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A cross‑cohort computational 
framework to trace tumor 
tissue‑of‑origin based on RNA 
sequencing
Binsheng He 1,2,6, Hongmei Sun 3,6, Meihua Bao 2, Haigang Li 2, Jianjun He 1,2, Geng Tian 4,5 & 
Bo Wang 4,5*

Carcinoma of unknown primary (CUP) is a type of metastatic cancer with tissue-of-origin (TOO) 
unidentifiable by traditional methods. CUP patients typically have poor prognosis but therapy 
targeting the original cancer tissue can significantly improve patients’ prognosis. Thus, it’s critical 
to develop accurate computational methods to infer cancer TOO. While qPCR or microarray-based 
methods are effective in inferring TOO for most cancer types, the overall prediction accuracy is yet 
to be improved. In this study, we propose a cross-cohort computational framework to trace TOO of 
32 cancer types based on RNA sequencing (RNA-seq). Specifically, we employed logistic regression 
models to select 80 genes for each cancer type to create a combined 1356-gene set, based on 
transcriptomic data from 9911 tissue samples covering the 32 cancer types with known TOO from 
the Cancer Genome Atlas (TCGA). The selected genes are enriched in both tissue-specific and tissue-
general functions. The cross-validation accuracy of our framework reaches 97.50% across all cancer 
types. Furthermore, we tested the performance of our model on the TCGA metastatic dataset and 
International Cancer Genome Consortium (ICGC) dataset, achieving an accuracy of 91.09% and 
82.67%, respectively, despite the differences in experiment procedures and pipelines. In conclusion, 
we developed an accurate yet robust computational framework for identifying TOO, which holds 
promise for clinical applications. Our code is available at http://​github.​com/​wangb​o00129/​class​ifyby​
sklea​rn.

Carcinoma of unknown primary (CUP) is a type of metastatic cancers with unknown cancer origin. CUP 
accounts for 3–5% of all cancer incidences in the United States1. Although there is no drug specifically approved 
for CUP, multiple guidelines recommend treating this disease using multi-agent cytotoxic chemotherapy2,3. 
However, the responses of CUP patients to non-targeted chemotherapies are poor with a 5-year survival rate 
around 11%4.

In order to solve this problem of identifying the tissue-of-origin (TOO), several diagnostic methods have 
been proposed in the past decades. From 1980 to 2010s, immunohistochemistry is the mainstream method to 
identify cancer primary tissue5–12. However, this method is labor-intensive, requires highly skilled physicians, 
and has varying accuracy rates in predicting TOO for different cancer types13. Although imaging techniques 
such as PET/CT and ultrasound have been utilized for assisting in clinical diagnosis of CUP14–18, their diagnos-
tic accuracies vary from ~ 30 to ~ 90%, which is not high enough for safe clinical usage. Thus, novel diagnostic 
methods are needed to address this issue.

Recently, with the advancement of sequencing techniques, omics data including RNA expression profile19–27, 
mutation profile28,29, copy number profile and methylation profile were used in the diagnosis of CUP. The assump-
tion for inferring TOO using the omics data is that the metastatic site retains the molecular characteristics of 
the primary site30. For example, Liu et al. achieved an accuracy of 81% using mutation profile across 13 cancer 

OPEN

1School of Pharmacy, Changsha Medical University, Changsha 410219, People’s Republic of China. 2Academician 
Workstation, Changsha Medical University, Changsha  410219, People’s Republic of China. 3Department of 
Medical Oncology, The Cancer Hospital of Jia Mu Si, Jiamusi, People’s Republic of China. 4Geneis Beijing Co., Ltd., 
Beijing 100102, People’s Republic of China. 5Qingdao Genesis Institute of Big Data Mining and Precision Medicine, 
Qingdao  266000, Shandong, People’s Republic of China. 6These authors contributed equally: Binsheng He and 
Hongmei Sun. *email: wangbo@geneis.cn

http://github.com/wangbo00129/classifybysklearn
http://github.com/wangbo00129/classifybysklearn
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-42465-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15356  | https://doi.org/10.1038/s41598-023-42465-8

www.nature.com/scientificreports/

types28. Ma et al. achieved an accuracy of 84% across 39 cancer types using expression profile24. There are also 
methods combining multiple types of omics data. For example, He et al. inferred TOO by integrating the features 
from RNA expression and DNA somatic mutation31. Liu et al. evaluated the potential for identifying TOO using 
methylation, expression and mutation data, finding that methylation could achieve similar accuracy as expression 
data for inferring TOO32. However, since the methylation data is more expensive than other omics data such as 
expression profiles, inferring CUP using expression profile is currently the recommended approach.

