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Asthma is a “common chronic disorder that affects the lungs causing variable and recurring symptoms 
like repeated episodes of wheezing, breathlessness, chest tightness and underlying inflammation. 
The interaction of these features of asthma determines the clinical manifestations and severity of 
asthma and the response to treatment" [cited from: National Heart, Lung, and Blood Institute. Expert 
Panel 3 Report. Guidelines for the Diagnosis and Management of Asthma 2007 (EPR‑3). Available at: 
https:// www. ncbi. nlm. nih. gov/ books/ NBK72 32/ (accessed on January 3, 2023)]. As per the WHO, 262 
million people were affected by asthma in 2019 that leads to 455,000 deaths (https:// www. who. int/ 
news‑ room/ fact‑ sheets/ detail/ asthma). In this current study, our aim was to evaluate thousands of 
scientific documents and asthma associated omics datasets to identify the most crucial therapeutic 
target for experimental validation. We leveraged the proprietary tool  Ontosight® Discover to annotate 
asthma associated genes and proteins. Additionally, we also collected and evaluated asthma related 
patient datasets through bioinformatics and machine learning based approaches to identify most 
suitable targets. Identified targets were further evaluated based on the various biological parameters 
to scrutinize their candidature for the ideal therapeutic target. We identified 7237 molecular targets 
from published scientific documents, 2932 targets from genomic structured databases and 7690 
dysregulated genes from the transcriptomics and 560 targets from genomics mutational analysis. In 
total, 18,419 targets from all the desperate sources were analyzed and evaluated though our approach 
to identify most promising targets in asthma. Our study revealed IL‑13 as one of the most important 
targets for asthma with approved drugs on the market currently. TNF, VEGFA and IL‑18 were the other 
top targets identified to be explored for therapeutic benefit in asthma but need further clinical testing. 
HMOX1, ITGAM, DDX58, SFTPD and ADAM17 were the top novel targets identified for asthma which 
needs to be validated experimentally.

Asthma is a chronic disease characterized by recurrent and variable symptoms including episodes of wheeze, 
cough, chest tightness, dyspnea and backed by variable airflow limitation, airway inflammation and airway 
hyper-responsiveness1. The current rationale for asthma pharmacotherapy focuses on reducing the symptoms that 
result from airway obstruction and  inflammation2, Inhaled  corticosteroids2,3, leukotriene  modifiers4,5 combina-
tion inhalers and theophylline are some of the current medications approved for this purpose by the regulatory 
authorities. Steroidal inhalers help reduce asthma exacerbation when taken regularly, however; all these medi-
cations only relieve asthma symptoms and cannot cure the disease as the high minimal inflammation-causing 
variable airflow obstruction or limitation is still irreversible. Long-term requirements of inhaled corticosteroids 
create adherence issues which contribute towards a high level of uncontrolled asthmatics. More than 60% of 
current asthmatics were found to be uncontrolled in the United States  alone6 and the situation is even worse in 
LMICs)7–10.

Despite the availability of high-quality clinical and preclinical data, a number of promising drugs have failed 
in the late clinical stages leading to a gap between basic and clinical research output and the patients’ need for 
better treatments. These facts encourage us to investigate further on the molecular mechanisms and targets for 
potential and effective therapeutic interventions. With the advancement of computational techniques and big 
data availability, now it is quite possible to investigate segregated clinical and preclinical data together to identify 
most potential targets in asthma.

OPEN

1Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi 
Infotech Park, Hinjawadi, Pune, Maharashtra 411057, India. 2Innoplexus AG, Frankfurter Str. 27, 65760 Eschborn, 
Germany. *email: om.sharma@innoplexus.com

https://www.ncbi.nlm.nih.gov/books/NBK7232/
https://www.who.int/news-room/fact-sheets/detail/asthma
https://www.who.int/news-room/fact-sheets/detail/asthma
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-42803-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15706  | https://doi.org/10.1038/s41598-023-42803-w

www.nature.com/scientificreports/

In this current research work, we evaluated thousands of asthma associated molecular targets and patient 
expression datasets to identify most relevant therapeutic targets for clinical development. We leveraged the pro-
prietary  Ontosight® Discover platform (https:// ontos ight. ai/) (US20200090789A1) which extracts all biological 
entities from publications, clinical trials, grants, congresses and patents based on contextual search (https:// doi. 
org/ 10. 2174/ 26669 58702 10101 0205). On the other hand, transcriptomics and genomic datasets were retrieved 
from the Gene Expression Omnibus (GEO) to identify disease-specific differential expression genes using a 
machine learning approach. Identified targets and their genomic and expression regulations were integrated and 
analyzed in a research graph to understand various molecular connections in biological networks to identify the 
most relevant asthma targets.

The targets were further scrutinized based on their biological relevance, asthma-associated pathophysiological 
processes, small molecule and antibody druggability, genomic mutations, gene and protein expression, molecular 
interactions and biological functions, novelty, safety, target structure, localization and the target’s biomarker 
potential in asthma to list the most promising therapeutic targets for asthma. We identified HMOX1, ITGAM, 
SFTPD and ADAM17 as the top novel targets for asthma which need to be validated experimentally whereas 
IL-18, TNF and VEGFA as the strongest therapeutic targets to investigate further for clinical benefit.

Materials and methods
The approach for target identification consisted of three major stages namely target sourcing followed by target 
evaluation and then target prioritization as shown in Fig. 1. Here, a very comprehensive approach has been 
adopted to identify potential asthma-associated targets using  Ontosight® Discover. This approach involves iden-
tifying proteins from the disease-associated (asthma) biological entities extracted from publications, patents, 
theses, congresses, grants, and clinical trials. Additionally, publicly available curated databases such as GEO 
and GWAS, Clinvar, Disgenet and genomics datasets were used to extract and analyze population-based and 
evidence-based targets associated with asthma.

Mining unstructured datasets using  Ontosight® Discover. Two standard approaches were used to 
extract an asthma-associated target list. In the first approach, a proprietary tool  Ontosight® Discover was used 
to search thousands of publications, clinical trials, grants, patents, news and congress documents to identify all 
the relevant and mentioned biological targets. The input query term used here was “asthma” to fetch relevant 
hits from all mentioned document types. For searching documents,  Ontosight® Discover uses the proprietary life 
science ontology which considers all the pre-validated synonyms for asthma. The target hits from this approach 
were further filtered based on their relevance score for the selected disease.

This approach of target sourcing involves the mining of targets from the above mentioned 6 document types 
as shown in below Fig. 2.

Mining genomics data for potential targets. Genomic datasets help to identify targets which are 
genetically associated with the pathophysiology of the disease. We did this by two approaches: (a) genomic tar-
gets from structured genomic databases and (b) genomic targets from raw patient datasets.

Genomic targets from structured genomic databases. We explored curated genomic databases to integrate 
known and reported targets for asthma. These targets were identified based on the already processed datasets 

Figure 1.  The overall approach for target identification including target identification, evaluation and 
prioritization.

https://ontosight.ai/
https://doi.org/10.2174/2666958702101010205
https://doi.org/10.2174/2666958702101010205
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available in the publicly curated databases such as Disgenet (https:// www. disge net. org/), GWAS central (https:// 
www. gwasc entral. org/), GWAS catalog(https:// www. ebi. ac. uk/ gwas/) and ClinVar (https:// www. ncbi. nlm. nih. 
gov/ clinv ar/). We further considered raw patient expression datasets to identify any other potential targets using 
genomic expression and mutation analysis.

