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Stochastic co‑teaching for training 
neural networks with unknown 
levels of label noise
Bob D. de Vos 1, Gino E. Jansen 1,3* & Ivana Išgum 1,2,3

Label noise hampers supervised training of neural networks. However, data without label noise is 
often infeasible to attain, especially for medical tasks. Attaining high‑quality medical labels would 
require a pool of experts and their consensus reading, which would be extremely costly. Several 
methods have been proposed to mitigate the adverse effects of label noise during training. State‑of‑
the‑art methods use multiple networks that exploit different decision boundaries to identify label 
noise. Among the best performing methods is co‑teaching. However, co‑teaching comes with the 
requirement of knowing label noise a priori. Hence, we propose a co‑teaching method that does not 
require any prior knowledge about the level of label noise. We introduce stochasticity to select or 
reject training instances. We have extensively evaluated the method on synthetic experiments with 
extreme label noise levels and applied it to real‑world medical problems of ECG classification and 
cardiac MRI segmentation. Results show that the approach is robust to its hyperparameter choice and 
applies to various classification tasks with unknown levels of label noise.

Label noise in training data is detrimental to supervised training of deep neural  networks1,2. Although training 
data without label noise is desired for accurate training, it is often impractical or impossible to attain. Especially 
in a medical setting, attaining high-quality labels with minimal errors would require a pool of experts labeling the 
data and, subsequently, their consensus readings to address disagreements, which is impractical and extremely 
costly. Matters are exacerbated by deep neural networks requiring large and diverse sets of training data. Conse-
quently, overcoming the limitations of label noise when training neural networks is an active area of  research3–12.

The definition of label noise may seem obvious: an instance, e.g., an image, is either correctly labeled or 
not. It may imply that the definition of label noise is always evident. However, class can be arbitrarily defined, 
especially in real-world medical settings. For example, medical diagnoses are often not dichotomous but follow 
a spectrum. As a consequence, borderline cases are difficult to label and are typically subject to observer bias. 
Furthermore, the definition of label noise becomes increasingly elusive for region-level classification and pixel-
level classification. In such classification tasks, label noise not only refers to incorrectly labeled structures but may 
also refer to decisions subject to inter- and intra-observer variability. For example, in semantic segmentation, 
gross segmentations may be correct, but there is considerable variation in the definition of outlines of segmented 
structures, making label noise inherently present in semantic segmentation tasks.

Mitigating the negative impact of label noise in training deep neural networks can be achieved in multiple 
ways. For a comprehensive review of the methodology, we refer the reader to the paper by Song et al.13, and for 
an overview of applications in medical imaging we refer to Karimi et al.14. Briefly, methods focus on creating 
label noise invariant  networks15–18, noise-tolerant loss-functions19–23, or on data-cleaning or re-weighting12,24–39. 
However, these methods either buckle under extreme amounts of label noise, require a subset of data free from 
label noise, or focus on a single classification task such as image-level instance-classification. Generally applicable 
state-of-the-art methods use multiple networks that are applied in  sequence40 or in  parallel41–43. They all rely 
on the principle that, although neural networks can memorize label noise, they will prioritize learning general 
patterns first 1,2.

Sequential models follow a paradigm related to knowledge  distillation44,45. Jiang et al.40 proposed an approach 
where one network (MentorNet) is used to train another network (StudentNet). The goal of MentorNet is to learn 
a sample weighting scheme, i.e. a curriculum, that identifies correct and incorrect instances, and a StudentNet 
that learns the eventual task. The work is based on curriculum  learning46, but unlike curriculum learning, it does 
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not rely on a manually defined curriculum of easy and hard training instances, but it automatically defines one. 
However, the method relies on a small validation set of clean labels.

Methods that use networks trained in parallel focus on identifying label noise during training. Such methods 
are related to active  learning47,  boosting48, and  bootstrapping26, but instead of employing one network, they use 
multiple networks that exploit different decision boundaries, i.e. epistemic uncertainty, to mitigate the negative 
effects of label noise, i.e., aleatoric uncertainty. For example, Malach et al.41 proposed a method that employs 
two networks and during training only uses instances to update the networks when they disagree. A similar 
approach was recently proposed where a voting scheme is used to select and reject samples from three  networks43. 
However, these methods typically ignore the easy training instances, and may still include erroneously labeled 
training instances.

