wavelet packet domains in which the spectrum is sparser. The 
L1 norm wavelet packet (WP) is also a greedy recovery  algorithm36.

The author  in37 describes the formation of a cluster of secondary users based on artificial intelligence based 
on machine learning and compares performance in terms of energy efficiency. The author  in38 discussed CSS 
techniques with low complexity to get high cooperative gain and increase sensing results. The performance of 
existing techniques is good, and these techniques can remove uncertainty due to multipath fading and shadowing, 
and allowing for easy signal recovery with a satisfactory detection rate. The disadvantage is a low probability of 
detection and a high probability of error.  In39, multiple reporting channels (MRC) for cluster-based cooperative 
CRN are proposed, which allows for greater use of the reporting time frame by increasing the sensing time of 
SU, thus reducing the overall cost.

Wideband spectrum sensing is available on several channels with several frequency bands. For wideband 
spectrum sensing, compressive spectrum sensing has been  proposed40,41.  In36, the author discussed centralized 
CSS, where autocorrelation results of SU’s signal are transferred to an FC for decision making. At the FC, these 
signals are recovered by a different matching pursuit recovery algorithm. These matching pursuits’ algorithms 
introduce fast and accurate spectrum sensing techniques.

Attributes of cooperative sensing are sensing, transmission and  reporting42. When total number of SU 
increases in cooperative sensing, energy consumption also increases. So Probability of detection  (Pd) reduces 
and probability of error  (Pe) increases. To overcome this problem, SUs are grouped into different sets based on 
their sensing results. After that,  Pd increases and  Pe decreases at different parameters like signal to noise ratio, 
number of secondary users, and number of occupied bands. In earlier literature, SUs were grouped randomly 
or based on received signal strength. In earlier conventional clustering method, SU senses the result and CH 
is far from cluster and near to FC. Nodes in a cluster are close to each other but different from nodes of other 
clusters. Clustering is an unsupervised machine learning technique that groups data points together based on 
their similarity. Data points within the same cluster are more similar to each other than they are to data points in 
other clusters. So objective is to increase performance of clustering CSS with increase probability of detection and 
decrease probability of error by machine learning-based metaheuristic algorithm or learn heuristic algorithm. 
With learn heuristic algorithm, they select best SU from CRN, which saves energy consumption and partitions 
SUs into cluster. In spectrum sensing,  Pd should be high to reduce disturbance due to PU and  Pe should be low 
to increase spectrum utilization.

Theoretical background
In contrast to the cooperative SUs in the network, each SU conducts local spectrum sensing in isolation. The 
signal received by the jth SU is:

xj is signal received by jth SU, hj is channel gain between jth SU and PU, s is the signal of PU, and  ni is noise. 
Hypothesis  H1is existence of PU and hypothesis  H0 is absence of PU. An FC performs the final spectrum sensing 
and coordination amongst collaborating SUs for large clusters of SU. It may be accomplished via the use of two 
methods. In first approach, collaborating SUs run local spectrum sensing independently to find results from the 
sensors. Consequently, they send their local findings to the FC, making the ultimate judgments through reporting 
channels. FC integrates incoming data and determines whether a PU signal is present in the detected channel. 
FC communicates absolute judgment to all SUs. According to second approach, cooperating SUs transmit their 
captured data to FC, responsible for performing spectrum sensing.

Individual spectrum sensing performance is used to calculate CSS performance. The probability of detec-
tion  Pd, the probability of false alarm  Pfa, and the probability of missed detection  Pmd are the metrics that are 

(1)xj = hj ∗ s + niH1

(2)xj = njH0



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16827  | https://doi.org/10.1038/s41598-023-44032-7

www.nature.com/scientificreports/

being measured.  Pd is the probability of detection, which means an SU announces existence of a PU signal while 
spectrum is occupied. The probability of detection is

H1 is a binary hypothesis linked to the existence of the PU signal. Individual  Pfa, is defined as probability that 
SU reports existence of PU signal with clear spectrum. The probability of false alarm is.

