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Magnetorotational instability 
in dense electron–positron–ion 
plasmas
S. Usman 1* & A. Mushtaq 2

We in this manuscript analyzed the magnetorotational instability (MRI) by using a multi-component 
quantum fluid model with the effect of spin magnetization in a differentially rotating degenerate 
electron–positron–ion (e–p–i) quantum plasma. The electrons and positron having the same mass 
but opposite charge are taken to be degenerate whereas ions are considered as classical owing to 
their large inertia. The general dispersion relation is derived and a local dispersion relation for MRI is 
obtained by applying MHD approximations. To obtained MRI and to analyze the results numerically, 
reduced dispersion relation is derived using the local approximations. The obtained results are 
applied to the astrophysical situations exist there in the interiors of White Dwarfs and neutron stars. 
Contribution from spin magnetization and the number densities of electrons and positrons plays a 
vital role in the dynamics and can alter the instability. The increase in the electron number density, 
hence spin magnetization enhances the growth rate of the mode and leads the system to instability 
which results in the core collapse of certain massive stars.

In degenerate plasmas, the electrons are closely packed together with the maximum allowed density by quantum 
mechanics at a given pressure. The quantum effects in such a situation play a vital role when the charged particles 
de-Broglie wavelength �De(= ℏ/mevte) stands comparable to the scale length of the system e.g. interparticle 
distances n−1/3 , where ℏ, me , n, and vte are the reduced planck’s constant, mass of electron, equilibrium particle 
density and particle thermal speed respectively. These type of plasmas can be found in the interior of densest 
astrophysical  object1 (degenerate stars). There are mainly three classes of the degenerate stars known as white 
dwarfs (WDs), neutron stars (NS), and black holes (BH). The WDs are supported against the collapse by the 
electron degeneracy pressure, while the neutron stars are largely supported by neutron degeneracy. Black holes 
are the completely collapsed stars as they collapsed to a singularity. It is worthy to notice that the properties of 
a quantum plasma present in the interiors and surrounding of these degenerate stars, alters significantly from 
a classical plasma.

There has been an increasing interest in describing collective quantum effects in plasmas using quantum fluid 
theory (QFT). The regime of interest is, when the de Broglie wavelength of the charge carriers is comparable to 
the dimensions of the system, then quantum mechanical diffusion and tunneling cannot be ignored. This effect is 
described in QFT through the Bohm potential. The Bohm potential first appeared in Madelung’s 1926 alternative 
to the Schrödinger  equation2 and has been re-derived in various  ways3 in QFT, the intrinsically quantum term is 
the Bohm potential, which describes quantum mechanical diffusion or tunneling. Motivated by application to 
solid state plasmas, the response tensor for a completely degenerate nonrelativistic electrons gas has been known 
since the  1950s4. The generalization to a fully relativistic quantum treatment for electrons and positrons, including 
the nonlinear response tensors, as well as the linear response tensor is available, and has been called quantum 
plasmadynamics (QPD)5. All relativistic quantum effects are included in QPD (like degeneracy, quantum recoil, 
spin, etc.). QPD is a more rigorous theory than QFT, and all the results of QFT should be derivable from QPD. 
However, the relationship between these two approaches is not immediately obvious. A notable difference in 
comparing them is that QFT is formulated in coordinate space (t,x), whereas QPD is formulated in Fourier space 
(ω,k). Quantum mechanical diffusion or tunneling does not appear explicitly in a Fourier space formulation, but 
it must be included in the known quantum effects.