For obtaining gene expression profile, RT-PCR, micro-array and RNA-seq were majorly used. For TOO 
tracing using RT-PCR, Ma et al. collected 578 labeled samples covering 39 tumor types, including 75% primary 
tumors and 25% metastatic tumors. The dataset was split to 466-sample dataset (frozen) and 112-sample test 
set (FFPE) according to the sample type. A 92-gene list was used for inferring TOO, and k-nearest neighbor 
algorithm (KNN) (k = 5) was applied to the problem, reaching an accuracy of 84% in the leave-one-out cross vali-
dation. The result also showed there was no difference in the accuracies on predictions of primary or metastatic 
tumor24. Using micro-array, Bloom et al. combined the cDNA and oligonucleotide platform with artificial neural 
network (ANN) to trace the primary tumor origin26, obtaining an accuracy of 83–88% on different platforms. Xu 
et al. reported a multiple-platform 154-gene panel based on TCGA RNA-seq data to detect the primary origin 
of metastatic tumors. They selected the 154 genes by recursive feature selection and trained a classifier based 
on support vector machine (SVM), achieving an overall accuracy of 92%33. For TOO tracing using RNA-seq, 
Liang et al. developed a TOO classifier on TCGA data based on Naïve Bayes algorithm, achieving an accuracy 
of 91%34. Li et al. used TCGA RNA-seq data as the training set and achieved an accuracy of 96.1% for cross-
validation, and an accuracy of 83.5% for an independent GEO dataset35. Deep learning-based methods were also 
used to infer TOO, such as Grewal et al.’s neural network achieving a 99% accuracy in a 126-sample dataset and 
an 86% accuracy in a 201-sample dataset36. He et al. developed a neural network for predicting TOO using 150 
genes at a 94.87% accuracy27. Zhao et al. developed pipeline by log transformation followed by an 1D-inception 
structure for inferring TOO, achieving an accuracy of 98.54% in the cross-validation phase, surpassing most 
methods before37.

Although TOO inference methods usually perform well in cross-validation, they are often insufficient when 
tested on independent samples, particularly those with cancer metastasis. Furthermore, a comprehensive com-
parison on the effects of different gene normalization methods, feature selection techniques and classifica-
tion algorithms is yet to be conducted. Here, we designed a computational framework to infer TOO based on 
machine learning integrating normalization, feature selection, training and testing processes. We also conducted 
a comprehensive analysis of different normalization, feature selection and classification methods. Based on the 
analysis, we proposed a model that employs the most effective combination of normalization, feature selection 
and classification method. Finally, we evaluated the performance of our trained model on independent datasets.

Results
Dataset preparation.  We collected RNA-seq data from two sources in this study. First, we collected a 
10,304-sample data from The Cancer Genome Atlas (TCGA) and further split it into a 9911-sample primary 
dataset and 393-sample metastatic dataset, as described in Materials and Methods. For independent validation, 
We obtained a 1988-sample dataset from The International Cancer Genome Consortium (ICGC)38. We present 
the details for all datasets used in Table 1.

The TCGA primary dataset covering 33 main cancers (all cancer abbreviations are supplied in Table 1) 
were collected. We also merged the two cancers, colon adenocarcinoma (COAD) and rectum adenocarcinoma 
(READ) to COADREAD, since they have similar molecular profiles39. As a result, we used 32 cancer types from 
TCGA. The TCGA dataset contains 9911 primary tumor samples covering all 32 cancers and 393-metastatic 
tumor samples covering 11 cancers. The ICGC dataset contains 1988 samples and covered 10 cancers. We used 
the TCGA primary dataset to train our model, and used the TCGA metastatic dataset and the ICGC dataset to 
access our model.