H0 is a binary hypothesis linked to the absence of the PU signal.  Pmd is probability that SU announces absence 
of PU signal while PU occupies spectrum. The probability of missed detection is

Cd is the cooperative probability of detection.

Pd is the probability of detection, and L is number of cooperating SU. Probability of error  (Pe) is a combina-
tion of  Pmd and  Pfa.

CSS methods provide reasonable detection rates. However, CSS functions effectively with small SUs density. 
With a large density of cooperating SUs, these methods are complicated and slow to process. As a  result43–49, sug-
gested a clustering method based on CSS. SUs are clustered according to specific characteristics, (i) geographic 
region and (ii) distance between PU and SU. One SU serves as cluster head (CH) for each cluster, coordinating 
communications between its users and FC. At every cluster, SUs carry out their spectrum sensing individually 
and then transmit their findings to CH via a network of communication links. The findings are sent to the FC, 
where final decisions are made by the  CH45. Individual spectrum sensing clustering performance metrics are 
also used for  CSS47.Due to the analog to digital converter requirement, Nyquist sampling rate is not valuable for 
wideband spectrum sensing. So the author  in50 reviews wideband spectrum sensing based on Nyquist sampling.

SUs in conventional energy detecting technologies often make decisions by comparing incoming signals to 
a previous  threshold51.  H0 or  H1 is selected depending on whether received signal strength of PU is more than 
or less than  threshold52. However, when SNR is low, detection effectiveness of conventional energy detection 
methods suffers significantly. An adaptive dual threshold energy detector was suggested as a solution to the issue 
of noise uncertainty, and it was developed using the best single threshold value. The author  in53 describes CSS 
and non-CSS for full-duplex on a time-selective Nakagami-m fading channel.

Proposed SVM–RDA algorithm
Red deer algorithm
The RDA begins with a random population, similar to how other meta-heuristics work. A few of the finest RDs 
from among the population are chosen and designated as the ‘male RD,” while the other RDs are referred to as 
"hinds.’ First and foremost, the male RD must roar. They are classified into two categories based on roaring power 
(i.e., stags and commanders). “After that, stags and each harem’s commanders fight together to take control of 
their harem. Number of hinds in harems is proportional to commanders’ fighting and roaring skills. As a result, 
commanders form harems where they mate with large numbers of hinds. Other male stags pair with their clos-
est hinds regardless of the harem’s size restriction. However, we only accept solutions that are better observed 
throughout the fighting between commanders and stags; in a similar way. Afterwards, harems are created and 
distributed among the commanders according to their degree of power. While doing the exploration phase, this 
step aids the algorithm. As a result, a harem commander mates with α percentage of hinds from his harem and 
β percentage of hinds from another harem. All stags should mate with closest hind during breeding season, i.e. 
they should only consider the distance between them and the hind and not the harem’s restrictions. This stage 
considers both the exploration and exploitation phases at the same time”54.

Initialize red deer
Another critical stage of the RDA is the mating process, which results in the generation of RD progeny. The objec-
tive of enhancement is to develop a solution that is close to global in terms of problem’s variables. In machine 
learning, an array of RDA means red deer, and an array is:

To begin the process, we create an  Npop starting population. We assign  Nmale to a subset of the best RDs and 
 Nhind to the remainder  (Nhind =  Npop −  Nmale).

(3)Pd = Prob

(

H1

H1

)

(4)Pfa = Prob

(

H1

H0

)

(5)Pmd = Prob

(

H0

H1

)

(6)Cd = 1− (1− Pd)
L

(7)Pe = Pmd + Pfa

(8)Red Deer = [X1, X2, X3, . . . ;XNvar]
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Roaring male RD
The male RD is attempting to enhance their elegance by screaming at this step. As a result, the roaring process 
may succeed or fail, just as it does in nature. Interestingly, in this methodology, male RDs come out on top 
regarding the available solution set. If the objective functions of neighbors are better than male RD, replace 
them with the prior ones. Permit every male RD to change their position. To update the position of males, the 
following equation is proposed:

UB is upper bounds of search space, and LB is lower bounds of search space.  Maleold is present position of 
the male RD, and  malenew is its new position.  a1,  a2 and  a3 lie between 0 and 1.