Since the statistical description changes from Maxwell Boltzmann’s to the Fermi Dirac, many attempts were 
 made6–8 to develop a quantum fluid theory. To address the situation of degenerate plasma regimes, quantum 
magnetohydrodynamic (QMHD) model was formulated by Haas in  20059. The QHD equations are derivable 
from the electromagnetic Wigner  equation10 by taking the relevant moments of the distribution function, one can 
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find out both the linear and nonlinear plasma responses to electromagnetic fields, which constitutes the primary 
objective of plasma  description11. The necessary thing for the Quantum hdrodnamics (QHD) equations is that 
all ensemble averages can be replaced by the mean quantities. However, a model whose validity rests on several 
assumptions, imposing important limitations on the model. As plasma constitutes mainly of electrons and ions, 
only the electrons exhibit quantum degeneracy, so the limitations can only apply exclusively to the electron-
component. It gives rather semi-classical picture of the system. For the plasma to be considered ideal (weakly 
coupled), all types of interactions should be significantly weaker than the quantum kinetic energy (Ŵq << 1) . 
The interaction of the particles is approximated using the mean field approach. The QHD equations are applicable 
to large resolvable length scales that means they are suitable for the long wavelength limit (� >> �TF) . Notably, 
the energy transport equation and exchange interactions are ignored in this context, which can be addressed by 
considering the second-order moment of the Wigner function equation to address the model  correctly12. Under 
the stated hydrodynamic approximations, it is feasible to analyze the characteristics of a quantum electron gas 
with higher precision. This can offers an easy way to explore linear waves and instabilities, offering valuable 
insights into the significant impact of quantum effects in some denser plasma regimes that are usually found in 
astrophysical environments.

Afterwards the QHD model was extended to spin quantum plasmas by Brodin and  Marklund13, which is 
another effect in addition to Bohm potential that can be included to the dynamics of classical plasmas, for 
instance the possibility for large-scale magnetization. The spin statistics using Pauli spin matrices for many 
particle systems has been well  explained14, 15. Using the magnetization theory Langvin (classical interpretation 
using Maxwell–Boltzmann distribution), and then Pauli (quantum mechanical interpretation using Fermi–Dirac 
distribution) explained the paramagnetic behavior of the plasma. Based on the density matrix, other effects rel-
evant to spin has been well explained by the density functional theory such as exchange-correlation effect due to 
spin-up and spin-down electrons of many particle quantum  hydrodynamics16, 17. Various approaches have been 
adopted to derive QHD  equations18–20 with its applications to quantum plasmas involving spinning particles. 
These equations incorporate important variables such as the particle concentration, the momentum density, 
velocity field and the distribution function, which characterizes all particles of a given species irrespective of 
their spin directions. For more details see  also21–23. To account for the difference in the number of particles in 
different spin states, these models include the spin density S or the magnetization M . However, it is noteworthy 
that these models do not explicitly distinguish between the spin-up and spin-down states of individual particles.

The applicability and relevance of this model to the solid state plasma, dusty plasma and dense astrophysi-
cal plasma were discussed to investigate the properties of hydrodynamic waves and  instabilities24, 25. Using the 
non-relativistic Pauli equation for spin-1/2 fermions (electrons), Brodin and Marklund used spin magnetohy-
drodynamics (MHD) to formulate the governing dynamics of spin quantum  plasmas26. It was stated that, spin 
effect is of great importance in a strongly magnetized, low temperature and high density plasma i.e degenerate 
stars. They (Brodin and  Marklund13) developed the theory of spin MHD by neglecting the contribution from 
the off-diagonal part of spin stress  tensor27. In case of many-particle systems spin evolution term (Sm) does not 
contain complete information of spin. Our spin MHD model is based on an approximation, which will be justified 
when the contributions from the off-diagonal components of spin (interference of different spins) are absorbed 
in the many-body effects of the spin stress tensor. Another limitation to the proposed model is, it can only be 
applied to colder plasmas within the density range (1030–1040 cm−3) . Moreover, a quantum approach based on 
Fermi liquid or similar theories based on thomas fermi theory would seem to be the most promising approach 
to describe spin quantum  plasmas28. It is possible that SQHD could be re-formulated and new predictions from 
it tested against experiments in the appropriate  regimes29.