Combinations of preprocessing, feature selection and classification were assessed.  In this 
study, we systematically researched the algorithms employed in each necessary step for detecting TOO using the 
TCGA primary dataset were used for investigation. We evaluated two preprocessing methods, l1-normalization 
(like TPM) and standardization after log2 transformation37. We also investigated two feature selection methods, 
random forest and logistic regression, and included random selection for baseline comparison. We consider 
feature numbers selected by each method as an important factor for feature selection. Finally, we applied three 
classification method including logistic regression, random forest and KNN. All the methods used in this study 
were listed in Table 2.

The training data was used to test the combinations of preprocessing, feature selection and classification 
methods using tenfold cross validation. The best combination was used to train a model on the TCGA primary 
dataset. The trained model was tested on the independent test datasets. A schematic diagram of our approach 
work is shown in Fig. 1.

Logistic regression performed best in training dataset during cross validation.  We evaluated 
the tenfold cross validation accuracy on the training dataset to assess the effectiveness of each step. We created 
a plot of the accuracies of all possible combinations in Fig. 2. The optimal combination included standardiza-
tion after log2 transformation, feature selection by logistic regression (using 80 genes for each type of cancer) 
and classification by logistic regression, which achieved an accuracy of 97.50%. The precisions for each cancer 
ranged from 79.41 (CHOL) to 100.00% (MESO, LAML, UVM, THYM, TGCT, LGG, PRAD, GBM, OV, THCA 
and SKCM). The recalls for each cancer ranged from 75.00 (CHOL) to 100.00% (THCA, GBM, UVM, PRAD, 
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Table 1.   Datasets used in this study.

Abbreviation TCGA primary TCGA metastatic ICGC​ Cancer name

ACC​ 79 0 0 Adrenocortical carcinoma

BLCA 414 0 0 Bladder urothelial carcinoma

BRCA​ 1102 7 50 Breast invasive carcinoma

CESC 304 2 0 Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL 36 0 0 Cholangiocarcinoma

COAD 478 1 0 Colon adenocarcinoma

DLBC 48 0 107 Lymphoid neoplasm diffuse large B-cell lymphoma

ESCA 161 1 0 Esophageal carcinoma

GBM 156 0 0 Glioblastoma multiforme

HNSC 500 2 40 Head and neck squamous cell carcinoma

KICH 65 0 0 Kidney chromophobe

KIRC 538 0 136 Kidney renal clear cell carcinoma

KIRP 288 0 0 Kidney renal papillary cell carcinoma

LAML 151 0 323 Acute myeloid leukemia

LGG 511 0 0 Brain lower grade glioma

LIHC 371 0 606 Liver hepatocellular carcinoma

LUAD 533 0 0 Lung adenocarcinoma

LUSC 502 0 0 Lung squamous cell carcinoma

MESO 86 0 0 Mesothelioma

OV 374 0 111 Ovarian serous cystadenocarcinoma

PAAD 177 1 389 Pancreatic adenocarcinoma

PCPG 178 2 0 Pheochromocytoma and paraganglioma

PRAD 498 1 169 Prostate adenocarcinoma

READ 166 0 0 Rectum adenocarcinoma

SARC​ 259 1 57 Sarcoma

SKCM 103 367 0 Skin cutaneous melanoma

STAD 375 0 0 Stomach adenocarcinoma

TGCT​ 150 0 0 Testicular germ cell tumors

THCA 502 8 0 Thyroid carcinoma

THYM 119 0 0 Thymoma

UCEC 551 0 0 Uterine corpus endometrial carcinoma

UCS 56 0 0 Uterine carcinosarcoma

UVM 80 0 0 Uveal melanoma

Sum 9911 393 1988 Sum of all cancers

Table 2.   Methods used for different steps.

Step Methods Abbreviation in Figure

Preprocessing
L1-normalization L1-normalization

Standardization after log2 transformation Standardization after log2 transformation

Feature selection

Random forest rf

Logistic regression Logistic

Random selection Random

Gene number

50 (5 for logistic regression)

Not applicable

100 (10 for logistic regression)

200 (20 for logistic regression)

400 (40 for logistic regression)

800 (80 for logistic regression)

Classification

Random forest rf

Logistic regression lr

K-nearst neighbor knn

Support vector machine svm
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THYM and LAML). The specificities for each cancer ranged from 99.67 (STAD) to 100.00% (UVM, THYM, 
THCA, GBM, SKCM, OV, MESO, LGG, LAML, TGCT and PRAD). Besides, we supplied accuracies, precisions, 
recalls and specificities for all combinations in Supplementary Table 1 sorted by accuracy.