Appoint γ percentage of the best male RDs as male commanders
There is a wide range of differences amongst male RDs in nature. Some of them are stronger, more enticing, or 
better at extending their area than the rest of them. In this way, RD is subdivided into commanders and stags, 
each serving a distinct purpose. The following formula is used to measure the number of commander males

NCom is a number of male commanders. Finally, stags are counted as follows:

NStag is the number of stags.

A battle between stags and male commanders
Assign stags to each commander at random. Two mathematical formulae for fighting are given by:

Suppose New1 and New2 are two newly produced solutions as a result of the fighting process. Com is com-
mander, and the stag is stag. During the fight, a commander and a stag pursue one another. The result is the 
creation of two new solutions. One gets to choose the winner, while the other is out of the running.

Make harems
The commander creates harems here. A male commander captured a harem of hinds, and male commanders’ strength 
determines harem size. To create the harems, we distribute hinds among commanders in a quantifiable way.

vn is the power of the nth commander. Vn is a normalized value
Overall, more hinds go to the commander because of his higher fitness value.

Mate harem’s commander with α percentage of hinds in his harem
Deer reproduce in the same way that other animals do. A commander does this, and the parents make up a 
certain amount of the hinds in his harem.

N .haremmale
n  is number of hinds from nth harem who mate with commander. Starting value of the RDA 

model’s parameter is α , which lies between 0 and 1. The formula of the matting process is:

Offs is a new solution. Value of c lies between 0 and 1.

Pairing a harem’s commander in another harem with β % of hinds
In this case, male commander mates with β % of the hinds in his harem. To extend his area, the commander 
attacked another harem. An initial parameter is β, which lies between 0 and 1. The commander’s harem has the 
following number of hinds:

N .haremmale
k  is number of female red deer (hinds) from the kth harem who mate with the commander.

(9)malenew =

{

maleold + a1X((UB− LB) ∗ a2)+ LBifa3 > 0.5

maleold − a1X((UB− LB) ∗ a2)+ LBifa3 < 0.5

(10)Ncom = round{γ∗Nmale}

(11)Nslag = Nmale − Ncom

(12)New1 =
Com+ Stag

2
+ b1 ∗ ((UB− LB) ∗ b2)+ LB)

(13)New2 =
Com+ Stag

2
− b1 ∗ ((UB− LB) ∗ b2)+ LB)

(14)Vn = vn −maxi{vi}

(15)N .haremmale
n = round{α.N .haremn}

(16)offs =
Com+Hind

2
+ (UB− LB) ∗ c

(17)N .haremmale
k = round{β.N .haremk}
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The stag pairs up with the closest hind
Each stag mates with its closest female red deer at this stage, and the male RD likes to track the female red deer 
during mating season. Without taking harem areas into account, this hind could be his favorites among all 
hinds. Stags were allowed to breed with hinds that were closest to them. People who are looking for a distance 
in j-dimension space should use the following formula to figure out which hind is closest:

di is the distance between ith hind and the stag.

Support vector machine
A supervised machine learning technique known as the SVM may be utilised for classification and regression 
problems. But it is mainly used in categorization. The SVM algorithm’s objective is to construct the optimal deci-
sion boundary or line that can divide n-dimensional space into classes so that subsequent data points may be 
conveniently placed in the correct category. A hyperplane denotes the optimum decision boundary. After that, 
categorization is carried out by locating the hyper-plane that sharply defines the two groups. Hyperplane posi-
tion and orientation are affected by support vectors that are near the hyperplane. Here, optimize the classifier’s 
margin using these vectors. The location of the hyperplane varies if the support vectors are removed. These are 
the aspects that assist us in developing our  SVM55.