Genomic expression and mutation data analysis for relevant targets. Genomics expression analysis. Genomics 
expression analysis and genomics variant analysis was performed using the raw sequencing data available on 
Gene Expression Omnibus (GEO)11. The search term “asthma” AND "Homo sapiens"[porgn:__txid9606]” was 
used to query the number of studies in the GEO database (series under entry type). The search query resulted 
in 293 hits [as of 6th November 2022] which were asthma associated studies having expression and/or mutation 
data. In the next step, these 293 studies were filtered based on the Study Type to select expression profiling by 
array (Microarray) and expression profiling by high throughput sequencing (HTS). These filters reduced the 
study count to 239 which were individually validated before initiating the analysis. Studies with sample count 
less than 5 (04), studies involving other diseases along with asthma (01), studies with only disease or only con-
trol samples (111), studies involving drug treatment (60), studies with knockout or overexpressed genes were 
discarded from further analysis. These filters helped us arrive at studies that were most relevant to our analysis 
of identifying only those targets that were differentially expressed when normal versus disease samples were 
compared (Fig. 3).

These 63 studies were analyzed for differential expression and mutations as follows: The expression data for 
the downloaded sample files was evaluated using HTS (High throughput sequencing) and microarray. HTS 
analysis was performed on raw data files and hence multiple normalization and QC steps were followed for the 
same. On the other hand, microarray analysis required soft QC files which were already normalized and hence 
did not require additional QC steps unlike HTS data before generating the expression files.

Differential gene expression detection and analysis. Data processing and analysis was performed after the rel-
evancy and coverage check. The following steps were followed for evaluating the expression profile of Asthma 
targets:

Sample quality check. Implementation of FastQC. The  FastQC12, was utilized as a tool for quality check. It 
provided a quality report for raw FASTQ sequencing data, visualizing the statistics and quality of the samples in 
detail. Standard Adapter and quality removal—The adapter sequences added at the start and end of each of the 
raw reads were removed as part of sample QC through a process called read trimming. The addition of adapter 
sequences leads to bulky files with low quality of sequences. These issues were addressed using two trimming 
tools—FastQC and Cutadapt.

GC percentage for each sample was obtained from the QC Report and samples with GC percentage greater 
than 60% and less than 40% were listed separately as 50–60% is the recommended GC content. Samples having 
abnormal GC content were analyzed using GC Bias filter salmon and the rest of the samples were processed 

Figure 2.  Result page of  Ontosight® Discover. Number of documents counts, and relevant targets as shown 
in this image. Here, (a) represents the ontology-based search (b) represents the various document types such 
as Publications, Clinical Trials, Congresses, Theses and dissertations, Patents, News and Press and Grants (c) 
represents various biological terms including target associated with asthma. Here pink color demonstrates 
proteins, while genes are highlighted in purple color and disease name is highlighted in green color.

https://www.disgenet.org/
https://www.gwascentral.org/
https://www.gwascentral.org/
https://www.ebi.ac.uk/gwas/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
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through standard parameters. Overrepresented sequences were basically information regarding the sequence 
contamination according to contamination databases that matched with the sequence present in the sample data. 
Such sequences with minimum length of ~ 20 bp, if found in the database, were extracted and removed explic-
itly by using Trim Galore. After the raw data QC, these normalized counts are further analyzed in Deseq2 for 
calculation of log fold change. After DeSeq2 analysis, a csv file was generated with columns described in Table 1.

Genomics mutation analysis. Data collection and normalization for genomics mutation analysis was similar to 
the genomics expression analysis which is discussed above.

Reference genome (hg19) alignment. Spliced Transcripts Alignment to a Reference (STAR) alignment tool was 
utilized to align our sequence dataset to the reference genome by > 50 mapping  speeds13.

Data pre-processing. Data cleanup was done using Picard’s AddOrReplaceReadGroup and MarkDuplicates 
functions. AddOrReplaceReadGroup enables to replace all the read groups in input sequence with a new read 
group, while MarkDuplicates tool identifies the duplicate sequence present in a given input file (BAM or SAM 
file).

Variant calling We used Genome Analysis Toolkit (GATK); to identify the variants in a given input dataset, 
which is a standard tool for identifying the SNPs and INDELs in germline DNA and RNAseq data. In the first 
step of variant calling, SplitNCigarReads was used. CIGAR was used to indicate the match, mismatch, insertions, 
deletions etc. that were not in the reference. SplitNCigarReads splits and eliminates the reads that contain “Ns” 
in their CIGAR string. After splitting the read, HaplotypeCaller was used to identify the variants. GATK’s vari-
ant filtering guideline was followed to filter the variants where we used two tools—GATK’s SelectVariants and 
VariantFiltration. First, SelectVariant tools were used to extract only SNPs and INDELs from raw VCF  files14. 
The VariantFiltration tool was then used to retain only high-quality SNPs and INDELs. We applied the filters 
present in Table 2 on raw SNP and INDELs VCF file to remove bad variants from the list.

Variant annotation ENSEMBL’s Variant Effect Predictor (VEP) tool was used to know the functional effect 
of identified variants on  genes15.

Figure 3.  The overall workflow of Genomics analysis.

Table 1.  Metadata of deseq2 output (csv) file and their columns name.

# Column name Description

1 Gene symbol Gene symbol based on the Entrez Gene ID

2 Control expression (mean value) Mean or average of expression values in control samples

3 Disease expression (mean value) Mean or average of expression values in disease or test samples

4 Log2FC Log2 fold change between the groups. e.g., value 2 means that the expression has increased 
fourfold

5 p-value Wald test p-value

6 p-adj Benjamini–Hochberg adjusted p-value

7 ABC LogFC Absolute value of LogFC

8 Gene regulation type Up/down, to know whether the gene is up regulated or down regulated
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Downstream analysis Variant Annotation generates the list of filtered high quality mutations in Variant Call 
Format (VCF). Further, we filtered the variants based on the parameters which are listed below

• Biotype should be “Protein Coding”
• Allele Frequency (AF) < 0.01
• Exome Aggregation Consortium (ExAc_AF) < 0.01
• Variant type should not be “Synonymous Variant”
• Impact should be High, Moderate or Low and not only “Modifier”

Loss of function (LOF) analysis was performed only on the variants which had variant type as “Missense 
variants”. The Sorting Intolerant from Tolerant (SIFT) and Polymorphism Phenotyping V2 (Polyphen-2) status 
which were present in the filtered VCF file were used to predict the loss of function effect of the variant. If the 
SIFT status is deleterious and Polyphen-2 status is damaging, then those variants were considered as a Loss of 
Function  variants16.

Combined list of targets. The overall target list that was generated from the three sources i.e., unstruc-
tured datasets (7237 targets), structured genomic dataset (2932 targets), genomic and variant analysis (8250 
targets) were combined together to make a unique list of 12,090 asthma associated targets that were further 
processed to evaluate their potential in asthma pathophysiology (Table 3).

In the next step, the literature data scoring approach identified the most relevant targets for asthma and 
removed the least relevant (Table 4). This approach enriched the literature class count for each of these unique 
12,090 targets. Targets with a total literature class documents count of less than 20 were excluded from the list 
as they were considered to be the least relevant targets with mostly non-specific hits.

This filter reduced the target list to 5353 targets. Targets with an asset class count above 20 but only from one 
asset class were identified to check the overlap of their pathways with the asthma specific pathways (for disease 
relevance). Targets that did not have overlap with the asthma specific pathways were excluded from the list. This 
filter narrowed the target list for asthma down to 3463 targets, which were further used for the evaluation of 
targets (Fig. 4) (Supplementary File 1).

Table 2.  Filters applied on raw SNP and INDELS in mutation analysis.

