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Design of a silicon Mach–Zehnder 
modulator via deep learning 
and evolutionary algorithms
Romulo Aparecido de Paula Jr. 1,2,4,6*, Ivan Aldaya 1,6, Tiago Sutili 2, Rafael C. Figueiredo 2, 
Julian L. Pita 3 & Yesica R. R. Bustamante 2,5,6

As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators 
(MZMs) are approaching the limits of possible performance for high-speed applications. However, 
due to a large number of design parameters and the complex simulation of these devices, achieving 
high-performance configuration employing conventional optimization methods result in prohibitively 
long times and use of resources. Here, we propose a design methodology based on artificial neural 
networks and heuristic optimization that significantly reduces the complexity of the optimization 
process. First, we implemented a deep neural network model to substitute the 3D electromagnetic 
simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure 
of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. 
By applying this method to CMOS-compatible MZMs, we find new optimized configurations in 
terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve 
configurations of MZMs with a 40 GHz bandwidth and a driving voltage of 6.25 V , or, alternatively, 
47.5 GHz with a driving voltage of 8 V . Furthermore, the faster simulation allowed optimizing MZM 
subject to different constraints, which permits us to explore the possible performance boundary of this 
type of MZMs.

The popularization of multimedia streaming and internet of things (IoT) services, alongside the migration to a 
distributed computing and storage paradigm, has leveraged the transmission capacity requirements that network 
operators must  satisfy1. Meeting such capacity demands is particularly challenging in short-range applications, 
where networks are subject to stringent cost constraints. This is the case, for instance, of high-speed optical 
interconnects (OIs) that enable connectivity between geographically distributed hyper-scale data-centers2,3. One 
of the critical elements of this type of system, both from the point of view of cost and performance, is the optical 
transmitter, on which the electro-optical modulator plays a fundamental  role4. The well-known lithium niobate 
(LiNbO3 or LN) modulators, which has been extensively employed in long-haul and metropolitan systems, 
presents high performance, but cannot be efficiently integrated with the associated electronics, also requiring a 
large footprint and expensive raw  materials5.

In this context, integrated photonics has attracted significant attention in recent years. In particular, silicon 
(Si) photonics has emerged as a high-potential platform for implementing low-cost and high-performance 
optical modulators, since its compatibility with complementary metal-oxide-semiconductor (CMOS) enables 
not only the aforementioned monolithic integration with the electronic stage, but also to take advantage of its 
fabrication know-how and the mature manufacturing  infrastructure6. However, in contrast to LiNbO3 , Si has a 
centrosymmetric crystalline structure, which leads to weak parametric electro-optic effects (i.e., Pockels and Kerr 
effects). On the other hand, the semiconductor nature of Si allows injection and extraction of free carriers that 
can be exploited to build phase shifters based on the plasma dispersion effect (PDE)7. This phenomenon allows 
the electronic control of the structure refractive index, enabling one to implement rib-waveguide-based phase 
shifters, which are a fundamental constitutive block of in-phase and quadrature optical modulators (IQMs)8. 
Silicon phase shifters can be employed to control the interferometric patterns in different interferometer configu-
rations, such as micro-ring resonators (MRR), Michelson modulators, and Mach–Zehnder modulators (MZM)9. 
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Although both MRRs and Michelson interferometer modulators (MIM) exhibit a compact area, low power con-
sumption, and high modulation efficiency, they suffer from a limited modulation  bandwidth10,11. Alternatively, 
for high-speed systems, albeit their relatively large footprint and high power consumption, MZMs present the 
best trade-off between modulation bandwidth, consumption, and insertion  loss12. Furthermore, MZMs show 
additional advantages over MRRs and MIM, such as improved thermal tolerance and significant reduction of 
the chirp imposed to the modulated  signal13.