Support vector machine-red deer algorithm
There are several meta-heuristic optimization algorithms developed that are inspired by nature. The efficiency of 
classification and prediction is improved by optimizing machine learning using the metaheuristic optimization 
 algorithms56–60. Efforts have been made to improve SVM performance, but very few of these efforts have focused 
on SVM convergence. This study proposes a novel SVM–RDA algorithm. Flowchart of the proposed method is 
shown in Fig. 2. Proposed algorithm primarily comprises 2 procedures: (i) internal parameter optimization and 
the external classification performance evaluation. During the internal parameter optimization procedure, the 
SVM parameters are dynamically adjusted by the RDA method. The proposed SVM–RDA divides entire algo-
rithm into two sub-sections. One section is demonstrated by SVM to initialize weight parameters and the other 
by RDA, in which the weight parameters are updated to find the best weight parameter value. The populations 
in RDA are randomly initialized. This proposed SVM–RDA included the benefits of a RDA for CH selection and 
energy-aware cluster formation. Machine learning, features extraction, regression, and classification operations 
are built on optimum parameters selection. In this paper, the RDA, a recent population-based meta-heuristic 
algorithm, is thoroughly reviewed. The RD algorithm combines the survival of the fittest principle from the 
evolutionary algorithms and the productivity and richness of heuristic search techniques.

The main steps conducted by the SVM–RDA are:

Step 1-Create a system model using PU, SU, and FC. Generate a full-duplex multiband signal.
Step 2-Check the availability of PUs in spectrums and collect FC, the energy value submitted by SUs in each 
round. Sense the availability of spectrum using the SVM algorithm.
Step 3-Initialise the parameters of SVM such as bias and weight vector (training).
Step 4: Make an SVM model that takes into account the energy level of the SU and the availability of the PU.
Step 5: Run a spectrum sensing test on the network after training it with a low starting weightand put it 
through a spectrum sensing test. If not correctly sense the spectrum and then update the weight of SVM 
using the RDO algorithm.
Step 6: Initialize the weight parameters of the red deer algorithm.
Step 7: Roar, male red deer.
Step 8: Select γ percentage of the best male red deer as the male commander.
Step 9: The battle between the male commander and the stag and the formation of haram.
Step 10: Mate commander with α and β % of hinds in another haram.
Step 11: Mating the stag with the nearest hind and calculating a new weight parameter.
Step 12: If this new weight parameter is not satisfied for spectrum sensing, then go to step 7.
Step 13: If end criteria are satisfied, then SVM classification is based on optimum weight value as testing set.
Step 14: It gives information about the spectrum that is available or not available.
Step 15: Assign SU to the available spectrum.

Proposed methodology
An FC and N SUs are considered in CSS, and the FC is in charge of all cooperative cognitive user channel allo-
cation and monitoring. The suggested system acquires the SU received signal via a learn heuristic algorithm, a 
mix of machine and metaheuristic algorithms. Each SU transmits its signal to the CH, which recovers signal and 
senses spectrum from the data of the SUs. The CH then forwards their local choices to an FC, making the final 
decision on spectrum occupancy. All cooperating SUs transmit signal to CH for spectrum sensing. CH enables 
each SU to conduct its spectrum detection in the shortest amount of time possible, and then each SU sends its 
findings to the FC. As a result, our suggested method has a high  Pd and a low  Pe at different SNR and occupied 
bands. The FC in a cognitive radio network can be formulated for machine learning based metaheuristic algo-
rithm in a number of ways. One approach is to use a decision fusion rule that is based on a machine learning 

(18)di =





�

j⊙J

�

stagj − hindij

�2
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algorithm. For example, a support vector machine (SVM) can be used to learn a decision boundary that separates 
the "busy" and "idle" states of the spectrum. The FC can then use this decision boundary to make a global deci-
sion about the presence or absence of a PU. Another approach is to use a metaheuristic algorithm to optimize 
the parameters of the fusion center. For example, RDA can be used to optimize the weights and threshold of 
the fusion center. The RDA can be used to search for a set of parameters that minimizes the false alarm rate and 
maximizes the detection rate.