Parameter Function Threshold

QuaByDepth (QD) QD is the variant quality divided by unfiltered depth of non-hom-ref samples > 2

FisherStrand (FS) Strand Bias tells us whether the alternate allele was seen more or less often on the forward or reverse strand than the 
reference allele < 60

RMSMappingQuality (MQ) It is the root mean square mapping quality over all the reads at the site > 40

MappingQualityRankSum Test (MQRankSum) It compares the mapping qualities of the reads supporting the reference allele and the alternate allele > − 12.5

ReadPosRankSum Test (ReadPosRankSum) It compares whether the positions of the reference and alternate alleles are different within the reads > − 8

StrandOddsRatio (SOR) Strand Odds is another way to estimate strand bias using a test similar to the symmetric odds ratio test < 4

Table 3.  Long list of targets identified from structured and unstructured sources. Asthma relevant document 
count was the total number of documents/studies identified from the given target source and target count was 
the total number of targets identified from the given number of documents.

Data type Target source Asthma relevant documents counts Target count

Ontosight® Discover (unstructured data)

Scientific publications 329,583 2805

Clinical trials 13,602 122

Patent documents 96,840 1366

Grants 27,699 826

Congresses 29,597 1007

News and press 911,605 767

Theses 2442 344

Genomics data

Genomic database (structured data)

ClinVar database 43,363 14

Disgenet database 366,315 681

GWAS central 216,070 1484

GWAS 176,271 753

Genomic raw data (from GWAS and Microarray 
analysis)

Mutation analysis targets 559,063 7690

Expression analysis targets 46,708 560

Total 2,819,158 18,419
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Evaluation of identified target based on various biological parameters. Evaluation of target drug‑
gability. The clinical exploration of a drug which directly or indirectly modulates a protein is a strong indicator 
of target druggability and this evidence-based approach was followed for exploring the target potential. The 
likelihood of modulating a target with either a small molecule or an antibody helps define the success probability 
of a target which makes the druggability parameter an important part of the target assessment pipeline. The drug 
target relations were extracted from approved drug labels and literature. A target’s small molecule druggability 
was estimated based on its structural aspects and whether or not a small molecule drug is already approved or 
under investigation for the target. Targeting proteins using antibodies inside cells has been a long challenging 
task. The antibody druggability of a target was assessed based on the localization of the target and whether or 
not an antibody drug is already approved or under investigation for the target. This parameter was evaluated for 
all targets to understand the druggability for each target protein.

Evaluation of proteins to identify potentially unsafe targets. Three groups of potentially unsafe targets were iden-
tified using the methodology described by Failli et al.17. The described method was modified for the current 
data and purpose of our analysis. Firstly, targets that had a history of having drugs withdrawn from the market 
under any jurisdiction were marked as potentially unsafe targets. Targets with drugs that have failed or have been 
withdrawn from the clinical trials and do not have any successful/ongoing clinical trials in a higher phase were 
further discarded. Thirdly, genes with functions essential for cellular or organismal viability were discarded as 
modulation of these genes using a drug may lead to fatal events as referenced by Failli et al.

Table 4.  Scoring algorithm for asset class score calculation. Parameter score is a sum of the number of 
citations, the reputation of the journal/Impact factors, date of publications and concept relevancy score using 
Term frequency (TF)—Inverse document frequency (IDF).

Asset class Parameters Parameter level scoring Class score Scaled score

Publication
Recency, Impact factor
Relevancy (Position of the term in 
the article)

Sum of all the parameter scores of 
each document for the relationship

Every parameter has a parameter 
weightage
Class score is calculated by consider-
ing the percentage of weightage for 
each parameter

Asset class score of each asset class is 
then scaled between 0 to 1 range

Clinical Trials Clinical trial status, Phase and 
disease relevance

Sum of all the parameter scores of 
each document for the relationship

Patents Agency which holds the patent 
recency and relevancy

Sum of all the parameter scores of 
each document for the relationship

Grants/Congress/News Recency and relevancy Sum of all the parameter scores of 
each document for the relationship

Figure 4.  The overall workflow of sourcing and filtering of targets.
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Evaluation of targets for its use as biomarker. Protein targets with biomarker potential have a great significance 
in drug development.  Ontosight® Discover was used to mine scientific documents to extract the targets with 
biomarker potential. We used the query “biomarker + target name + asthma” as keywords to find relevant hits. 
Identified targets were further classified into four categories and validated through literature evidence. The bio-
markers identified were further classified as diagnostic, prognostic, predictive, or therapeutic.

Definitions used for classification of biomarker:

1. Diagnostic biomarker—A biomarker used to detect or confirm presence of a disease or condition of interest 
or to identify individuals with a subtype of the disease.

2. Prognostic biomarker—A biomarker used to identify likelihood of a clinical event, disease recurrence or 
progression in patients who have the disease or medical condition of interest.

3. Predictive biomarker—A biomarker used to identify individuals who are more likely than similar individuals 
without the biomarker to experience a favorable or unfavorable effect from exposure to a medical product 
or an environmental agent.

4. Therapeutic biomarker—A biomarker which could become a molecular target for therapy

Evaluation of target for asthma associated molecular pathways. The target pathways were characterized by ana-
lyzing the involvement of identified targets in the actual pathophysiology of the disease through disease-relevant 
pathways. The target associated pathways and asthma associated pathways were first extracted from our propri-
etary database and an overlap of asthma relevant pathways with target associated pathways indicated an involve-
ment of identified targets in asthma pathophysiology through the molecular pathways.

Evaluation of novel targets. Asthma is an inflammatory disease affecting millions of people including 
children. The currently available therapies such as β-agonists and glucocorticoids are mainly focused on reduc-
ing symptoms in asthmatic patients and do not address the root cause of the disease. Thus, there is a need to dis-
cover and identify new drugs for which identification of novel targets is the primary step. A rule-based method 
was followed to evaluate the targets for novelty based on their discussion in high impact journals (impact fac-
tor > 8) in the last 10 years, mentioned in news articles during the last 5 years in association with asthma and 
no exploration in clinical trials beyond phase 1. The targets satisfying all the three parameters were identified as 
novel targets and were used to evaluate their role in Asthma.

Evaluation of target competitive intelligence. We conducted a comprehensive analysis of the clini-
cal trial data from several clinical trial repositories to provide actionable insights related to the shift in the 
market landscape with respect to the competitors in the market for developing drugs against Asthma, compara-
tive updates related to competing companies and current research in the field of Asthma.  Ontosight® Discover 
was utilized to extract asthma specific clinical trials aggregated from clinical trial registries and were evaluated 
for the frontrunning sponsor and collaborator companies. The drug target relationship was extracted for the 
Asthma specific drugs from approved drug labels and literature.

The key insights include:

The pharma and non-pharma sponsors list funding the clinical trials independently or in collaboration.
The total number of clinical trials (active, terminated, withdrawn and under recruitment) for each target 
protein.
The data related to the total number of drugs tested in the clinical trials for a given target protein. In addition 
to this, the highest clinical phase for the drugs developed against a particular target.
Scanning of a particular drug’s mechanism of action (MOA) for assessment of the drug’s pharmacological 
effect.

Target prioritization and ranking. Target prioritization was divided into two parts wherein the first part 
involved percentage-based weightage assignment to the six literature data sources like publications (12%), con-
gress (3%), clinical trials (9%), patents (4%), grants (6%) and news articles (6%). Within the data sources each 
target was scored based on their recency, impact factor and relevancy in case of publication, recency and position 
of terms (title, abstract, full text) for grants, congress, news, patents and in case of clinical trials the highest phase, 
clinical trial status and position of terms (title, abstract, indication, intervention, full text, raw text) were consid-
ered. Combining all the six literature data sources, the first part of the prioritization was assigned 40% weightage.

In the second part of the prioritization, disease relevant parameters like druggability (12%), disease-relevant 
pathways (9%), biomarker potential (3%), target safety (3%), expression and mutation data (12%), indication 
relevant tissue protein expression (9%) and novelty (12%) were assigned a percentage-based weightage and 
together these parameters were given a total weightage of 60%.