Beyond these limitations, Misra et al.30 studied the influence of the intrinsic spin of electrons on the propaga-
tion of circularly polarized waves in a magnetized plasma. Safdar et al.31 investigated magnetosonic waves in the 
presence of degenerate pressure due to Landau diamagnetic levels and Pauli spin magnetization and explored a 
new propagation mode. A model for dense degenerate plasmas that incorporates electron  spin32, magnetosonic 
solitary  waves33, effects of the spin on the EM wave modes in magnetized  plasmas34, basic properties of magne-
tosonic waves in a magnetorotating spin quantum  plasma35 and instability of Terahertz (THz) plasma  waves36 
in quantum field effect transistors (FETs) with the spin effects are extensively studied and were found to play 
major roles in specifying the nature, structures and features of astrophysical (neutron stars and white dwarfs) 
and laboratory (semiconductor) plasmas.

The effect of strong B field has many applications in an astrophysical surrounding such as  pulsars37 and 
 magnetars38. Haas and  Mahmood39 studied the Nonlinear ion-acoustic solitons in a magnetized quantum plasma 
with arbitrary degeneracy of electrons and the results are validated by comparison with the quantum hydrody-
namic model including electron inertia and magnetization effects. Asenjo et al. developed a  hydrodynamical40 
and kinetic  model41 for relativistic and semirelativistic spin quantum plasmas. Therefore alot of focus has been 
given to these extreme environments especially in the regimes of strongly magnetized plasmas. In dense astro-
physical regimes, such as the atmospheres of massive WDs and the interiors of NS, the quantum corrections to 
MHD can be very important.

In comparison to the pure electron–positron (e–p) plasma, the conventional electron–ion (e–i) plasmas 
behave in a different way, because in the former, the electrons–positrons plasma represents a class of equal mass 
and opposite charge. Such a pair plasmas are believed to exist in the high energy environments, from the first 
few seconds of the Big Bang. Consequently, the positron concentration strongly alters the wave properties of the 
electrostatic and electromagnetic modes in e–p plasmas. The positron presence in such a multi-species plasma 
in these dense environments has been confirmed in a various number of experiments and  environments42, 43 
e.g., in the polar regions of NS, in the active galactic nuclei (AGN), in the solar  flares44, at the centre of our own 
 galaxy45 and in pulsar  magnetosphere46. The creation of positrons is due to the interactions of intense pulses of 
laser with  plasma45 and also due to the collapse of WDs to NS and also observed in radio emission from pulsar 
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 magnetosphere47, 48, Jet compositions (pair electron–positron plasma), by detecting radio emission from quasars 
using  VLBA49 and in Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) 
 experiments50 and by the process of neutronization and by thermal  emission51. For more details experimental 
observations  see52, 53.

In addition to the electrons and positrons, a small fraction of ions has also been observed in the recent 
observation by the advanced satellites for astrophysics and  cosmology54, the plasma is an admixture of electrons, 
positrons and ions. With the introduction of ions as an ingredient to the usual e–p plasma the response of the 
plasma greatly change. The positrons have enough lifetime that the normal two-species (e–p) plasma becomes 
a three-species electron–positron–ion (e–p–i) plasma. Naturally, positrons are an ingredient that is present 
everywhere in compact astrophysical objects and is therefore, the existence of dense e–p plasmas are expected 
there. A high pair annihilation rate due to a very large densities of electrons and positrons is expected there 
in these dense objects. However, some  investigations55, 56 have been made for some density ranges concerning 
WDs, where the rates of annihilation can be ignored and positrons have enough much lifetime to contribute in 
collective plasma  phenomena57. Due to unit mass ratio, in many respects e–p plasma behave in a different way 
from usual e–i plasmas. This feature makes the investigation of e–p plasma extremely worthy, both for the fun-
damental physics and for astrophysical interests. The presence of positron in these astrophysical surroundings is 
certain, especially regarding electron–positron release phenomena via the neutrino annihilations and neutrino 
absorptions on to the nuclei. Till now, in study of MRI instability the role of positron has usually been neglected. 
In order to understand the dynamics, it is important to study the state of such a plasma and the dynamics of 
these species by employing a configuration of rotating object and suitable non-relativistic model (fluid model).