System model
Consider a CRN with N SU and M PU and central FC that is subject to Rayleigh fading effect. Same set of SU 
is grouped in a cluster. The SNR of each SU measure is compared to the threshold. If evaluated SNR is less than 
predefined threshold of SNR, SU is not allowed for cooperative sensing. While SNR of SU is greater than thresh-
old, SU is selected for cooperative sensing.

Assume N SUs are chosen for a particular sensing phase. So number of SU in single cluster is D = N/K. N is 
no. of SU that makes cluster. As shown in Fig. 1, CH is one of the SUs from the cluster. Clustering CSS has two 
types: inter-cluster CSS and intra-cluster CSS. In intra cluster CSS, SU detects the presence of PU information 
and transmits this information to the corresponding CH, then CH makes a final decision related to that cluster 
and forwards the information to FC. In inter-cluster CSS, all CH transmit their information to the FC, and FC 
make final decision related to data of CH. Intra cluster CSS occurs between two clusters. Cluster decisions may 
not be accurate at times due to a weak PU received signal. So there is uncertainty about a single cluster decision. 
So, inter cluster CSS can overcome this problem in which combined decision is taken by different clusters. The 
CH of each cluster is selected using a machine learning-based metaheuristic algorithm among set of selected SU. 
Sort the best SUs into clusters. If there are more than one licensed channel, apply hierarchical clustering methods 
to group them into cluster! based on high similarity between  them61–64. These cluster can communicate outside 
of the cluster with the help of Improved Hierarchical Clustering Algorithm (IHCA).

Flowchart
A flowchart describing workflow of proposed SVM–RDA algorithm is shown in Fig. 2.

Pseudo code of SVM–RDA algorithm

1. Define the parameters:

– Number of clusters (K).
– Clustering algorithm (e.g., k-means, hierarchical clustering).
– SVM kernel (e.g., linear, radial basis function).
– SVM regularization parameter (C).
– SVM convergence criterion (e.g., maximum number of iterations).
–  Spectrum sensing threshold (T).

2. Collect the spectrum data from the radio frequency (RF) sensors.
3. Perform clustering on the spectrum data to identify the clusters:

Figure 1.  System model of clustering cooperative spectrum sensing.
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– Apply the chosen clustering algorithm to the spectrum data.
– Determine the cluster centers and assign each data point to the nearest cluster.

4. Initialize SVM for each cluster:

– For each cluster, create an SVM model with the chosen kernel and regularization parameter.

5. Train the SVM models:

–  For each cluster, use the data points belonging to that cluster to train the SVM model.
– Set the class labels of the data points in the cluster to be 1 (occupied) if the signal strength is above the 

threshold T, and -1 (unoccupied) otherwise.

6. Spectrum sensing:

• Collect real-time spectrum data from the RF sensors.

Figure 2.  Flow chart of SVM–RDA.
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• For each data point, determine which cluster it belongs to based on its proximity to the cluster centers.
•  Use the corresponding SVM model for that cluster to classify the data point as occupied or unoccupied.
•  If the majority of SVM models classify the data point as occupied, then consider the spectrum as occupied; 

otherwise, consider it unoccupied.

7.  Repeat the spectrum sensing process periodically to adapt to dynamic spectrum usage.
8. End.

RDA is a nature-inspired optimization algorithm inspired by the behavior of RD. It is used for feature selection 
and optimization. In the above pseudo-code, we are combining the RDA with SVM for spectrum sensing, but 
the specific implementation of the RDA might vary depending on the context and the problem you are trying 
to solve. Additionally, the choice of clustering algorithm, SVM parameters, and other settings may need to be 
tailored according to your specific application and data. RDA balance between exploration (global search) and 
exploitation (local search) of the solution space. Unlike traditional optimization methods, RDA often require 
minimal problem-specific knowledge or parameter  tuning65.

Ethical approval
None of the authors’ experimented with human subjects or animals during this research.