Han et al.42 overcome some of these limitations with co-teaching. In co-teaching, two models are indepen-
dently trained using the same instances from a mini-batch but with a different selection. Each model selects 
training instances for the other model, dependent on the loss. Specifically, instances are evaluated per model, 
and a pre-specified amount of instances with the highest losses are rejected, i.e., “forgotten”, thereby selecting 
only the instances with the lowest losses for training the other model. An update to this technique was proposed 
by Yu et al.49 showing that a combination of previous techniques will keep the decision boundaries of the net-
works from converging to each-other during  training41,42. Compared to conventional co-teaching, this approach 
achieved a marginal but consistent improvement in several classification experiments. However, a limitation 
of co-teaching is that a suboptimal forget-rate-parameter has a considerable negative impact on performance. 
Effective deployment of co-teaching requires a clean validation dataset, or at the very least knowledge about 
the amount of label noise. While this is not an issue in experiments where label noise is synthesized, it can be 
problematic in real-world tasks where a priori knowledge of label noise is hardly available and infeasible to attain.

We propose a method that introduces stochasticity to co-teaching for selection of correctly labeled and 
rejection of incorrectly labeled instances. Instead of using a predetermined forget-rate hyperparameter used 
in conventional co-teaching, we employ random selection thresholds on the posterior probability of training 
instances. This approach is loosely inspired by the effectiveness of random thresholds in extremely randomized 
 trees50. With this approach we overcome the shortcomings of conventional co-teaching that hamper utilization. 
Similarly to regular co-teaching, stochastic co-teaching relies on two deep neural models that learn from each 
other. Two models with identical architectures are trained on the same data. However, given that these models 
are independently initialized and independently optimized, they will develop distinct decision boundaries. A 
stochastically determined threshold will be used to include or exclude an instance to update the other network, 
based on ground-truth-label posterior probabilities. The benefit of stochastic co-teaching is that it does not 
require assumptions on the expected amount of label noise.

We present several key-contributions in this paper. First, we propose a stochastically chosen posterior prob-
ability threshold for selecting and rejecting training instances for co-teaching. Second, we present an in-depth 
evaluation of the hyperparameters of this stochastic co-teaching and show the method is robust to varying 
degrees of label noise. Third, we show that stochastic co-teaching additionally provides an estimate of the amount 
of label noise. Fourth, we show superior performance of stochastic co-teaching on benchmark experiments using 
MNIST, CIFAR-10 and CIFAR-100 data. Finally, using multi-label ECG classification and semantic segmentation 
of cardiac MRI, we show that the method is generic and readily applicable to real-world medical tasks.

Method: stochastic co‑teaching
Co-teaching revolves around two models that are jointly trained whereby each model selects the instances to 
train the other model. Since each model is initialized differently, each model learns a different decision boundary, 
resulting in different selection of training instances. Conventional co-teaching42 depends on a predefined forget 
rate, that should be tuned towards the label-noise rate, to reject a fixed number of instances based on their largest 
losses. This severely limits its application to tasks where the amount of label noise is known beforehand. Instead, 
we propose a stochastic approach that does not reject a fixed number of instances. We exploit the posterior prob-
abilities to select or reject training instances. Analogous to the lowest and highest losses used in conventional 
co-teaching, it is more likely for low-probability training instances to be labeled erroneously, than for instances 
with high posterior probability. However, it is unclear if the impact of this is more significant than other factors, 
such as low probabilities being associated with challenging (but correctly labeled) training instances. The ques-
tion remains which threshold will optimally separate incorrect from correct instances. Since we assume to have 
no prior knowledge about the exact ground truth, and therefore no knowledge about the noise-rate either, we 
do not want to exclude all low-probability examples. Hence, we use a stochastic approach: instances are selected 
based on a threshold randomly chosen from a beta distribution. Algorithm 1 shows pseudo-code of our method.
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Stochastic thresholds from a beta distribution
The thresholds that determine which instances are included are randomly chosen from a beta distribution. A 
beta distribution is defined on the interval [0, 1]:

where B is the beta function

which ensures a total probability of 1. The parameters α and β determine the characteristics of the distribution 
and should be a non-zero positive number. Table 1 lists detailed properties of different values for α and β . In 
our experiments, we chose parameters α,β ≥ 1 such that the distribution is uniform or uni-modal. Note that 
increasing values of α and β result in narrower distributions. Our experiments reveal that our approach benefits 
from α ≫ β , resulting in a narrow and left-tailed distribution. Thresholds randomly chosen from this distribution 
result in high values, but allow selecting lower thresholds, thereby offering chance to randomly select training 
instances with a low posterior probability that may represent difficult but not incorrect cases.

Numerical stability
The benefit of selecting and rejecting an arbitrary number of training instances from mini-batches may come 
at the cost of numerical instability. If all instances from a mini-batch would be rejected, an empty training set 
would be generated, which would cause numerical instability. To combat this, we employ two procedures. First, 
we clamp the randomly selected thresholds between 0.01 and 0.99. This ensures rejection of cases where the 
posterior probability is very low and it ensures selection of cases where the posterior probability is very high. 
Note that a threshold of 0 would result in inclusion of all instances and a threshold of 1 would result in rejection 
of all instances and thus an empty set. Second, we monitor the fraction of selected training instances and impose 
the following selection criterion: when < 10% of the instances in a mini-batch are selected, we generate a new 
selection threshold. When five consecutive thresholds do not satisfy the selection criterion, the mini-batch may 
exclusively consist of instances with label noise, and a new mini-batch is sampled.