In the recent past decades a number of theories to describe quantum plasma and hydrodynamic stability in 
magnetized plasmas are developed with its importance to astrophysical  environments58–60. One of the different 
instabilities arise in rotating astrophysical dense object is Magnetorotational Instability (MRI). It is a type of 
MHD instability initially addressed by  Velikhov61 in 1959 and then after confirmed by  Chandrasekhar62 in 1960 
while studying the Taylor Couttee flow in the concentric differentially rotating cylinders. For almost three decades 
MRI is out of the context from the main stream research until Balbus and  Hawley63 in 1991 applied the concept 
to the accretion disks around a massive central objects. They showed that the growth rate of the MR instability is 
independent of the magnetic field strength, even a low magnetic field can change the stability of the system. These 
disks are stable hydrodynamically but they are unstable magnetohydrodynamically, leading to the disk turbu-
lence and transport of angular  momentum64–66. MRI is also expected to act as a dynamo in the accretion  disks67. 
Hereinafter, there is a growing interest in MR instability applications concerning the astrophysical problems in 
various magnetized accretion  disks68–70. Different models, various analytical explanations and numerical analysis 
has been performed to explain the dynamics of MRI in different situations i.e.,  Single63 and two fluid  model71 
was developed with effect of magnetized and un-magnetized plasma, The effect of viscosity in rotating  plasma72 
and rotating dusty plasmas including  dissipation73. The Incompressible magnetohydrodynamics simulations is 
 presented74 in spherical geometry with explicit diffusivities where the differential rotation is forced at the outer 
boundary. More recently, Nonlinear development of MRI in circularly magnetized eccentric  disks75, impact of the 
MRI on the evolution of massive  stars76, smoothed particle magnetohydrodynamics  method77 with the geometric 
density average force expression and the mean field dynamo effect on  MRI78 are extensively presented. The growth 
rate of MRI in circumstellar  disks79 is investigated with the effect of changes in the strength and direction of the 
magnetic field and reported that the MRI active region possibly exists with a weak magnetic field. The vertical 
shear instability in poorly ionized, and magnetized protoplanetary discs MRI in all three frequency ranges (low, 
intermediate and high) of weakly ionized electron–ion–neutral (e–i–n) and (e–p–i) plasma has been investigated 
by using the classical multi-fluid  approach80, 81. The purpose of this manuscript is to examine the instability in 
these regimes in a multi-fluid framework under the influence of quantum correction term in the form of spin 
magnetization force. Other correction terms e.g. relativistic correction terms, Quantum Bohm potential, pres-
sure degeneracy and exchange correlation effect are not yet included in this work and planed to be included in 
future to develop a full quantum description of MRI mechanism in dense objects.

MRI for now can be considered as an important candidate in the core collapse of degenerate stars and for 
many other dynamical behaviors. In this work we examined MRI in three species (e–p–i) dense plasma by intro-
ducing quantum correction terms to the equation of motion governing the dynamics. Generally, in dense astro-
physical objects, ions provides inertia, where the electrons and positrons are considered to follow the electron/
positron degeneracy pressure to support them against the gravitational collapse. Solving the QMHD equations 
coupled to the Maxwell’s equations we derived the generalized dispersion relation. The quantum contribution 
from the ions are ignored because of its large mass in comparison to the electron and positron. Their quantum 
behavior depends upon degeneracy parameter which is larger than unity for quantum case. The dispersion rela-
tion is limited to certain MHD conditions to obtain a reduced dispersion relation. The electron and positron 
densities and spin magnetization effects reveals some important consequences on the instability growth rate. 
We in this work are intended to make a mathematical and numerical investigations of MRI by looking into the 
quantum viewpoint of dense astrophysical objects.