The final prioritization for each target was based on the cumulative score that was generated after combining 
the 40% score of the six literature data sources and the 60% score from the disease relevant parameters. The target 
identification and prioritization pipeline also enable the incorporation of user-input for multi-view interpretation 
of the same targets. For example, if a user is interested in prioritizing targets based on small molecule druggability, 
it would be possible to include this input in the prioritization procedure by specifically selecting targets having 
a known 3D structure and clinical trial data for testing using a small molecule drug.
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Results and discussions
In silico target evaluation based on various biological parameters. All 3463 targets identified 
from the target sources as described above in "Combined list of targets" were further subjected to evaluation 
on the following parameters: druggability, safety, tissue expression, dysregulated markers in asthma conditions, 
overlapping pathways, known biomarkers and novelty.

Evaluation of target for druggability. A total of 2857 targets out of the 3463 targets were found to be druggable 
either using an antibody or a small molecule from our pipeline. These targets were further categorized into 
highly druggable (404) or potentially druggable (2453) targets. Highly druggable targets were the targets which 
had a clinical precedence with a drug against it in clinical trials along with an available 3D structure or surface 
localization. Potentially druggable targets did not have any clinical precedence but were potentially druggable 
given the availability of a 3D structure or surface localization. The 404 highly druggable targets were further 
categorized as small molecule druggable targets (242), antibody druggable targets (68) or both (94). 29 of these 
94 targets were identified in the top 100 of our prioritized target lists for asthma (Supplementary File 2).

TNF was one of the top targets identified as highly druggable using small molecule modality as well as anti-
body modality. TNF is targeted by a number of drugs which have been on the market for a long time although 
not specifically in asthma. The tumor necrosis factor pathway plays a vital role in immune responses and its 
dysregulation is implicated in auto-inflammatory diseases including asthma. The increased TNF levels in the 
body are associated with severe asthma, poorer lung function and worse asthma  control18. Larger clinical studies 
failed to show benefit with a heterogeneous response to anti-TNF therapies in  asthma19. VEGFA was another 
highly druggable target in the list with clinical precedence, membrane localization and an available 3D structure. 
Pulmonary diseases like asthma and cystic fibrosis were characterized by the overactivity of the mucus-secret-
ing goblet cells leading to pathologic mucus metaplasia and airway obstruction. Pathways promoting mucus 
metaplasia involve VEGFA and its receptor KDR which were suppressed leading to increased  SOX920. IGF1R 
(insulin-like growth factor 1 receptor) was also identified as one of the druggable targets and targeting IGF1R 
ameliorated the typical asthmatic  features21. PTGS2 (Prostaglandin-Endoperoxide Synthase 2) which regulates 
the biosynthesis of prostaglandins are important mediators in asthma and are also known to cause eosinophilic 
 inflammation22,23 (Supplementary File 2).

Evaluation of targets for safety. In the prioritized list of 3463 targets, three categories for safety were evaluated 
(Fig. 5). The first category of targets (1) was marked as unsafe due to the withdrawal of their drug from the mar-
ket under any jurisdiction due to direct reasons associated with the target safety. The second category of targets 
(1) were the ones whose drugs were withdrawn from the clinical setting due to safety reasons. The third category 
of targets (37) were the essential genes that were marked as unsafe due to their indispensable role in the biologi-
cal processes in the body. Together 39 targets were identified and given a low priority based on the safety aspects, 
in the list of 3463 targets (Supplementary File 3).

Post-marketing issues were identified for SERPINB6, ELN and NID1 where the drugs for these 3 targets were 
withdrawn from the market. However, ELN and NID1 were removed from this category after further deep dive 
as the withdrawal reason of the drugs for these two targets were not associated with the targets. Xigris which 
contained the active substance Drotrecogin alfa was identified as a drug for SERPINB6 from our pipeline which 
was withdrawn due to the benefit-risk balance issues observed during the annual review by the European Medi-
cines Agency’s (EMA) Committee for Medicinal Products for Human Use (CHMP)24.

The two targets marked as unsafe due to withdrawal from clinical setting were APEX1 (Apurinic/Apyrimidinic 
Endo Deoxyribonuclease 1) and PTPN6 (Protein Tyrosine Phosphatase Non-Receptor Type 6). PTPN6 was later 
removed from this group as the clinical trial was terminated due to lack of inclusion and was not directly related 

Figure 5.  Workflow of identification of potentially safe targets.
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to PTPN6. APEX1 is known to have a strong role in repair of alkylation and oxidative DNA damage in a cell. 
Granulocyte colony-stimulating factor and IL-13 cytokines, which are present in asthmatic lungs and during 
the initiation of fibrosis, enhance AP-1 DNA binding and APEX1 production in normal alveolar  macrophages25. 
Our pipeline identified Lucanthone for APEX1 which was found to be terminated in the clinical setting because 
of the drug’s several adverse events in mass patient testing at higher doses (NCT02014545). There are studies 
which show that suppression of APEX1 could lead to the accumulation of unrepaired DNA damage in  cells26.

Essential genes are critical to the survival of the organism and a complete knockout of the gene could pose 
safety issues. These genes could only be partially modulated and should not affect the essential functions in the 
organism. INPP5D, PSMB4, PSMD7, USP5, PLK1 are some of the examples of essential genes identified as the 
third group of unsafe targets from our pipeline which was also evident as these targets are ranked lower in the 
top 1000 prioritized list of targets. Consider the example of Inositol polyphosphate-5-phosphatase D (INPP5D) 
which plays an important role in the brain’s defense by building enzymes that help the microglia to engulf dam-
aged brain  cells27. Proteasome subunit beta type-4 (PSMB4) contributes to the complete assembly of the 20S 
proteasome complex which may interfere with protein substrate degradation if  modulated28. These targets are 
responsible for the maintenance and development of several important functions in the human system which 
makes them crucial for survival and such modulations must be carried out carefully to avoid any serious events.

Evaluation of target for asthma specific tissue expression. Lungs are the primary organ involved in the patho-
physiology of asthma. Five targets (IFNGR1, SFTPA1, SFTPA2, C4BPA, SFTPFB) were found to be exclusively 
expressed in the lungs under normal conditions with 544 targets showing high expression in the lungs along 
with other organs with varied expression were identified. Surfactant deficiency along with dysregulation of host 
defense and inflammatory processes were some of the key features in a majority of the pulmonary  diseases29. 
HMOX1 (Heme Oxygenase 1) was one of the top targets identified for asthma showing high expression in 
lungs along with other organs and its induction in a mouse model of ovalbumin-induced eosinophilic asthma 
suppressed Th2 responses and reduced apoptosis of pulmonary  pAECs30. IGF1R (Insulin Like Growth Factor 1 
Receptor) was also found to be highly expressed in the lungs with other organs and plays an important role in 
myeloid and airway epithelial  homeostasis31.

Evaluation of targets for genomic analysis (patients raw data). Identification of genetic markers for asthma dis-
ease development and progression is important for better managing the disease and also to develop better drugs. 
Genomics Expression analysis and mutation analysis helped identify differentially expressed genes (DEGs) in 
asthma and the genetic variation in the genes which could lead to asthma.

Genomics expression analysis. A total of 140 unique genes showing significant differential expression in asth-
matic patient samples available from GEO (Fig. 6) were identified from the analysis. 123 DEG’s which were iden-
tified from genomics expression analysis also showed overlap with literature and variant analysis genes and only 
17 DEG’s were uniquely identified from genomics expression analysis. Among these 140 differentially expressed 
genes, 126 genes were upregulated and 14 genes were downregulated (Supplementary File 4).