Similarly  to42, we gradually introduce stochastic co-teaching via a schedule. The schedule introduces the 
selection threshold gradually

(1)Beta(α,β) : P(x|α,β) =
x
α−1(1− x)β−1

B(α,β)
,

(2)B(α,β) =

∫ 1

0

t
α−1(1− t)β−1

dt,

Table 1.  Characteristics of the Beta-distribution. It is defined with parameters α,β > 0 on the interval [0, 1].

Parameters Characteristics

α = β Symmetric

α,β < 1 Bi-modal

α,β > 1 Uni-modal, bell-shaped

α = β = 1 Uniform

α < β Positively skewed

α > β Negatively skewed

α < 1,β ≥ 1
mode at 0

α = 1,β > 1

α ≥ 1,β < 1
mode at 1

α > 1,β = 1
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with multiplication factor

where n is the current time-step, and n0 the time-delay to start the introduction gradually in δ steps.

Rejection rate
In contrast to conventional co-teaching, stochastic co-teaching can reject an arbitrary number of training 
instances. By calculating the rejection-rate (per epoch) training stability can be monitored. Instability appears 
when the majority of instances is rejected during training. Furthermore, assuming that only training instances 
with incorrect labels are rejected, the rejection-rate provides an estimate of label noise. Note that the rejection-
rate is equivalent to the term forget-rate used in conventional co-teaching, but for clarity we use the two terms 
distinctly.

Experiments and results
For a comparison with previously published methods we have performed baseline experiments with synthesized 
label noise in  MNIST51, CIFAR-1052, and CIFAR-10053 datasets. To generate label noise we employed two types 
of noise transition matrices visualized in Fig. 1. Bias noise, also referred to as label-flipping  noise42,49, mimics 
observer-bias by substituting a ground-truth label with the label of the neighboring class. Uniform noise is 
achieved by replacing a ground-truth label with randomly selected other label. For a direct comparison with 
related methods, experiments were performed similar to those  in17,26,42,54, i.e. experiments with high levels of label 
noise: bias noise with a noise rate of 45%, and uniform noise with noise rates of 50% and 20%. Note that experi-
ments with 45% bias noise are exceptionally difficult, because there is a marginal majority of correct samples; a 
noise rate of more than 50% bias noise would flip the majority of instances to the incorrect label.

We implemented two CNN architectures, a standard four-layer CNN for MNIST experiments, and a nine-
layer CNN for CIFAR experiments. The former model was specifically designed for MNIST and highly efficient 
and fast and the latter has been used for experiments with weak supervision and noisy  labels42,55 being less 
efficient and therefore slower. Table 2 lists the architectures of these networks.

Each network was trained in 200 epochs in mini-batches using stochastic gradient descent with Adam and a 
learning rate of 0.001. Regular co-teaching was performed using optimal settings reported  in42. In each experi-
ment, Stochastic Co-Teaching was introduced in ten epochs; in MNIST experiments without a delay and in 
CIFAR experiments with a delay of ten epochs. If not stated otherwise, the reported results and corresponding 
standard deviations are determined from the last ten epochs of each experiment.

All experiments were implemented using  PyTorch56 and were performed in accordance with relevant guide-
lines and regulation.

Hyperparameter stability
We propose a stochastic co-teaching approach, where a randomly chosen threshold is used to select or reject 
training instances based on posterior label-probability. We have performed extensive experiments to investigate 
the influence of hyperparameters α and β , i.e. the hyperparameters that determine different beta distributions 
to sample the instance-selection thresholds. Figure 2 shows the α and β parameters used in the experiments and 
their corresponding beta distributions. The probability densities show a wide variety of shapes, ranging from 
uniform, to parabolic, to bell-shaped distributions that are symmetric, or right- or left-tailed. Selection thresholds 
are stochastically sampled from these distributions and used in the experiments.