This manuscript is arranged as, In “Model Equations and dispersion relation”,  the basic quantum hydrody-
namic equation of motion for e–p–i plasma along with the Maxwell’s equations are presented. Based on the model 
equations, the dispersion relation for the e–p–i plasma is obtained. In “Reduced dispersion relation”,  the reduced 
dispersion relation is obtained with certain MHD limitations. Section “Results and discussion” contain the 
detailed devoted results and discussion, and Finally, in “Conclusions”, the conclusions of the work are presented.
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Model equations and dispersion relation
We consider an axisymmetric, collisionless, fully degenerate and quasi-neutral electron–positron–ion (e–p–i) 
plasma embedded in homogenous external magnetic field B = Bẑ . Using the standard cylindrical geometry 
(r, θ , z), the plasma rotates in the azimuthal θ direction with an angular frequency � = �(r) . The equilibrium 
quantities are respectively given as B0 = (0, 0,B0), E0 = (E0, 0, 0) , vj0 = (0 , r�, 0) and Pj0 = Pj0(r) . The dynamics 
of such a system is governed by continuity and multi-fluid hydrodynamic momentum  equation82 expressed as

where nj is the particles number density of jth (= i, e, p) particle which allow us to write the quasi-neutrality 
condition as ni0 = ne0 − np0 . (ρ = mn) is the particle density, vj and Pj is the fluid velocity and thermal pressure, 
respectively. qj , E and B are the electric charge, electric field and magnetic field, respectively. For the degenerate 

electrons and positron we use Fermi pressure as PFj = (3π2)
2
3 �

2

5mj
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representing the Fermi velocity and for the massive non-degenerate ions, one can use the classical pressure as 
Pi = γinikBTi with γi is the polytropic index. On the left-hand side of the equation, we have the continual deriva-
tive of the velocity field djdt =

∂
∂t + vj · ∇ and the gradient of pressure. On the right-hand side of the Euler equa-

tion, we present the force fields of different natures. The first term is the Lorentz force term, The second term 
represents the quantum Bohm potential. The last term on the right hand side represents the effect of spin mag-
netization force. The parameter µj = q�

2mjc
 represents the magnetic moment of jth particle and B1 stands for the 

perturbed magnetic field. We can define the electron magnetic moment as µe = −µB , with µB =| q�
2mjc

| being 
the Bohr magneton. � being the reduced plank’s constant. The spin evolution equation for the spin-1/2 quantum 
plasma can be written as dsdt =

2µ
�
(s× B) . Under the MHD limitations (ω ≤ ωci ≤ ωce) , the spin inertia can be 

neglected well below the electron cyclotron frequencies, gives the spin equation of motion with  solution26

Here 
(
η(αj) = tanh(αj)

)
 is the Langevin parameter with αj = µBB0

kBTFj
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2/3
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2kBmj
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Fermi temperature of the jth species. The above set of continuity and momentum equations are coupled to max-
well’s equations in the form

and

where J =
∑

j=e,i qjnjvj + cJMe + cJMp is the current density with JMe = ∇ ×Me and JMp = ∇ ×Mp being the 
spin magnetization current densities of electrons and positrons, respectively. The magnetization density vector 
is Me =µBne tanh(α)B̂ and c = (ε0µ0)

− 1
2 is the speed of light in vacuum.