Result
The suggested algorithm’s performance is assessed using MATLAB R2014a on a 64-bit, core i5 processor, and 
4 GB RAM system. The range of SNR is varied from − 20 to 20 dB. p(H0) = p(H1) = 0.5 are the probabilities of 
the PU being idle or busy state. The signal bandwidth is 7.56 MHz, and it is broadcast on the 720 MHz central 
radio frequency. The simulation results have been employed to show the dependency of  Pd and  Pe of CRN on 
SNR and occupied band. The probability of error is a combination of the  Pfa and the  Pmd. Here, analysis of the 
 Pd and probability of error is based on SNR and the number of occupied bands using MATLAB. Improvements 
in the detection rates of CSS systems have shown acceptable results. However, they only need a small number 
of SUs to work effectively. This method is less effective because of the increased complexity and processing time 
required for many cooperating SUs. As a result, an FC solution based on CSS was suggested. SU is coordinated 
with the FC. As a result, SUs perform independent spectrum sensing and transmit their combined results to the 
FC for final decision. Figure 3 represents an FC-based CSS. Suppose that there is 1 PU and 90 SUs randomly 
dispersed in a square field with a length of 70 m. Here, PU uses the free-space path loss model. Figure 3 shows 
PU, SU, CH, and FC are distributed over 70 × 70 m.

The performance of SVM–RDA algorithm is compared with DIsCOVER, Fuzzy-ED, Traditional-ED, and 
dynamic dual-threshold. Figure 4 represents the  Pd versus  Pfa with noise uncertainty under -12 dB SNR values. 
Because SUs have a low Pfa, they can easily reach approved bands that aren’t being used. This means that more 
spectrum resources can be used by a lot. Decreasing  Pd means PU is disturbed by SUs. Under low noise uncer-
tainty, the detection performance of traditional-ED decreases. By comparing, the proposed algorithm can show 
strong performance in detection in the worst case. As a result, it can achieve a higher  Pd than other methods 
under same  Pfa. In our proposed method (SVM–RDA), the  Pd is significant, and the  Pe is less.

Figure 5 describes  Pd, versus number of cooperating SUs. As seen below, the  Pd rises directly proportional to 
the number of collaborating SUs. So, detection rate rises as number of SUs grows, and detection performance 
improves means  Pd will increase, that give good performance.

Figure 3.  shows the positions of the PU, SU, FC and CH.
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For various SUs, Fig. 6 depicts the  Pd related to the proposed algorithm (SVM–RDA) and dynamic dual-
threshold model as an SNR  function38. The SNR is between − 20 dB and 20 dB. As anticipated,  Pd rises with SNR. 
 Pd is less than 20% for SNR values below − 5 dB for 5 SUs and 10 SUs dynamic dual-threshold models. But,  Pd 
is less than 70% for SNR values below − 5 dB for 5 SUs and 10 SUs for our proposed model (SVM–RDA). At 
SNR = 5 dB, the  Pd is 100% for our proposed algorithm with 10 SU.

Figure 4.  Probability of detection vs Probability of error.

Figure 5.  Probability of detection versus no. of cooperative SU.

Figure 6.  Probability of detection versus SNR at different cluster size.
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Furthermore, in both instances,  Pd of 10 SUs is greater than  Pd of 5 SUs. The probability of detection related 
to dynamic dual-threshold with 5 SU and 10 SU becomes very close to 20 dB SNR, and for a proposed model, it 
is SNR = 13 dB. So, number of cooperating SUs grows and detection performance improves.

Figure 7 describes the  Pe related to proposed algorithm (SVM–RDA) and dynamic dual-threshold model as 
an SNR function for different numbers of SUs. The probability of error reduces as the SNR increases. In addition, 
the  Pe reduces as the number of cooperating SUs in cluster increases.  Pe is high for 5 SUs and low for 10 SUs at 
high SNR, which can be explained by more cooperating users sensing the spectrum, resulting in lower  Pe. Thus, 
CSS-based clustering scheme reduces  Pe by detecting unused spectrum with many users.