Figure 3 shows the effect of different hyperparameters on stochastic co-teaching. The different beta distri-
butions have different impact, but there are dominant hyperparameters pairs that achieve optimal results in 
nearly all experiments. In general, the distributions above the α = β diagonal (i.e. the right-tailed distributions) 
show suboptimal results and the distributions below the α = β diagonal (i.e. the left-tailed distributions) show 

Beta(α,β) · ηn

ηn = max(0,min(1, (n− n0)/δ)),

Figure 1.  Noise transition matrices used in synthetic experiments. Transition matrices are equivalent to 
confusion matrices but they visualize noise distribution among classes. ias noise, or label-flipping noise, mimics 
observer-bias by substituting the true label with the label of the neighboring class. Uniform noise is achieved 
by replacing the true label with a randomly selected other label. Note that bias noise should always be <50% to 
ensure that the majority of instances remain correct.
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Table 2.  The two network architectures used in the experiments. The MNIST model uses ReLU as activation 
function. The CIFAR model, as used  in42,57, uses batch-normalization after each convolution layer and uses a 
leaky-ReLU for activation with a negative slope of 0.01.

MNIST

28x28 input

32 * 3x3 conv.

64 * 3x3 conv.

2x2 max pooling

0.25 dropout

128 nodes

128 nodes

0.50 dropout

n classes

CIFAR10/CIFAR100

32x32 input

128 * 3x3 conv.

128 * 3x3 conv.

128 * 3x3 conv.

2x2 max pooling

0.25 dropout

256 * 3x3 conv.

256 * 3x3 conv.

256 * 3x3 conv.

2x2 max pooling

0.25 dropout

512 * 3x3 conv.

256 * 3x3 conv.

128 * 3x3 conv.

average pooling

n classes

Figure 2.  Variations for α and β used in experiments result in varying Beta probability distributions.
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optimal results. Right-tailed distributions sample lower thresholds on average, meaning an increased chance of 
selecting instances with low posterior probabilities. Left-tailed distributions sample higher thresholds on aver-
age, meaning an increased chance of rejecting instances with low posterior probabilities, leaving mainly high 
posterior probability instances.

Not all hyperparameters perform equally in all experiments. CIFAR-10 and CIFAR-100 image classification 
tasks are generally considered more challenging. In these applications, there are narrower sweet spots for hyper-
parameters. The left-tailed somewhat wider bell-shaped distributions appear to be optimal, with α = 32,β = 2 
as an optimum in all applications. Nevertheless, hyperparameters show relatively wide sweet spots, and different 
hyperparameters have limited impact on accuracy.

Rejection rate
Stochastic co-teaching can estimate the amount of label noise present in the data by monitoring the rejection 
rate. Figure 4 shows the development of the rejection rate during training in several applications. From the figure 
we observe that when the accuracy converges, the rejection rate converges towards the noise-rate. For CIFAR 
classification, the rejection rate overshoots for the more challenging tasks with higher noise rates. However, this 
faulty estimation can be inferred from deteriorating test or validation accuracy.

Figure 3.  Hyperparameter-sweep experiments showing accuracy of the average of last 10 epochs of 200 epochs. 
Figures (a)-(i) show the experiments that were performed, using corresponding variations of Beta-distributions 
shown in Fig. 2. Each colorbar is scaled to the specific range of results.
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Comparison with other methods
When the label noise-rate is known, conventional co-teaching outperforms competing methods on synthetic 
tasks, as was reported by Han et al.42. The results of our experiments are shown in Table 3. In all but one experi-
ment, stochastic co-teaching outperforms its conventional counterpart. The benefit of stochastic co-teaching is 
that the method allowed the same parameter setting ( α = 32 and β = 2 ) for all experiments. In addition, the 
rejection rate of stochastic co-teaching provides insight about the label noise rate.

In the replication of conventional co-teaching experiments, we achieved higher accuracies than reported by 
Han et al.42. To inspect the cause of this we studied the effect of the forget-rate hyperparameter and the effect of 
different random seeds used for parameter initialization and mini-batch sampling. For each experiment, we used 
forget rates between 5% and 95% in steps of 5%. We repeated each MNIST experiments ten times with different 
random initialization. For CIFAR experiments we repeated each experiment five times, because training this 
network was more time consuming (0.5 h vs. 3 h.).

The results, shown in Fig. 5, reveal that conventional co-teaching is sensitive to its forget-rate hyperparam-
eter. When the noise-rate is known and the forget-rate is chosen equal to it, a suboptimal accuracy is achieved, 
concurring with the findings reported by Han et al.42. Additionally, our results demonstrate that the impact of 
overestimating the forget-rate is larger than the impact of underestimating it, particularly for experiments with 
CIFAR-10 and CIFAR-100. Furthermore, different random seeds resulted in a large range of achieved accuracies, 
specifically in the experiments with MNIST data.

Real‑world medical tasks
To show applicability of our method to medical data we employed stochastic co-teaching for multi-label clas-
sification of medical signals, namely ECGs and for semantic segmentation of medical images, namely cardiac 
cine MRI. Like any other medical task, this data inherently contains label noise caused by, e.g., inter- and intra-
observer variability.