The 140 DEGs identified from the genomics pipeline were further evaluated for their role in the asthma patho-
physiology based on the pathway enrichment analysis. The top 5 pathways that were found to be associated with 
the significantly upregulated genes were acyl carrier protein metabolism pathway, signaling by EGFR pathway, 
cytokine signaling in the immune system pathway, NOTCH signaling pathway and Oncostatin M signaling path-
ways. EGFR signaling is responsible for mediating airway hyperreactivity and remodeling as reported in many 
allergic asthma  models31,32. Allergic asthma is substantially driven by the Th2 immune response, where NOTCH 

Figure 6.  Volcano plot of differentially expressed genes in asthma patients.
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signaling activates the expression of the crucial transcription factor GATA3. Preclinical evidence suggests that 
inhibiting the NOTCH signaling helps in the reduction of the Asthma  phenotype33. Oncostatin M signaling 
pathway is capable of regulating eosinophilic inflammation for airway remodeling that occurs in asthmatic 
patients. mRNA expression and protein levels of Oncostatin M were reported to be significantly higher in the 
sputum samples from asthmatic patients.

The top 5 pathways associated with the significantly downregulated genes were PI metabolism pathway, ciliary 
landscape pathway, membrane trafficking pathway, ferroptosis pathway and innate immune system pathway. In 
the airways, cilia operate in concert with airway mucus to mediate the critical function of mucociliary clear-
ance, cleansing the airways of inhaled particles and pathogens Downregulation of the targets involved in the 
ciliary landscape pathway would interfere with the normal clearance and cleansing of the  airways34. Ferroptosis 
of adaptive immune cells triggers a series of inflammatory processes with an increase in pro-inflammatory 
macrophages in asthmatic airways.

Genomics mutation analysis. Disease-causative variants were identified by studying single nucleotide poly-
morphisms (SNPs) that are associated with asthma. Most of the asthma-susceptibility genes that have been 
identified so far, take part in immune modulatory and inflammatory processes.

The mutation analysis approach could identify overall mutations for 2229 targets combining genomic vari-
ant analysis and publicly available structured databases. 1384 targets from the 2229 list were uniquely identified 
from the variant analysis; these were such targets whose mutation data was not reported in any public databases. 
Mutations associated with 514 targets were uniquely identified from publicly available structured databases and 
mutation of 331 targets were identified from both the variant analysis and publicly available structured databases.

Through the genomic mutation analysis, the impact of the variants was measured. Variant impact is the 
measure of severity of variant consequences. It is classified into three categories

1. High—These variants can have a high impact on protein which may cause protein truncation. Mutation 
analysis could identify 55 genes which have high impact asthma variants. BRAF (rs145773998), CDK5 
(rs145339468), CD38 (rs79840235) were found to have high impact variants in asthmatic conditions.

2. Moderate—Moderate impact variants are non-disruptive variants that might change protein effectiveness. 
1604 genes were found to have moderate impact variants through analysis. RELA (rs375768034, rs61759893), 
ITGAM(rs370936973), ADAM17(rs79932015) genes have been identified with the moderate impact muta-
tions in asthma.

3. Low—Low impact variants are harmless variants and they unlikely change the protein behavior. 257 genes 
were found to have low impact variants. ANXA1(rs368581314), CD44(rs116243547), BTK(rs150930053) 
genes have been identified with the low impact mutations in asthma.

9 out of top 50 targets were identified to be mutated in asthma patient samples which had come from our 
pipeline analysis as well as curated databases (Fig. 7). ERBB2, MYLK, MMP9, COL18A1, NFKB1, ICAM1, 
TGM2, JAK2, JUND were the 9 targets out of which three also had a loss-of-function mutation reported in 
asthma (Supplementary File 5).

Mutated targets with loss of function variants. Receptor tyrosine‑protein kinase erbB‑2 (ERBB2). The 
expression of ERBB2 was reported to be lower in asthmatic  patients35 however it plays an important role in 
delaying wound  healing36, airway eosinophilic remodeling, inflammation, organogenesis, cellular differentia-
tion and transcriptional  modulation37. ERBB2 gene mutation is potentially implicated in asthma risk. Pipeline 
identified 20 single nucleotide polymorphisms (SNPs) and 2 LOF with splice region variant and intron variant 
(rs1058808, rs1810132, rs2517955, rs2952155, rs2952156, rs1136201, rs35464006, rs61737968, rs200382130, 
rs1801201, rs150680317, rs55943169). Some of these moderate impact mutations have significant association 
signals located at the ERBB2 gene, associated with protection for  asthma38.

Figure 7.  Mutation targets with their variant and loss of function mutation count. Blue bar represents the total 
number of variants identified from that target and red bar represents the count of loss of function mutations. 
Out of 9 targets, 3 targets have loss of function mutations.
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Intercellular adhesion molecule 1 (ICAM1). The ICAM1 is the receptor for the major group of  rhinoviruses39, 
the most important cause of acute asthma attacks, binding of rhinovirus (RV) to ICAM1 on T-cells may modu-
late their  function40. ICAM1 mediated elevated inflammation is implicated in asthma  pathogenesis41. Pipeline 
identified 5 single nucleotide polymorphisms (SNPs) and 2 LOF which included missense variants and down-
stream gene variants (rs5491, rs5498, rs146134321, rs139178890, rs150121537) with moderate impact. These 
mutations may hamper or activate sites which are essential for rhinovirus induction of ICAM-1 promoter activ-
ity in  asthma40.

Transglutaminase 2 (TGM2). TGM2 was the most differentially expressed in airway cells and airway lining 
fluid in asthmatic airway  epithelium42. In-vitro and In-vivo studies confirmed that TGM2 may be a key initiator 
of inflammatory cascade in asthma  conditions43,44. Pipeline analysis shows 4 single nucleotide polymorphisms 
(SNPs) and 2 LOF which includes intron variants, missense variants and downstream gene variants (rs2076380, 
rs45629036, rs146137365, rs41274720). These all mutations show moderate impact in asthma pathogenesis.

Evaluation of targets for biomarker applicability. Asthma management relies on history of symptoms and the 
bronchial obstruction measurement, for which objectively measurable inflammatory and biochemical processes 
can serve as surrogate markers. Conventional markers such as blood eosinophils, fraction of exhaled nitric 
oxide, serum IgE and periostin, feature limited sensitivity and specificity despite their significant  correlations45. 
Therefore, there is a great need for identification of robust biomarkers for early diagnosis to track progress of 
therapy and predict outcome of therapy.

We found a total 92 potentially biomarker targets which were further classified in four categories based on 
literature evidence. 28 out of 92 were diagnostic biomarkers, 40 were prognostic, 13 therapeutic biomarkers and 
7 predictive. 4 targets were categorized into more than 1 group. Interleukin 13 (IL-13), one of the top targets 
in our prioritized list, was classified under the diagnostic biomarker category. IL-13 is an important cytokine 
in airway hyper responsiveness, mucus production and various immune reactions. IL-13t can be detected in 
 serum46. TNF is proinflammatory cytokine implicated in modulation of inflammation. The clinical response cor-
related closely with the expression of TNF-α receptor 1 on monocytes. It could be detected in blood, this suggests 
that TNF measurement might be a useful  biomarker47. Periostin (POSTN) is ubiquitously expressed in various 
tissues including lungs and it is involved in many aspects of asthma including eosinophil recruitment, airway 
remodeling, development of a Th2 phenotype, and also contributes to the increased expression of inflammatory 
mediators. Periostin levels decrease with inhaled corticosteroid (ICS) therapy and could be detected easily in-
patient serum. Based on literature mining it was classified under two categories  Diagnostic48 and  Prognostic49. 
Insulin-like growth factor 1 receptor (IGF1R) was classified as a prognostic biomarker. IGF1R was found to be 
upregulated in eosinophils of asthmatic  patients50 and the pharmacological inhibition of IGF1R showed attenua-
tion of bronchial differentiation and goblet cell hyperplasia in house dust mite-induced  allergy31. All the potential 
biomarkers from top 100 targets for asthma are mentioned in Table 5.