Performance analysis
Table 1 demonstrates each optimization algorithm’s effectiveness [SVM–RDA, dynamic dual-threshold, Discover, 
Fuzzy energy detection, traditional energy detection, L1 Normalization for wavelet packet, Fast matching pursuit 
(for wavelet and wavelet packet domain) [FMP-W, FMP-WP] and threshold optimization matching pursuit for 
wavelet domain (TOMP-W)] in terms of  Pd,  Pfa, and different parameter  values36,38.

At a − 5 dB SNR value, the proposed SVM–RDA has 46% and 9.8% more probability of detection than a 
dynamic dual-threshold for 5 SU and 10 SU, respectively. At 10 dB SNR, the proposed SVM–RDA has 24.24% and 
14% higher detection probability than the dynamic dual-threshold for 5 SU and 10 SU, respectively. At the − 5 dB 
SNR value, the proposed SVM–RDA has 34.1% and 50% less probability of error than a dynamic dual-threshold 
for 5 SU and 10 SU, respectively. At a 10 dB SNR value, the proposed SVM–RDA has 79.16% and 18% less prob-
ability of error than a dynamic dual-threshold for 5 SU and 10 SU, respectively.

Compared to the current PSO-GSA, dynamic dual-threshold, Discover, Fuzzy energy detection, traditional 
energy detection, proposed algorithm is effective in spectrum sensing. It has obtained optimum energy con-
sumption for spectrum sensing in CRN.

Figure 7.  Probability of error versus SNR at different cluster size.

Table 1.  Pd and  Pe values using SVM–RDA, dynamic threshold, for varying with SNR and occupied band.

Function Optimisation algorithm

Probability 
of detection 
and 
Probability 
of error

Pd Pe

Varying with SNR for 5 SU and 10 SU

SVM–RDA (10 SU) (at − 5 dB SNR) 0.7 0.32

SVM–RDA (10 SU) (at 10 dB SNR) 1 0.02

SVM–RDA (5 SU) (at − 5 dB SNR) 0.5 0.52

SVM–RDA (5 SU) (at − 5 dB SNR) 0.99 0.05

Dynamic Dual threshold (10 SU) (at − 5 dB SNR) 0.35 0.64

Dynamic Dual threshold (10 SU) (at 10 dB SNR) 0.86 0.1

Dynamic Dual threshold (5 SU) (at − 5 dB SNR) 0.21 0.79

Dynamic Dual threshold (5 SU) (at 10 dB SNR) 0.75 0.24



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16827  | https://doi.org/10.1038/s41598-023-44032-7

www.nature.com/scientificreports/

Conclusion
It has been suggested that CSS can improve the sensing performance of a system when many SUs are monitor-
ing the same band of interest. This article proposes a new approach to CSS using clustering. The SVM–RDA is 
a machine learning-based metaheuristic algorithm that is presented in this article. The combination of SVM 
and RDA has significantly improved the performance of SVM. The SVM–RDA has a good balance of local and 
global search capabilities. The outputs of the proposed technique are described and compared to the results of 
CSS with a mathematical model. The performance of the proposed technique is evaluated using the  Pd and  Pe 
metrics. The simulations show that cooperative radio spectrum sensing achieves excellent detection and low 
error rates. The proposed method has a  Pd of greater than 99% and a  Pfa false alarm probability of less than 1%, 
which is better than similar algorithms. The SVM–RDA approach outperforms current techniques in terms of 
spectrum sensing performance. The proposed method improves the performance of CRNs compared to the 
current approach due to its efficiency in spectrum sensing. The proposed model will be improved in future 
research by incorporating co-headship in the cluster instead of a single CH. This method distributes the burden 
of a single CH across multiple CHs. In the future, it is important to study how nodes in cognitive wireless sensor 
networks (CWSNs) work together to ensure detection performance and design more energy-efficient spectrum 
sensing technologies based on this.

Data availability
All data generated or analyzed during this study are included in this article.
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