ECG classification
ECG is the primary tool for cardiologists to assess cardiac condition of patients. A typical ECG exam acquires 
10 seconds of data at 500 Hz using 12 leads. ECG characteristics are sometimes automatically detected, but an 
ECG is thereafter manually assessed for diagnosis. This manual interpretation task can be cumbersome and it is 
often non-trivial in the presence of  pathology58. Automatic interpretation of ECGs using deep neural networks 
is currently subject of intensive research, but training such networks is non-trivial, because ECG interpretation 
is complex due to label noise and observer bias.

In this experiment, we apply stochastic co-teaching to ECG classification using the PTB-XL  dataset59,60. A 
full description of the data can be found  in59. Briefly, the dataset consists of 21,837 clinically acquired 12-lead 
ECGs of 10 seconds (16 bit, 500 Hz) from 18,885 patients. The data are divided into ten folds of equal size on the 
patient-level. The 71 different features and diagnoses are aggregated into 5 different classes. The task is posed 
as non-exclusive multi-label classification in the following classes: normal, conduction disturbance, myocardial 

Figure 4.  Stochastic co-teaching provides an estimate of label noise rates, if both the rejection rate and the 
test/validation performance converge. Rejection rates and test accuracy are shown for image classification in 
(a) MNIST, (b) CIFAR-10, and (c) CIFAR-100 classification experiments. We used Beta-distributions with 
parameters α = 32 and β = 2 . The real noise-rates are provided as a dashed horizontal line in matching colors.
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infarction, hypertrophy, and ST/T changes. We divide the folds into training, validation, and test data as pro-
posed  in59. Only some of the training data labels were scrutinized by an expert and therefore the training data 
contains label noise. The validation and test data were checked by an expert and can be considered to contain 
minimal levels of label noise.

We have performed experiments using a Resnet adapted for time-series61, which is a top-scoring neural net-
work on the PTB-XL  data60. In Table 4, we present baseline results as reported in Strodthoff et al.60, our replica-
tion of the baseline method, and results of our proposed stochastic co-teaching. The results show similar AUCs 
between our implementation of the baseline method and stochastic co-teaching: 0.913 and 0.917, respectively, 
with overlapping confidence intervals. Note there is a difference between the results reported in Strodthoff et al. 
and our replication, likely caused by implementation differences. Our implementation of the trained baseline 
network achieved an accuracy of 0.618, with stochastic co-teaching the accuracy increases to >0.640 as is shown 
in Fig. 6a. Different hyperparameter settings show a similar pattern of performance as is shown in Fig. 3: higher 
performance is below the α = β diagonal.

Cardiac MRI segmentation
In this experiment we evaluate stochastic co-teaching for left ventricle segmentation in cardiac cine MRI images. 
These images are typically acquired to evaluate cardiac function. One of the primary indicators of cardiac func-
tion is the ejection fraction. Ejection fraction is the fraction of blood that leaves the heart when it contracts. It is 
calculated from annotations of the endocardium (the inner wall) of the left-ventricle at two time-points: at end-
diastole (maximum expansion) and end-systole (maximum contraction). While segmentation may seem trivial, 
the endocardium contains many papillary structures (i.e. protruding muscle tissue) that make the task prone 
to high intra- and inter-observer variability. Moreover, some of the papillary muscles are quite large and this 
may affect measurements if inconsistently segmented. However, segmenting papillary muscles is cumbersome.

In this experiment we use publicly available MRI images from the Sunnybrook  challenge62. The dataset 
consists of short-axis cardiac cine MRIs from 45 patients. Multiple slices are acquired that encompass the heart. 
Image resolution is 1.25× 1.25 mm in-plane. Each slice is a time-series of 24 frames visualizing one heart-beat. 
For this dataset three structures are annotated at end-diastole and end-systole. In approximately half of the 
images, the two largest papillary muscles have been annotated as a separate class. We have included those in 
our experiments.

We divided images into a training set (104 images) and a test set (49 images) on the patient level such that the 
test set does not contain images from patients in the training set. We mimic segmentation errors by assigning 
papillary muscles to the blood pool in 40% of the image slices in the training set. We did not modify the test-set. 
We performed segmentation experiments with a U-Net63, because this is one of the most used architectures for 
medical image segmentation. The network was trained in 1000 epochs using mini-batches containing 16 ran-
domly selected image patches of 128 × 128 pixels (original image size is 256 × 256). Other augmentations were 
random flipping and random rotations around all axes in steps of 90 degrees.