Top asthma targets identified through mining of literature data sources. All the identified tar-
gets were sorted based on the combined literature evidence score from 6 different data sources like publications, 
congresses, grants, news, clinical trials and patents to evaluate and identify the most researched targets from 
the literature. This helps to generate a baseline understanding of what’s known about the pathophysiology of 
the disease and the key proteins involved. Multiple interleukin targets were identified from all the 6 literature 
data sources. IL13, IL10, IFNG, TNF, IL18 were the top 5 targets discussed extensively in publications, news 
articles and congress abstracts related to asthma. These targets were identified to be well-known for their role 
as pro-inflammatory markers in asthma and their identification through our pipeline increases our confidence 
in the other targets that were also identified but may not be well-known. A pathways enrichment analysis was 
further performed on the top 100 targets to understand the role of these targets in the development of asthma. 
Three major pathways associated with asthma leading to early development and chronicity were enriched with 
the highest relevance: Cytokine signaling, JAK-STAT signaling pathway and toll-like receptor signaling pathway. 
Pathways like IL-17 signaling pathway, interleukin-18 signaling pathway also ranked high on the list but were 
grouped under the Cytokine signaling which plays a pivotal role in asthma initiation and progression path-
way. The uniqueness of chronic airway inflammation is that it is intruded by T lymphocytes, eosinophils, mac-
rophages monocytes and mast cells, and occasionally by neutrophils too. Increase in the airway smooth muscle 
cell thickness along with hypertrophy and hyperplasia are also observed in Asthmatic patients wherein interleu-
kins such as IL4, IL5 and IL13 are type 2 cytokines which facilitate airway eosinophilia, mucus overproduction, 
bronchial hyperresponsiveness and immunoglobulin E (IgE) synthesis. The overexpression of IL13 is observed 
through many studies in sputum, bronchial submucosa, peripheral blood, and mast cells in the airway smooth 
muscle bundle in asthmatics further supporting its role in airway  hyperresponsiveness86. These pathophysi-
ologically important interleukins were identified as a part of the cytokine signaling in the top 100 list of targets. 
In the signaling pathways receptor binding of cytokines leads to the activation of members of the JAK kinases. 
JAK-STAT signaling pathway controls physiologic events that are deregulated in asthma as JAK-STAT pathway 
involves the membrane to nucleus signaling events, it stimulates the expression of the inflammatory mediators 
in Asthma. Owing to the active involvement of JAK-STAT pathway, inflammatory targets like IFNG, IL17A 
were found in the top 100 literature sourced target list which validates the ability of the pipeline to mine and 
bring out most relevant and frequently discussed targets in the literature sources. A recent study in patients with 
severe asthma confirmed the significantly elevated airway levels of STAT6 and also identified the major STAT6-
expressing cell type in this tissue as the bronchial epithelial  cell87,88. The targeting of this pathway through inhibi-
tion of activating cytokines (IL-4 and IL-13) and their receptors, the JAKs or the STATs, has been shown to have 
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a therapeutic effect on asthma  pathology89. Multiple evidence suggests that toll-like receptors may be associated 
with the atypical stimulation of immune responses, contributing to the chronic inflammation seen in  asthma3.

We performed a KEGG pathway analysis for the Asthma associated pathways and GO enrichment analysis 
for the biological processes and molecular functions for the top 100 targets (Fig. 8).

Competitive clinical intelligence on the targets. Ontosight® Discover was utilized to extract clinical 
trial data from multiple registries to analyze trials across the globe. Based on this analysis our pipeline has iden-
tified 2942 clinical trials that are directly associated with 93 targets who have reached or completed the clinical 
stage testing for asthma. GlaxoSmithKline, AstraZeneca and Novartis were identified as the top 3 front-runner 
companies actively working to develop drugs for asthma (Fig. 9).

GlaxoSmithKline was identified as one of the top companies rigorously exploring therapeutic assets (60 drugs) 
for the treatment of Asthma in 312 clinical stage trials. Some of the top targets that the company has eyed over 
the years are ADRB2, PLA2G4A, NR3C1. ADRB2 (β2-adrenergic receptor gene) is known to modify response to 
therapy in Asthma  patients90. Salbutamol, Levosalbutamol, Formoterol, Arformoterol were the top drugs identi-
fied for ADRB2, all of which are approved, that were explored in 102 clinical trials for Asthma. Current Asthma 
treatment helps to prevent asthma attacks and relieve symptoms when exacerbations occur, studies related to 
the Asthma pathogenesis have led to the development of biologics targeting the cytokines as cytokines have a 
major role in Asthma. Cytokines like IL5, IL4, IL13 are important inflammatory targets in Asthma, on similar 
lines GlaxoSmithKline has tapped into the field of biologics where they are exploring their asset Depemokimab 
which is an IL5 inhibitor in the phase 3 clinical trials. Being the primary cytokine IL5 is involved in the survival 
of eosinophils, inhibition of this pathway would help to reduce eosinophilic airway inflammation. Depemokimab 
is one such long acting IL5 inhibitor and the clinical trial is scheduled to be finished in late 2023 and if approved 
by FDA, this drug would add to the already approved IL5 antibody drugs in the GlaxoSmithKline pipeline.

AstraZeneca was the second top pharmaceutical in the list of competing companies for drug development 
in Asthma leading 242 clinical trials and exploring the potential of 53 drugs in total for Asthma at different 
time points. The 53 drugs primarily focused on modulating 29 targets. IL33 is one such target explored by 
AstraZeneca in the phase 2 clinical setting for Asthma. IL33 being an important cytokine is a key regulator of 
immune response and tissue remodeling in chronic inflammatory diseases wherein it interacts with different set 
of receptor proteins that form surfaces such as the linings of the airways in our lungs, this way tissue remodeling 
changes how cells organize and specialize to perform different roles. The company has developed a biological drug 

Table 5.  Categorization of potential biomarker from top 100 targets for Asthma. EBC Exhaled breath 
condensate, BALF Bronchoalveolar lavage fluid, BW Bronchial wash, BAL Bronchoalveolar lavage.

Target Expression or secretion in Role in Asthma

Diagnostic biomarkers

 IL13 Serum,  Sputum46 Induce chemotaxis of eosinophils to the site of  injury51

 TNF BALF,  Blood46,  Sputum18 Pro-inflammatory cytokine and recruitment of neutrophils and  eosinophils52

 ADIPOQ Plasma,  lung53 It is a modulator of the innate and acquired immunity  response54

 CCL26 Sputum55 Recruits and activates eosinophils in asthmatic  patients55,56

 IL2 Sputum, Serum,  EBC57 Regulates inflammatory  response57

 HMGB1 Sputum58 It plays a central role in eosinophilic airway inflammation in  asthma59

 CCL11 BALF, Blood, EBC and  sputum60 Play important role in leukocyte migration into the  lungs61

Prognostic biomarkers

 IL10 Serum46 Anti-inflammatory and involved in cytokine  activation62

 IFNG Serum63 IFNG stimulate eosinophil activation, longevity or  apoptosis63

 CRP Serum64 It is associated with Asthma severity and has role in Calcium ion  binding65

 MMP9 BALF,  Sputum66 MMP-9 play a role in chronic airway inflammation and  remodeling67

 CD14 Serum,  Plasma68 It is a marker of monocyte/macrophage  activation69

 FGF2 Sputum70 Important in tissue development and  repair71

 IL33 Lung72 IL-33 plays important roles in type-2 innate  immunity73

 CD86 Blood74 Contributes to T lymphocyte activation and  expansion75

 LEP Serum 76 Leptin is elevated in obese individuals, and the risk of  asthma76

 EPX BW, BAL and  serum77 It is highly toxic to bacteria and parasites. It regulate  inflammation78

 GC Sputum79 It is important in vitamin D metabolic process and low levels of vitamin D are associated with asthma 
 severity80

Therapeutic biomarker

 IGF1R BAL81 Regulating phagocytosis and communication of alveolar  macrophages82

Diagnostic and prognostic biomarkers

 VEGFA Serum83 Plays an important role in the development of airway  remodeling84

 POSTN Serum48 Eosinophil recruitment, airway remodeling, development of a Th2 phenotype, and contributes to the 
increased expression of inflammatory  mediators85
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Tozorakimab which is an IL33 inhibitor for Asthma treatment (NCT04570657). AstraZeneca was also found to 
be exploring other interleukins like IL4Ra and exploring its therapeutic modulation using AZD1402 inhibitor 
in the phase 2 clinical trial for Asthma (NCT04643158, NCT03574805).