In a cylindrical coordinates system, the perturbed magnetic and electric fields are B1 = (B̃r , B̃θ , B̃z) and 
E1 = (Ẽr , Ẽθ , Ẽz), and velocity vj1 = (ṽjr , ṽjθ , ṽjz) . While P̃j and ñj are the perturbed pressure and perturbed 
number density, respectively. Each perturbed profile is considered to be proportional to e−iωt+ikz z , where ω is 
the wave frequency and kz is the wave number directed along z-axis. Due to the incompressibility the mass 
conservation is reduced to ∇ · vj = 0 , gives rise to ṽjz = i L̂kz ṽjr . The perturbed Poisson’s equation ∇ · E1 = 0 , 
resulting in Êz = i L̂kz Ẽr . Form the divergence free property of the magnetic field ∇ · B1 = 0 gives rise to 

Bz = i L̂kz B̃r and from the perturb Faraday’s law we can get Êθ = ω
kz
B̃r and Bθ = k2z − ∂r L̂
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operator L̂ = 1
r + ∂r . For instance neglecting the contribution of quantum Bohm potential in the momentum 

equation and only incorporating the contribution from spin magnetization, the linearized equation (2) in com-
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and

where κ2 = d�2

d ln r + 4�2 is the square of the epicyclic frequency. Applying the space and time Fourier transform 
on the above Eqs. (8), (9) and (10) we can write the corresponding electron, positron and ion equations of 
motion as

and

The quantum contributions to the momentum equation associated with the ions have been neglected because 
of their heavier mass in comparison to the electron and positron. Here ωce = eB0

me
 is the electron cyclotron fre-

quency associated with external magnetic field, �c = eB0
mi

 stands for ion gyrofrequency and �p = eB0
mp

 stands for 
positron gyrofrequency and ω is the wave frequency. The local approximations are adopted, assuming ∂r ≃ ikr 
and krr ≫ 1, where kr is the radial wave number. Thus ∂r L̂ ≃ −k2r  and k = (k2r + k2z )

1/2 is the total wave number. 
The perturbed magnetic field can be determined by using

where St =
(
Se − Sp

)
 with Se = ηe(α)µene and Sp = −ηp(α)µpnp . By using the problem geometry the ion per-

turbed velocities ṽir and ṽiθ are obtained from Eq. (17) as

From θ-component of the positron equation of motion, we can find the positron velocities ṽpr and ṽpθ as

and

The dispersion relation corresponding to Eqs. (11–16) and (18–21) can be obtained as
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∂r L̂ṽpr +

ωωcp

kzB0
Bθ −

i

kz

(
ωcp

B0

d�

d ln r
+ ηp(α)µenp0∂r L̂

)
B̃r

(14)− iωṽpθ + (
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κ2

2�
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(20)ṽpr =
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where VA =
√

B20
miniµ0

 and ωA = kzVA are the Alfvén speed and frequency, respectively. Here we denote

The formula refers in Eq. (22) is of complex nature and complicated to investigate analytically in the present 
form. It contains the information about MRI in high, intermediate and low frequency regimes.

Reduced dispersion relation
Equation (22) reveals the contribution of spin magnetization force to the dispersion of wave depending on 
the magnetic field B strength and orientation of the electron and positron. The obtained DR (22) for the given 
multi-species (e–p–i) rotating plasma system is too complicated to analyze directly. To understand the spin 
contribution of both the plasma ingredients (electron and positron) we limit ourselves to the low frequency or 
longer wavelength MHD approximations i.e. kVA ≪ �c , ω ≪ �c , � ≪ �c assuming �c

ωce
= me

mi
≃ 0, α0 ≃ 1, and 

β ≃ −1 , the DR (22) can be expressed as

Equation (23) is the reduced dispersion relation for the MRI in three component ideal MHD model with the 
effect of spin magnetization correction. If the effect of spin magnetization is set to be zero ( St = 0 ) in Eq. (23), 
the classical dispersion relation for two fluid model  recovers63. In some magnetized plasmas, the contribution 
of spin magnetization is small to the total magnetic field. In a low temperature and high density plasmas like 
that in the locality of magnetars and pulsars, the contributions appears due to the fact that the component of 
spin force is in line to the ambient magnetic field. For the higher values of magnetic field B the magnetization 
energy shows some important consequences on the dynamics of the system. To demonstrate the instability, we 
can write the DR (22) in the form

Here D2 = D0(D3 − D4) and D5 = D3 − D4 . Where D0 , D3 and D4 are as following

and

Equation can be expressed in the form of

Equation (25) is a biquadratic equation in ω . The MRI growth rate (γ = −iω) can be determined by using 
the following relation
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Here δ = kz
k . We obtained a biquadratic equation given in Eq. (25) describing four different MR modes. 