We implemented stochastic co-teaching to select or reject in individual voxels during training. By visualizing 
selection and rejection of voxels as masks, valuable qualitative information during training is revealed, such as 
areas with label errors and areas of observer variability, as is shown in Fig. 7. The selection masks ignore borders 
of segmentations. This is logical considering that the outlines can be quite arbitrary. Furthermore, the selection 
masks include inner voxels of papillary muscles when they are correctly labeled, and they exclude them when 
they are not labeled, meaning that stochastic co-teaching has effectively ignored incorrect labels. Note that a 
single threshold might be used to select pixel-instances in a mini-batch, but we chose to generate a selection 
threshold for each pixel. However, given that generating random parameters is time-consuming, we generate 
one 16 × 16-map per training image patch and tile these to the patch size.

Table 3.  Comparison of the accuracy achieved by stochastic co-teaching and previous methods. For a fair 
comparison we report the results from Han et al.42, as well as our replication of these experiments. We report 
the results of related methods Decoupling and MentorNet, and we report results of standardly trained neural 
networks (Standard), co-teaching (CoT), and stochastic co-teaching (StoCoT). For stochastic co-teaching 
we chose a left-tailed beta distribution with parameters α = 32 and β = 2 . Note that there is a performance 
increase in our CoT experiments in all but the CIFAR 100 experiments. Figure 5 shows that random 
initialization has an impact on an ill-tuned forget rate.

Dataset  Noise

Reported by Han et al.42 Our experiments

Standard Decoupling MentorNet CoT Standard CoT StoCoT

MNIST bias 45% 56.52± 0.55 58.03± 0.07 80.88± 4.45 87.63± 0.21 59.42± 1.41 93.49± 0.50 98.35 ± 0.09

MNIST uniform 50% 66.05± 0.61 81.15± 0.03 90.05± 0.30 91.32± 0.06 81.27± 0.29 96.63± 0.09 98.62 ± 0.06

MNIST uniform 20% 94.05± 0.16 95.70± 0.02 96.70± 0.22 97.25± 0.03 96.08± 0.23 98.32± 0.07 99.13 ± 0.08

CIFAR10 bias 45% 49.50± 0.42 48.80± 0.04 58.14± 0.38 72.62± 0.15 50.56± 0.86 77.97± 0.38 87.69 ± 0.30

CIFAR10 uniform 50% 48.87± 0.52 51.49± 0.08 71.10± 0.48 74.02± 0.04 50.17± 0.99 81.65± 0.19 85.79 ± 0.28

CIFAR10 uniform 20% 76.25± 0.28 80.44± 0.05 80.76± 0.36 82.32± 0.07 77.72± 0.48 87.72± 0.18 90.46 ± 0.20

CIFAR100 bias 45% 31.99± 0.64 26.05± 0.03 31.60± 0.51 34.81± 0.07 26.62± 0.37 27.68± 0.26 37.53 ± 0.43

CIFAR100 uniform 50% 25.21± 0.64 25.80± 0.04 39.00± 1.00 41.37 ± 0.08 19.60± 0.54 36.77± 0.27 37.95± 0.28

CIFAR100 uniform 20% 47.55± 0.47 44.52± 0.04 52.13± 0.40 54.23 ± 0.08 38.86± 0.52 47.99± 0.21 53.16± 0.26
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Figure 8 shows several qualitative examples of a U-Net trained with and without stochastic co-teaching. The 
results show that the method using stochastic co-teaching achieves a more consistent output. The method more 
consistently segments the papillary muscles and the results also show that it outlines the myocardium more 
consistently. Quantitative results, listed in Table 5, demonstrate that Dice and distance metrics improve when 
stochastic co-teaching is applied compared to standard training. Finally, Fig. 6b demonstrates the robustness 
of the stochastic co-teaching towards this segmentation task with varying settings of hyperparameters α and β.

Discussion
Stochastic co-teaching employs two neural networks that are jointly trained. Each network selects mini-batch 
examples for the other using a stochastically determined threshold on the posterior probability. This approach 
does not require a priori knowledge about label noise, and as a result it eliminates the need for meticulous 
parameter tuning, which is especially useful in real-world tasks. Stochastic co-teaching achieves excellent results 
and outperforms state-of-the-art approaches on a variety of classification tasks with extreme and unknown 
levels of label noise. It is robust to varying levels of label noise and it can be used to estimate the level of label 
noise by monitoring the rejection rate. Furthermore, we have demonstrated the applicability of our method in 
two real-world medical tasks: classification of ECG signals, and semantic segmentation of cardiac MRI images.