The gene number is a significant factor affecting the classification performance, while the random forest 
algorithm was relatively insensitive to the gene number, demonstrating the robustness of ensemble learning. 
Log2 transformation, followed by standardization, was superior to l1 normalization in most cases. This may be 
caused by that the optimizer perform better when data is normally distributed. Random selection for feature 
selection could also work well, except for the KNN method.

TCGA primary RNA-
seq data

• 9911 samples
• 32 cancers

Preprocessing

• Normalization
• Log2-transformation 

and standardization

Feature selection

• Random forest
• Logistic regression
• Random selection

Classification

• Random forest
• Logistic regression
• K-nearst neighbor
• Support vector machine

Model comparison

• Combinations of:
• Preprocessing
• Feature selection
• Gene number
• Classification

Test

• TCGA metastatic 
RNA-seq data

• ICGC RNA-seq
data

Figure 1.   Datasets and flowchart of this work. TCGA primary dataset was used to evaluate the different 
combinations of preprocessing, feature selection and classification methods. The best combination will be used 
to train on the TCGA primary dataset and the trained model will be used to test on independent datasets.
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Figure 2.   Accuracies for different combinations of preprocessing, feature selection and classification methods 
using tenfold cross validation on the training dataset. sel feature selection method, clf classification method; 
the other abbreviations were mentioned in Table 2. Python package seaborn version 0.9.0 was used to plot this 
figure.
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It is worth noting that logistic regression was the feature selection method in six of the top 10 combinations 
(Supplementary Table 1). Random forest was the feature selection method in the 9th and 10th combinations 
and used more genes than the 6th and 7th combinations, despite using the same classification methods. This 
suggests that there are associations between log2-transformed expression profiles and cancer types. The top 10 
combinations contained only logistic regression and SVM classification methods, indicating strong associations 
between log2-transformed expression profiles and cancer types. Interestingly, even when using all genes without 
feature selection, the logistic regression could only reach exactly the same accuracy as using feature selection, 
indicating the redundancy in features.

The standardization after log2 transformation was the best preprocessing method in most cases, as shown 
in Fig. 2. The reasons might be due to the facts that (a) the expression values were scaled to the same scale after 
log2 transformation, eliminating extreme values and (b) the normal distribution might help the optimizers. 
KNN performed as well as other methods after log2 transformation and standardization. Furthermore, random 
forest is able to perform well even without log2 transformation and standardization, showing the tree method 
is robust to the distribution of the input data.

We plotted the confusion matrix for the best combination in Fig. 3. The diagonal showed the percentage of 
the correctly classified ratio for each cancer type. The majority of the samples were classified correctly. CHOL, 
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Figure 3.   Confusion matrix for the best combination, which consists log2 transformation followed by 
standardization, feature selection and classification by logistic regression. The numbers shown in the figure are 
the classification prediction percentages for each cancer. For each row, the percentages sum to 1.
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ESCA and UCS tended to be misclassified as their adjacent cancers, LIHC, STAD and UCEC, which may be due 
to their close development and spatial relationship.

Combination of logistic regression and SVM allows gene set to be narrowed down.  When the 
standardization after log2 was used, we noticed a high 96.14% accuracy was achieved using only 5 genes per 
cancer when we use logistic regression to select genes for each cancer and SVM as the classification algorithm. 
This is comparable to other combinations using more genes. Random forest using 20 genes selected from logis-
tic regression achieved 96.04% accuracy. Even for logistic regression itself using 5 genes per cancer could only 
achieve 94.80% accuracy. To investigate whether we could use less genes for the combination, we narrowed down 
the gene set for logistic regression to 1 to 4 for each cancer type. Accuracies of 88.16%, 93.48%, 95.08% and 
95.69% were achieved separately for 1 to 4 genes per cancer. We noticed that even using 1 gene per cancer, SVM’s 
classification accuracy (88.16%) is comparable to that of selecting 100 genes in total by random forest and clas-
sifying by KNN (87.28%). In summary, the selection of methods and classification algorithms can significantly 
impact the accuracy of predictions.