Novartis was identified as the third leading company exploring and actively testing assets in Asthmatic 
patients in the clinical setting. ADRB2 variants has been reported to be associated with airway hypersensitivity, 
asthma severity, and the response to medications (PMID: 19905915), this target has been explored by Novartis 
where it has developed drugs like QVM149 Indacaterol, Salmeterol, Formoterol, Arformoterol Levosalbutamol. 
QVM149 is an inhaled treatment under development for patients whose lives remain impacted by asthma despite 
current treatment with LABA/ICS. In 2020, QVM149 was approved for use in asthma patients in the EU and 
Japan, where the therapy is marketed as Enerzair Breezhaler. Modulation of interleukins like IL17A is also being 
explored by Novartis drugs like CJM112 which is a human immunoglobulin G1 (IgG1) monoclonal antibody 
with potential anti-inflammatory activity. IL-17A is upregulated in inflammatory diseases and plays a key role 
in the development of inflammation and the immune response.

The competitive landscape from a bird’s-eye view shows that the most known targets like ADRB2, PLA2G4A, 
NR3C1 which are already known inflammatory targets in Asthma are well explored by all the top companies in 
Asthmatic patients. Target class like interleukins are some of the upcoming targets that are being explored in the 
recent years where all the top companies in the field of Asthma like GlaxoSmithKline, AstraZeneca, Novartis 

Figure 8.  Top pathways associated with asthma. KEGG pathway map of top pathways associated with 
Asthma: Green blocks represent the top Asthma targets from the prioritized list identified through literature 
mining of asset classes and their involvement in and inter-connection in various pathways related to Asthma 
pathophysiology.

Figure 9.  Top sponsor’s in Asthma specific clinical trials.
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are shifting their line of experiments from the traditional targets to other potential set of new targets like IL33, 
IL17A, IL5, IL4, IL13 who have strong association with Asthma pathophysiology and might show promising 
treatment results in the future (Supplementary File 6).

Identification of novel targets. We did a reverse screening to identify the novel targets for Asthma based 
on certain criteria that relate to clinical trials and literature evidence. Our pipeline could identify 121 novel tar-
gets from the total list of 3463 targets identified for Asthma. The top novel targets in the list were majorly identi-
fied from the unstructured database through literature mining based on the criteria discussed in the method 
section. Based on the data available for the targets, our algorithm classified the novel targets into three categories 
of “known knowns”, “known unknowns” and “unknown knowns”. The “known knowns” are the targets which 
are frequently discussed with relation to Asthma and their role in the pathophysiology of the disease is known 
but their therapeutic feasibility is not yet explored. The “known unknowns’’ are the class of novel targets which 
are known to be involved in the disease but the exact mechanism leading to their contribution in diseased con-
dition is not known. We identified these targets from literature mining where there could be targets for which 
the mechanistic details are still being explored. The next category of “unknown knowns” are the novel targets 
which have not been identified yet but may be associated with the pathophysiology of the disease by known 
mechanisms. We identified these targets through our genomics analysis pipeline. Additionally, we deploy cer-
tain parameters wherein our algorithm assigns these novel targets a score based on the extent of their clinical 
exploratory data available and the discussion of the targets with respect to Asthma in high impact factor journals 
which helps to prioritize the novel targets (Table 6).

Heme oxygenase-1 (HO-1), HMOX1 functions in heme catabolism, cytoprotection and reducing inflamma-
tion. HMOX1 was identified as a potentially druggable target through our pipeline based on its PDB structure 
availability and membrane localization which makes it more easily accessible for any small molecule or antibody 
drug development. It has a role in cytokine signaling, interleukin pathway and is highly expressed in response to 
various stimuli related to cellular stress and reactive oxygen species (ROS), cytokines, inflammatory mediators, 
and  infection110. Our pipeline was able to identify a variant (rs2071747) for HMOX1 which is associated with 
Asthma. High linkage disequilibria between the HMOX1 single nucleotide polymorphism (SNPs) and the GT 
repeat polymorphism has been previously reported to be associated with  emphysema111. From preclinical studies, 
it is clear that HO-1 activity may be clinically useful in the management of  asthma112.

Integrin alpha-M (ITGAM) affects airway smooth muscle (ASM) cell proliferation and viability in asthma. 
ITGAM showed medium level of expression in lungs and can act as biomarkers of inflammation in Asthma. 2 
variants of ITGAM were identified to have moderate and modifier effects in Asthma through our genomics analy-
sis. Although there is no strong clinical precedence for ITGAM, based on our druggability criteria of structure 

Table 6.  Top novel targets and its association with asthma.

Target Role in asthma

POSTN
Periostin is associated with pathogenesis of asthma-associated inflammation in  asthma91. Periostin is elevated and found to 
be a biomarker of type 2  inflammation92. POSTN expression upregulated by IL13 and IL4 cells which has been reduced by 
treatment with anti–IL-13 (lebrikizumab, tralokinumab) Serum Periostin could be utilized as biomarker for the airway wall 
thickness in  Asthma93

COL18A1
COL18A1 encodes the alpha chain of type XVIII collagen and is the most abundant airway extracellular matrix component, 
primary determinant of mechanical airway  properties94. Epigenetic association studies have shown COL18A1 is associated 
with lung function development through DNA  methylation95

JUND
Most of the inflammatory and immune genes contain binding sites for activator protein (AP-1) which is an array of dimeric 
basic region-leucine zipper proteins of Jun (c-Jun, JunB, and JunD) and Fos (c-Fos, FosB, Fra1, and Fra2)  subfamilies96. 
Recent animal studies indicate that the anti–c-Jun, anti-JunD, and anti–c-Fos antibodies were all able to partly remove the 
AP-1 complexes and this AP-1 inhibition in the airways may have therapeutic value in the control of established  asthma97

CCR7
CC chemokine receptor 7 (CCR7) is directly involved in the pathogenesis of DC- and T cell-mediated allergic  asthma98. It 
plays an important role in the development of ASM hyperplasia in asthma. CCR7 CD4 cells of patients showed significant 
clinical implications in atopic  asthma99

ADIPOQ
ADIPOQ gene responsible for expression and secretion of adiponectin which is also associated with the obesity-associated 
asthma  phenotypes100. It is an anti-inflammatory adipokine that increases insulin sensitivity and has cardiovascular protection 
actions. It is a modulator of the innate and acquired immunity response in  asthma101

PTEN

Phosphatase and tensin homologue (PTEN) block the action of PI3K by dephosphorylating the signaling lipid phosphati-
dylinositol 3,4,5-triphosphate. There were supportive interactions of PI3K-Akt-mTOR and STAT3-miR21-PTEN which 
controls IgE induced airway remodeling in allergic  asthma102. In animal studies there is remarkable reduction in bronchial 
inflammation and airway hyperresponsiveness observed by intratracheal administration AdPTEN. The above findings indi-
cate a pivotal role of PTEN in  asthma103