Figure 5.  Accuracy of conventional co-teaching using different settings for the forget-rate hyperparameter. 
The solid line shows average accuracy and dashed lines show the range of accuracies, calculated for 10 
experiments per forget rate for MNIST, and 5 experiments per forget-rate for CIFAR 10 and CIFAR 100. The 
results demonstrate the impact of an ill-chosen forget-rate and different random initializations of conventional 
co-teaching.
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Incorrect estimation of the noise rate may be detrimental to model performance. As Fig. 4 shows, the noise 
rate is incorrectly estimated for the uniform 50%, and biased 45% noise cases in the CIFAR experiments. This can 
be caused by the complexity of the problem, and by poorly chosen α and β . However, we have demonstrated that 
with a priori unknown noise rates, stochastic co-teaching requires relatively little hyperparameter tuning com-
pared to conventional co-teaching. While conventional co-teaching requires extensive tuning of the forget rate, 
in stochastic co-teaching, the forget rate is automatically determined. The only hyperparameters for stochastic 
co-teaching pertain to the shape of the sampling distribution, defined by α and β . As the hyperparameter grids 
shown in Fig. 3 suggest, the performance is consistent for a wide range of settings and problems. Similarly, the 
results from cardiac MRI segmentation problem demonstrate relatively homogeneous performance across the 
different hyperparameter settings. The ECG classification results on the PTB-XL dataset show a slightly lower 
fault tolerance with respect to choosing α and β , but they agree with the general trend that it is beneficial to 
choose α > β , as observed in MNIST and CIFAR. We note that other distributions could potentially be chosen 
for threshold sampling: the only requirement is that the distribution is defined exclusively on [0, 1], and that it is 
unimodal, which the beta distribution satisfies for α,β > 1 . Additionally, left-tailed distributions are preferred, 
like the β-distribution for α > β . However, these results may be specific to experiments performed with softmax 
outputs and cross-entropy. Since different losses are differently  calibrated64, they might show other responses 
to stochastic co-teaching.

Replication of baseline experiments with conventional co-teaching resulted in higher accuracies than reported 
by Han et al.42. Differences in results may be ascribed to differences in random initialization. Namely, in our 
experiments we have shown that different random initialization of conventional co-teaching resulted in highly 
variable outcomes. In cases of extreme label noise, mini-batches might be sampled consisting predominantly 
of training-instances with label noise. Such situations are difficult for conventional co-teaching where a prede-
termined number of training instances is selected. Stochastic co-teaching handles these situations better since 
it can reject an arbitrary amount of label noise. However, we have observed that mini-batches containing only 
instances with label noise led to numerical instability when all instances were rejected. We have addressed this 
by generating new selection thresholds or by resampling new mini-batches. The stochasticity has an additional 
effect of enforcing different decision boundaries to each of the models during training, and although we did not 

Table 4.  Macro-averaged AUCs for super-diagnosis (i.e. course-grained) classification of ECG from the the 
PTB-XL dataset. Following Strodthoff et al.60, we indicate the 95% confidence interval between brackets by 
bootstrapping the test set. The first row shows baseline results from Strodthoff et al.60, the second row shows 
our replication of the experiment, and the last row shows the result from the experiment with stochastic 
co-teaching. For Stochastic Co-Teaching, hyperparameter settings α = 32 , and β = 2 were used.

AUC 

Reported by Strodthoff et al.60 – Baseline 0.930 (0.005)

Our experiments – Baseline 0.913 (0.032)

StoCoT 0.917 (0.029)

Figure 6.  Performance of proposed stochastic co-teaching on real-world medical tasks for different 
hyperparameter settings of α (horizontal axis) and β (vertical axis): (a) Accuracies for Multi-label ECG 
classification (PTB-XL). (b) Dice scores for left ventricle myocardium segmentation in cardiac MRI (CMR). The 
baseline ECG classification network trained without stochastic co-teaching achieved an accuracy of 0.618, and 
the baseline CMR segmentation network a Dice score of 0.71.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16875  | https://doi.org/10.1038/s41598-023-43864-7

www.nature.com/scientificreports/

study the effects, we presume that stochastic co-teaching allows training of models that were initialized identi-
cally, meaning that stochastic co-teaching might be readily applicable to pre-trained networks.

Similar to conventional co-teaching, we employed a schedule that introduces the selection threshold of 
stochastic co-teaching. For complex tasks we found that a delay of a few several epochs benefited performance. 
This delay effectively utilizes the tendency of deep neural networks to learn general patterns  first1,2. While we 
did not perform an in-depth study of the effect of different schedules on different classification tasks, network 
architectures, or loss functions, we observed a limited effect in preliminary experiments.

Stochastic co-teaching in the PTB-XL ECG classification task leads to improved accuracy, whereas the AUC 
remains similar to the baseline. This may indicate that the improvement from stochastic co-teaching is caused by 
improved classification of the majority classes. The difference between our baseline experiments on the PTB-XL 
ECG classification dataset and those from Strodthoff et al.60 may be attributed to differences in randomness-based 
operations, such as weight initialization and data sampling.