Informative genes were selected by logistic regression.  We conducted feature selection for all train-
ing samples by performing log2 transformation followed by standardization using logistic regression. 80 genes 
were selected for each cancer (see Supplementary Table 2 for details).

The top gene, characteristic of each cancer, was identified and combined into a set for expression level visu-
alization. The log2 transformed average expression value for selected genes in different cancers were represented 
on a heatmap, shown in Fig. 4. The on-diagonal expression values were higher than the off-diagonal values. For 
example, CYP11B1 is highly expressed in adrenocortical carcinoma (ACC), which has been reported to be able 
to differentiate ACC from Cushing Syndrome40. The results indicated the logistic regression has the potential to 
detect the highly informative genes while comparing each one-vs-all classification. Additionally, some marker 
genes, such as SPRR1A in acute myeloid leukemia (LAML) and DEFA in uveal melanoma (UVM), have low 
expression levels in some cancers, revealing how marker genes can provide more relevant information.
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Gene sets for each cancer were analyzed to look for similarities, and we found that several gene sets over-
lapped. For example, 53 genes were common to both the cholangiocarcinoma (CHOL) and liver hepatocellular 
carcinoma (LIHC) gene sets, which explained the misclassification between these two cancers.

We further examined gene functions of all 80-gene sets using enrichment analysis. The results showed a high 
degree of enrichment in common human organ developmental processes, such as keratinocyte differentiation, 
epidermal cell differentiation, and epidermis development, as shown in Fig. 5. Additionally, some gene sets were 
enriched in specific organ development, including digestion, and skin development and distal tubule (Supple-
mentary Figs. 1, 2). Interestingly, our analysis revealed that genes selected for CHOL and LIHC were enriched 
in similar pathways, suggesting that these two types of cancer could share similar developmental processes, 
leading to a similar expression level.

We also performed the enrichment analysis on the top-5 genes from each cancer to find the functions of the 
core genes that take the major effect in the predictions. We demonstrated the most significant pathways from 
each cancer in Fig. 6. The most significant pathways were tissue-specific. For example, steroid metabolic process 
was enriched in ACC, corresponding to adrenal cortex secreting adrenocortical hormones. We also noticed a 
significant enrichment of respiratory gaseous exchange in both lung adenocarcinoma (LUAD) and lung squamous 
cell carcinoma (LUSC), indicating both cancers were related to breath.
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The model trained from TCGA dataset performed well in independent datasets.  To verify our 
framework in independent datasets, all 80-gene sets for 32 cancer types were combined to create a comprehen-
sive 1356 gene set for further training and used logistic regression as the classification algorithm. We tested our 
model on 2 independent datasets: (1) the metastatic dataset from TCGA; (2) the non-TCGA ICGC dataset. The 
model trained from TCGA primary tumor dataset using 1356 genes achieves a 91.09% accuracy on the meta-
static dataset from TCGA. We plotted the confusion matrix for the dataset in Fig. 7a and included the prediction 
probabilities for all samples in Supplementary Table 3. Most incorrect classifications were SKCM samples. We 
hypothesize the discrepant distribution (103 in the training set and 367 in the test set) between the two datasets 
may have resulted in an inadequate training of our model. One case of cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC) was erroneously classified as Uterine Corpus Endometrial Carcinoma 
(UCEC), potentially due to their similar tissue of origin.