Indeed, some of the modes can be unstable in some different conditions, but here in our current work we have 
studied only one purely unstable mode, giving the growth rate of MRI expressed in Eq. (26).

Results and discussion
To probe the impact of different plasma parameters like magnetic field B, particle density n (electrons and posi-
trons) and spin magnetization η , we evaluate Eq. (26) numerically to investigate the growth rate of MR modes. 
For this purpose, we have taken some typical degenerate plasma parameters related to some compact objects e.g. 
white dwarf and Neutron  stars13, 83–85, the particle number densities are in the range (∼ 1030) m −3 , magnetic field 
B strength is of the order ∼ megatesla to teratesla and the temperatures lie in the range (105–107) K.

We plotted the dependence of growth rate of unstable MR mode γ against wave vector kz in Fig. 1 to study the 
effect of the background magnetic field B. We have obtained two curves (blue 1.5× 105 T) and (red 1.2× 105 T) 
for different magnetic field strength in the presence of the magnetization effect η from both electron and positron. 
It is clearly shown that the magnetic field enforce the growth rate of the mode towards stability. The spin terms 
are of particular significance and importance for low temperature and strong magnetized plasmas, when the 
spin are aligned with the field. We here in this work stress that the spin term can have more influence than the 
other terms in MHD equation. As a consequence it turns out that the spin force can be important even when 
the magnitude of the imposed magnetic field is smaller than the usual J × B force. In order to demonstrate this 
property, we have studied the growth rate of MR instability, when the strength of magnetic filed B increases the 
growth rate can become stable for some of the possible orientations of kz . MRI take place in a weak magnetic 
field regions and enhancing the field by producing field amplification. The field will grow because of the MRI 
dynamo action until it reaches a saturation field limit. The details of the dynamo action is beyond the scope of 
this work. Strong magnetization effect is observed from both the ingredients of plasma where the field strength 
is higher, consequently impose a stability on the system. This instability always occurs in the vicinity of a low 
magnetic field where the toroidal field components dominate. This leading to the rapid growth of the B field 
whose characteristic time scale is of the order of fluid rotational period. The instability broadly occurs in the 
core collapse which is consider to be the dominant mechanism of magnetic flux production, has the capacity to 
strong enough to affect. If the field is not strong enough it cause the explosion in massive stars. Our calculations 
clearly presenting, that only a low or weak magnetic field B can affects the stability properties of the system. The 
spin effects become noticeable even when the external magnetic field B0 is below the quantum critical magnetic 
field strength (∼ 1010) T.

In Fig. 2, the growth rate γ of the MR mode is plotted against the wavevector kz in the absence and in the 
presence of contribution of spin magnetization from positron. By considering Sp = 0 , enhances the growth 
rate and system is less stabilized and is more stabilized in the presence of the contribution from both electron 
and positron. It is clear from the figure that increasing positron concentration in dense astrophysical (e–p–i) 
plasmas impose stabilizing effects on the system. Increase in the electron number density ne , the effect of spin 
magnetization and consequently the instability of the system enhances as shown in Fig. 3. The plot having three 
different curves (red, blue and green), representing the variation in density gradient which modifies significantly 
the instability growth rate. This result is the confirmation of the diamagnetic behavior of plasma. Stellar plasmas 
becomes degenerate at high densities soon after the evolved star leaves the main sequence of formation and 