A drawback of co-teaching is that training with two networks imposes increased computational demands 
of approximately twice the amount of compute and memory compared to supervised training. A more efficient 
alternative is bootstrapping, which uses just one network for selection or rejection of  samples26. Bootstrapping 
handles label noise well, but it is outperformed by co-teaching42. This indicates that it is beneficial to train with 
two predictors, each with its own decision boundaries. An alternative method including more than two net-
works was also  proposed43. However, such an approach increasingly impacts hardware demands, especially for 
semantic segmentation tasks, which require high resolution outputs. Alternative directions might be in training 
Bayesian networks, and synthetically increasing the number of networks. However, each of the methods would 
require non-trivial voting schemes. Furthermore, consensus voting and selecting instances for training renders 
the method more similar to  Decoupling41 where the error propagation is strongly coupled among  networks49, 
contrasting with the core benefits of co-teaching where networks are decoupled and thus decision boundaries 
can develop individually.

Although we only evaluated stochastic co-teaching for classification tasks using the cross-entropy loss, other 
losses could be applied. However, threshold selection should be re-evaluated, because the effect of hyperparam-
eters might be different than in our experiments. Additionally, co-teaching could be recasted for application 
in regression problems. The decision of selection and rejection should then be a distance metric, e.g. an L1 or 

Figure 7.  Three cardiac MRI training images (first column), with the original reference labels (second column), 
and with synthetic label noise applied (third column). The fourth to sixth columns show different selection 
masks generated by stochastic co-teaching. Left ventricle myocardium is indicated in yellow, and the blood 
pool in red. The selection masks indicate selection (white) or rejection (black) of pixels for training. Top row: A 
training example with annotated papillary muscles, hence no synthetic label noise applied. Note that pixels are 
rejected exclusively along segment borders, while the pixels in the center of the papillary muscles are selected. 
Middle row and bottom row: Two training examples with synthetic label noise. Synthetic label noise is added 
by including pixels representing papillary muscle in the blood pool. Note that for all selection maps in the 
middle and bottom row, pixels representing papillary muscles are rejected for training. These examples show 
that the method rejects the noisily labeled papillary muscles, while preventing the overfitting of correctly labeled 
papillary muscles in the first example. See Table 5 for quantitative results.
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Figure 8.  Examples showing the segmentation performance on the test-set of a standard CNN and the similar 
CNN with stochastic co-teaching. Co-teaching shows more sensitivity towards segmentation of papillary 
muscles, even though their segmentations were excluded in 45% of training data. See Table 5 for quantitative 
results.

Table 5.  Cardiac MRI segmentation of the left ventricle blood pool and myocardium. Compared with a 
standardly trained U-Net (Standard), stochastic co-teaching (StoCoT) results in higher Dice and lower 
distance metrics owing to its robustness against label noise. Stars indicate p-values determined by one-sided 
Wilcoxon signed-rank tests (* for p ≤ 0.01 , and ** for p ≤ 0.001 ). See Fig. 5 for qualitative results.

Blood Pool Myocardium

(a) Dice coefficient

Standard 0.89 (0.13) 0.71 (0.13)

StoCoT 0.91 (0.04)* 0.73 (0.09)

(b) Hausdorff distance

Standard 9.05 (5.06) 15.62 (5.78)

StoCoT 7.46 (3.89)** 14.53 (3.76)

(c) Mean surface distance

Standard 1.61 (1.13) 1.88 (1.45)

StoCoT 1.35 (0.45)** 1.59 (0.61)
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L2 norm and the inclusion threshold should be sampled from an unbounded distribution, e.g. a Gamma or a 
Chi-squared distribution.

Conclusion
We have presented a method for stochastic co-teaching. The method employs training of two networks where 
each network selects training instances for the other network. Training instances are selected based on posterior 
probability of each network and a selection threshold sampled from a left-tailed beta distribution. The method 
does not require any a-priori knowledge about the level of label noise and it can be applied to a variety of clas-
sification problems including medical tasks such as classification of medical signals and semantic segmentation 
of medical images.

Data availability
This study utilized five publicly available datasets: MNIST, CIFAR-10, CIFAR-100, Sunnybrook Cardiac Data, 
and the PTB-XL dataset. The  MNIST51 database of handwritten digits can be accessed from Yann LeCun’s website 
(http:// yann. lecun. com/ exdb/ mnist/). The CIFAR-1052 and CIFAR-10053 datasets are accessible from the website 
of the Canadian Institute For Advanced Research (https:// www. cs. toron to. edu/ ~kriz/ cifar. html). The Sunnybrook 
Cardiac  Data62 for cardiac MR left ventricle segmentation can be accessed from the Cardiac Atlas Project website 
(http:// www. cardi acatl as. org/ studi es/ sunny brook- cardi ac- data/). The PTB-XL electrocardiography  dataset59 is 
accessible from the PhysioNet website (https:// physi onet. org/ conte nt/ ptb- xl/1. 0.1/).
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