To account for the lack of full consistency in gene sets between the TCGA and ICGC datasets, we initially 
created an overlapping gene set of 9180 genomic features. Using this 9180-gene set, we conducted preprocessing, 
feature selection, and model training on the TCGA primary datasets resulting in the identification of 80 genes 
by feature selection. Feature selection was applied, allowing for the selection of 474 genes for the final model 
training. This set of 474 genes was integrated into a logistic regression model, which was used to test the ICGC 
dataset with 82.67% accuracy. The confusion matrix for the dataset is displayed in Fig. 7b, and the prediction 
probabilities for all samples is supplied in Supplementary Table 4. The model produced some erroneous classi-
fications, including the misclassification of lymphoid neoplasm diffuse large B-cell lymphoma (DLBC) samples 
as acute myeloid leukemia (LAML), and misclassification of pancreatic adenocarcinoma (PAAD) as other types 
of cancers. These misclassifications could be attributed to the similarities between the cell types of misclassified 
cancers. For example, DLBC and LAML both originate from blood forming cells, and PAAD, LUAD and BLCA 
originates from the glandular cells. The other misclassification of PAAD samples may have resulted from racial 
differences and technical differences from the ICGC TCGA, such as experimental and expression-calling pipeline 
differences, since ICGC collected datasets from multiple countries.
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Discussion
In this study, we designed a computational framework including the data preprocessing, feature selection and 
classification in one tool for TOO inference. Besides, we thoroughly investigated the impact of preprocessing 
methods, feature selection methods and classification methods on the predication accuracy of tissue-of-origin 
inference. Our study showed that log2 transformation and standardization provide an optimal starting point 
for preprocessing for RNA-seq data. Traditional machine learning methods, such as logistic regression yielded 
similar accuracies to deep learning approaches when using only 1000 genes27,37. The robustness of our framework 
was further indicated by the performance on two independent datasets, which achieved accuracy rates of 91.09% 
for the TCGA metastatic dataset and 82.67% for the ICGC dataset. These observations demonstrate the efficacy 
and importance of our computational framework for TOO inference.

There are some limitations to our study. First, we did not explore all possible combinations of the steps. 
For instance, we did not use quantile normalization, which is a popular method in expression profile, because 
the method was conducted within one dataset instead of one sample. Additionally, feature selection methods, 
such as correlation-based methods27 or the minimum Redundancy-Maximum Relevance (mRMR) algorithm 
were not compared. Moreover, gradient boosting decision tree (GBDT)-based methods35 and deep learning 
algorithms27,37,41,42 might further enhance the prediction accuracy. Though we achieved a similar accuracy rate 
of 98.54% for cross-validation as Zhao’s study37, we failed to achieve the same level of accuracy (96.70%) for the 
same TCGA metastatic dataset for independent test. Therefore, we suggest utilizing neural networks like 1-D 
convolutional networks to improve our predictive result. Furthermore, we suggest exploring classification meth-
ods with complex structures, such as multi-layer neural networks, and integrating additional data types, such as 
histopathological image, which are regularly used in cancer diagnosis and prognosis prediction43–46. Although 
recently developed TOO-inferring medical image-tools show promise47, more work in this area is necessary to 
utilize multi-omics for a higher accuracy in TOO inferring.

Secondly, it is unclear if our framework could infer the subtype of cancer origin. As stated by Zhao et al., 
small sample number was a barrier for neural networks to learn more information37. Conventional machine 
learning algorithms have less parameters than neural networks. Hence, our framework might be suitable for 
inferring TOO subtype.
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Thirdly, our work did not differentiate FFPE and frozen samples as distinct datasets, as pointed out by Ma 
et al.24. Moreover, we did not compare the performance of our model between different tumor grade levels. 
Further tuning of our model may be necessary if sample preservation method or tumor grade level were taken 
into account.

Finally, to make our work medically applicable, in-house RNA-seq data is necessary. Further efforts are 
required to adjust the parameters per our data. As mentioned above, logistic regression can predict TOO using 
an expression profile covering 1356 genes. We look forward to utilize sequencing techniques such as capture that 
sequence specific genes to reduce the costs for the experiment48–51.

Conclusion
This study implemented a machine learning framework to identify the primary origin of tumor tissue using RNA 
sequencing expression profiles. Comparing different methods for preprocessing, feature selection and classifica-
tion, we determined that log2 transformation and standardization was superior than normalization methods 
that express values as a proportion. We found that logistic regression performs well in feature selection and 
classification for this task. Furthermore, we found that predicting with using 1356 genes as features resulted in 
a relatively high accuracy for predicting the origin of the primary cancer site. This work suggests the RNA-seq 
and machine learning algorithms might be used in clinical practice when other pathological methods fails to 
determine the primary origin site of certain cancers.