� = 4ω2
Aκ

4α0δSt

1+ St
+ κ2δ2α0

{
4ω2

A + κ2δ2(1+ St)
}

Figure 1.  The normalized growth growth rate γ over the wave vector kz . assuming � = 103 and κ2 < 0 , all othe 
typical parameters are ne0 = 1031 , np0 = 1030 , α0 ≃ 1, and β ≃ −1 . Varying only the value of magnetic field B 
as dotted blue curve B = 1.5× 105 T, dotted red curve B = 1.6× 105 T and dotted green B = 1.8× 105 T.
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the structure readjusts. Degeneracy is important in white dwarfs stars and also in the central region of evolved 
stars because of the large densities found there. This result reveal our previous finding that the increasing elec-
tron densities destabilize the system and the growth rate consequently increases, also addressing the fact that 
the particle (electron) degeneracy pressure exceeds the external imposing fields and can take to the collapse 
of massive objects. It is clear that the degenerate electron gas cannot support a star with mass larger than the 
Chandrasekhar mass ( 1.4M⊙ ). Conversely the increase in the positron number densities put stabilizing effects 
on the system. It is shown in Fig. 4 that, the presence of light positive species, i.e., positrons, can significantly 
modify the instability growth rate.

Conclusions
In this current work, we have examined MRI in three component (e–p–i) plasmas using QHD model in a 
differentially rotating magnetized degenerate plasma. The DR is obtained with the contribution of spin mag-
netization force from electron and positron. Spin contributions has a significant importance in a high density, 
low temperature and highly magnetized plasmas that can be found in WDs. The DR has a complex nature and 
have the informations in all the frequency ranges. To briefly understand the dynamics of the system we limited 

Figure 2.  The normalized growth rate γ versus wave vector kz . The typical value of � = 103 and κ2 < 0 , with 
electron and positron densities given in Fig. 1 and α0 ≃ 1, and β ≃ −1 . Neglecting the contribution of positron 
spin magnetization effect ηp = 0 (dotted blue curve), showing the increasing trend of growth rate γ . The stability 
is observed when the spin magnetization of both the species are taken into effect. Dotted red curve show the 
combine effect of both electron and positron magnetization.

Figure 3.  The normalized growth rate γ is plotted against wave vector kz for various values of electron 
number density ne0 . Assuming the same typical parameters, � = 103 and κ2 < 0 , with fixed positron density 
np0 = 0.2× 1031 . The dotted curve (blue) ne0 = 2.75× 1031 . The variation in the curve (red ne0 = 2.45× 1031 ) 
and (green ne0 = 2.15× 1031 ) is observed as γ increase with the increasing value of ne0.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15315  | https://doi.org/10.1038/s41598-023-42397-3

www.nature.com/scientificreports/

ourselves to the longer wavelength (low frequency) MHD limits, and the reduced dispersion relation is obtained. 
To analyze the growth rate γ of the instability we numerically solved the reduced dispersion relation and by using 
various astrophysical plasma (WD) parameters we plotted the dependence of growth rate γ to the wave vector 
kz . We obtained four different plots for the growth rate to study the effect of different parameters like magnetic 
field B, magnetization effect η , electron number density ne and positron number densities np . We concluded that 
the magnetic field strength has stabilizing effects on the growth rate. As the instability always takes place in the 
vicinity of a weak magnetic field, amplifies the field strength by the action of magnetic dynamos and pinches 
the system against the run away from stability. The electron spin magnetization force and the increasing elec-
tron number density enhance the growth of the MR mode and the system run towards instability. At very high 
number densities corresponding to MR instability results in the core collapse in many stars. On the other hand, 
the positron number density putting a stabilizing effect on the system. Therefore, the contribution from electron 
and positron fluids validates our consideration of their quantum mechanical effects in this model. The results of 
our findings presented here can be of particular importance for multi-species dense astrophysical environments.

Data availability
All data generated or analysed during this study are included in this published article.
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