CRP
The high C reactive protein concentration and the age has been found to be associated with the risk of asthma  development104. 
The raised levels of high sensitivity CRP are significantly associated with respiratory state of asthma exacerbation and allergic 
 inflammation105

IL17RB
IL17RB is a cognate receptor of IL25 and activation of IL-17RB amplifies allergic-type inflammatory responses by promoting 
Jun kinase (or JNK), p38 mitogen-activated protein kinase (or MAPK), and nuclear factor-kappaB106. IL-17RB + granulocytes 
from peripheral blood were increased in subjects with  asthma107

ADAR
Adenosine is a potent bronchoconstrictor with either pro- or anti-inflammatory effects depending on receptor  interactions108. 
ADAR1 expression levels and protein activity could promote the progression of Asthma. Genetic polymorphisms of adeno-
sine receptors A(1) and A(2A)have been found to be associated with aspirin-intolerant  asthma109

TGM2 Transglutaminase 2 (TGM2)TGM2, a novel mediator of asthma pathogenesis, is overexpressed in asthmatic  airways44. TGM2 
was involved in mediating the increased cough frequency in EB through the regulation of TRPA1 and TRPV1  expression43
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availability and membrane localization, we could categorize this target as potentially druggable using either a 
small molecule or an antibody drug. Various integrins coordinate to mediate the movement of eosinophil in the 
airways of Asthma patients which was evident in the GO enrichment analysis. All the evidence directs towards 
ITGAM being a potentially promising therapeutic target for Asthma.

DExD/H-box helicase 58 (DDX58, also known as RIG-I) is a protein involved in viral double-stranded RNA 
recognition and type-I IFN production and was originally described as a key mediator of antiviral and innate 
immune  responses113. It has been reported that autophagy mediates the degradation of  DDX58114. DDX58 is 
co-expressed with BPIFA1, which plays a key role in the regulation of airway surface liquid volume and serves 
in host defense against bacterial infection in  asthma115. Rhinoviruses induced upregulation of DDX58 (RIG-I) 
was enhanced in asthma compared to  control116. Polymorphism in DDX58 shows significant associations with 
asthma attacks in the Copenhagen Prospective Study on Asthma in Childhood (COPSAC)  study117.

Surfactant Protein D (SFTPD), In the lungs, clearance of infectious agents and regulation of inflammatory 
responses are important for first-line defense, where surfactants play a role in host defense mechanisms. Pulmo-
nary surfactant associated protein D is a multimeric collection that is involved in innate immune defense and 
expressed in pulmonary, as well as non-pulmonary  epithelia118. SFTPD directly binds to the eosinophil surface, 
leading to inhibition of extracellular trap formation and reduction in airway  inflammation119. It is involved in 
the toll-like receptor signaling pathway which is one of the primary pathways involved in Asthma. Mutation data 
from structured sources showed the association of the rs721917 variant with Asthma. According to literature 
reported data, rs721917 has been shown to be associated with multiple respiratory diseases and is associated 
with 39% of the variation in  SFTPD120.

A disintegrin and metalloprotease 17 (ADAM17) is a membrane-anchored proteinase that is the major reason 
for its multifunctionality and its high similarity with other metalloproteases. The expression in human lung tis-
sue and its expression is upregulated in lung conditions including asthma. Our algorithm has identified 6 SNPs 
belonging to ADAM17 which can cause asthma. There is some evidence which suggests the correlation between 
ADAM17 SNPs and change in its expression in asthmatic  conditions120,121. The GO enrichment analysis showed 
that integrin binding of ADAM17 is an important molecular function involved in cytokine signaling, signaling by 
Interleukins pathway, JAK-STAT signaling pathway, GPCR signaling, toll-like receptor signaling pathway. Various 
small molecules and antibodies have been developed against ADAM17 using different approaches for cancer and 
inflammation, but none of the drug has reached clinical trials due to two major reasons: its multifunctionality 
and its high similarity with other metalloproteases. To overcome these limitations, several approaches have been 
utilized to develop molecules able to discriminate between ADAM17 and its relatives, and to inhibit ADAM17 
in a specific tissue or cell-type. Thus, there is still scope for further exploration of ADAM17 as a potential novel 
therapeutic target which has been demonstrated from the analysis and supported by literature review.

These are some top targets identified from the pipeline which show strong association with respect to the 
pathophysiology of Asthma however not extensively explored and tested for therapeutic benefit. We propose 
that these targets could bring therapeutic benefits in Asthma treatment in the upcoming times.

Target prioritization. The algorithm for target identification is an automated workflow that enables the 
integration of literature-identified targets using the proprietary Innoplexus’ platform with other disease relevant 
parameters that define druggability, involvement in disease pathology, safety, biomarker potential, genomic and 
variant data, clinical precedence, novelty and competitive market for the targets. In total we identified 3463 tar-
gets for asthma prioritized based on a combined score (Supplementary File 7).

The pipeline was able to identify the most well-known and disease relevant targets in the top prioritized list 
which validates the rationale used to develop the pipeline and the outputs generated by it. Some well-known 
targets like Interleukin 13 (IL13), Tumor necrosis factor (TNF), Vascular endothelial growth factor A (VEGFA) 
were present in the top 10 targets identified for Asthma. Based on the asset class screening IL-13 was identified 
as the most discussed target for Asthma in terms of its role in the disease pathophysiology in publications, news, 
congresses, grants and clinical trials. IL-13 is an important inducer of fibrosis in numerous seditious and auto-
immune conditions. A major function of IL-13 in the asthmatic airway is to induce chemotaxis of eosinophils 
to the point of injury. The pipeline was able to identify and evaluate the therapeutic potential of IL-13 drugs 
that have been extensively tested in the clinical setting for asthma where safety and efficacy data have shown 
to have no serious adverse events against this target which has provided the path to leading companies like 
Roche, Genentech and AstraZeneca for developing drugs against IL-13 to treat asthma. TNF was identified as 
the second top target from the pipeline that holds strong potential for therapeutic benefit in Asthma. TNF is a 
proinflammatory cytokine that plays an important role in airway diseases. Based on the overlapping pathway 
analysis it was found that TNF takes part in several inflammatory pathways that contribute to the pathogenesis 
of Asthma which included the Cytokine signaling, Toll-like receptor signaling pathway and JAK-STAT path-
ways. From the druggability standpoint, TNF is feasible to target using an antibody as well as a small molecule 
drug. Adalimumab and Golimumab were the two drugs identified through the pipeline that have been used in 
the treatment of asthma when patients do not respond effectively to inhaled glucocorticoid therapy. VEGFA is 
another important cytokine that contributes to the increase in the vascular permeability at the site of the inflam-
mation. Multiple drugs have been identified through the pipeline targeting VEGFA in asthma as an add-on 
steroid therapy to control the disease. One such drug identified is Minocycline which is under evaluation in the 
clinical setting for its anti-inflammatory properties in the treatment of Asthma. The pipeline was able to identify 
6 different variants of VEGFA which could be associated with the abnormal lung functioning in Asthma. VEGFA 
has also been explored for its biomarker properties in Asthma. The pipeline identified several articles through 
the literature mining that directs towards VEGFA being a strong biomarker candidate with a high  specificity122.
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Apart from identifying and prioritizing the most extensively studied targets in Asthma, the pipeline is able 
to bring out novel targets which hold strong potential in the emerging mechanistic insights associated with 
asthma which are currently not well explored. These novel targets identified through the pipeline can be effective 
alternatives in the future as compared to the mainstay therapies that have not shown therapeutically promising 
results in Asthma.

Data availability
All data generated or analyses during this study are included in this published article [and its supplementary 
information files].
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