Materials and methods
Data preparation.  The TCGA RNA-seq data were downloaded from TCGA Data Portal (https://​portal.​
gdc.​cancer.​gov/). The ICGC RNA-seq data were downloaded from Data Portal (https://​dcc.​icgc.​org/​relea​ses/​
relea​se_​28/​Proje​cts/) by searching the keyword “exp_seq”. To avoid information leakage, the ICGC samples that 
also showed up in TCGA were not included for ICGC dataset. For the TCGA data, we removed all the metastatic 
tumors in the TCGA dataset for test set by checking TCGA identifier, leaving the samples with primary tumors 
(i.e., 01 and 03 for the 4th field) as the training dataset and metastatic tumors (i.e., 06 for the 4th field) as the test 
dataset. For all datasets, the TPM value of each sample and each gene from were extracted, generating a M × N 
matrix where M is the number of the sample number and N is the number of the gene number. All the samples 
were labeled by its cancer type.

Normalization by l1 normalization.  For one sample, the l1 normalization will sum all expression values 
for all expression values as the denominator. The expression values will all be scaled by this denominator, i.e.

where G is the expression value after normalization, g is the expression value before normalization and n is the 
total number of genes of this sample.

Normalization by log2 transformation followed by standardization.  For one sample, all expres-
sion values will log2-tranformed. To avoid log2(0) error, 1e−6 was added to all expression values before log2. The 
expression values will all be scaled by this denominator, i.e.

where u is the mean of the expression values and s is the standard deviation of the expression values.

Feature selection by random forest.  For selecting features using random forest52, a random forest 
model was trained on all genes. The base estimator number was set to 2000 for the random forest classifier. For 
each decision tree, sub-samples are drawn with replacement by bootstrapping method. Each decision tree will 
use up to 

√

selected gene number genes. Gini impurity was used to find the best split point and feature. The fea-
ture importance was used to sort the genes and the top N genes were selected as final features.

Feature selection by logistic regression.  First, a multinomial logistic regression model was trained 
using all data. The l2 penalty was used for regularization and regularization strength was set to 1e−4 (i.e., 
C = 10,000 for scikit-learn). Then, for each cancer, the weights for all genes for sorted by absolute value. To select 
N genes for each cancer, the top-ranked N genes were first selected as the genes for classifying this cancer. The 
selected N genes for all cancers were combined as the final features. For logistic regression, we divided 10 for the 
feature selection for each cancer.

Functional annotation.  For the analysis of biological significance, the functions were annotated for the 
specific gene set. Gene ontology53,54 was used as the database for the enrichment analysis. Genes were clustered 
by R package clusterProfiler55. The visualization was done by R package ggplot256.

Cross validation.  In a N-fold cross validation (where N is an integer), all the samples were stratified into N 
subsets by different random seeds. And the algorithm was repeated N times. During each repeat, one of the N 
subsets was used as the test set and the other N − 1 subsets were consolidated to a training set. Features that were 

G = g/

(

n
∑

i=1

g

)

,

z = (x − u)/s,

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://dcc.icgc.org/releases/release_28/Projects/
https://dcc.icgc.org/releases/release_28/Projects/
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selected within the training set were used to train a model. The test set was then used to evaluate the model. Then 
the average error across all N trials was computed.

Classification by random forest and logistic regression.  We used the default parameters in random 
forest and logistic regression.

Classification by support vector machine.  For the multi-class classification based on SVM, the one-
vs-all strategy and rbf kernel were used. For regularization, l2 penalty was used and the inverse regularization 
parameter C was set to 10,000 for scikit-learn implementation.

All above mentioned feature selection and classification methods were implemented using scikit-learn 
package57.

Accuracy visualization for all combinations.  To plot the accuracies for all combinations, functions of 
FacetGrid from package seaborn version 0.9.0 was used58.

Heatmap visualization.  To plot the heatmaps, the R package pheatmap version 1.0.12 was used59,60. Before 
plotting, the expression values were first added 1e−12 and transformed by log2.

Data availability
The data that support the findings of this study are available from public databases, TCGA (https://​portal.​gdc.​
cancer.​gov/) and ICGC (https://​dcc.​icgc.​org/​relea​ses/​relea​se_​28/​Proje​cts/).
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