The power consumption of the MZM is typically quantified in relation with the voltage required to induce 
a phase shift of π radians between the two interferometric arms, which is often represented as Vπ . The value of 
Vπ , therefore, depends on whether the MZM has a single phase, only on one interferometric arm, or two phase 
shifters, one in each arm. However, high performance MZMs usually adopt the second approach as this results 
in half Vπ for each phase shifter. Values of Vπ lower than 1 V have been achieved in double-arm silicon-based 
MZMs employing PDE with carrier  injection14. However, the slow carrier injection dynamics limited the perfor-
mance of the first devices designed based on this principle, presenting a relatively low bandwidth, in the order 
of hundreds of  megahertz15. Even if significant progress has been made on carrier-injection MZM, such as the 
introduction of an resistance and capacitance (RC) equalizer, this configuration is generally outperformed by 
MZMs based on carrier  extraction16. Alongside with the carrier dynamics, the bandwidth of carrier-extraction 
MZMs is limited by the interaction of the junction with the driving electrodes, which impact on the RF losses, 
the RF and optical waves velocity matching, and the impedance matching between the electrical source, the 
transmission line and the  termination17. Aiming to increase the modulation efficiency, traveling-wave electrodes 
(TWEs) were implemented, thus extending the interaction length between the optical and the electrical signals. 
In particular, TWEs with ’T’-shaped extensions, namely slow-TWEs, can be used to increase the RF refractive 
index and improve the velocity matching between the RF and the optical  waves18. Moreover, series push-pull 
(SPP) driving configuration can minimize RF losses by reducing the junction capacitance by half and doubling 
the junction resistance. In addition, a slight impedance mismatch can be implemented between the electrode 
and the termination to further extend the MZM  bandwidth19.

In this context, different devices relying on carrier extraction and using slow-TWE have been reported. For 
instance,  in17 a device with a 3-dB modulation bandwidth of 41 GHz was reported. Nevertheless, such a large 
bandwidth was achieved at the cost of a value of Vπ as high as 11.4 V . Alternatively, by optimizing the doping 
profile and the optical and the RF waveguides design,  in20 a 6-dB modulation bandwidth of 50 GHz at a 2 V 
reverse bias and a Vπ of 6.3 V was demonstrated. Further improvements were presented  in19, where an impedance 
mismatch between the traveling wave electrode and the on-chip termination was deliberately introduced, achiev-
ing a 3-dB modulation of 46 GHz with a Vπ of 7.6 V and an insertion losses (IL) of 8.4 dB . As can be perceived 
from the aforementioned works, larger modulation bandwidth is achieved at the expense of higher power con-
sumption and IL. Following an alternative approach, a substrate-removed MZM with a modulation bandwidth 
exceeding 50 GHz was reported  in21, but this type of structure hinders the fabrication process and increases the 
sensitivity of the device to mechanical vibrations. On the other hand,  in22 the authors explored the adoption of 
segmented MZMs, in which a distributed driver feeds different segments of phase shifters, thus decreasing the 
microwave loss and increasing the modulation bandwidth up to 45 GHz , while keeping Vπ below 10 V . However, 
segmented MZMs presents several drawbacks, as its inefficient phase matching between the driving signals and 
the low modulation gain compared to conventional phase shifters. Alternatively, another approach to enhance the 
performance of phase shifters is employing a slow-light guiding structure, in which a photonic crystal arrange-
ment is utilized as the optical  waveguide23. However, the main challenge of this alternative is its sensitivity to 
fabrication errors since small variations of the features lead to high optical losses. Furthermore, the inclusion 
of ring-resonators in one or both arms of a Mach-Zehder interferometer has also been proposed to improve 
modulation  efficiency24. Nevertheless, this structure inherits the high thermal sensitivity and the bandwidth 
limitation of ring resonators, limiting its overall performance. Finally, it is important to report recent works 
exploring the combination of Si with other materials to improve the MZM overall performance. For instance, 
 in25 a highly-nonlinear polymer is used to generate the Pockels effect not present in silicon. This organic-silicon 
hybrid device achieved a bandwidth of 40 GHz with a Vπ as low as 1.46 V and an IL of 0.7 dB . Unfortunately, the 
use of a nonlinear polymer is not CMOS-compatible, making its manufacturing more complex and increasing 
its cost. Alternatively, graphene has also been proposed to implement phase shifters. However, even if low Vπ can 
be achieved, simultaneously attaining a low driving voltage and broad modulation bandwidth is still  difficult26. 
In addition, the integration of 2D-material, such as graphene, requires careful manipulation and the integra-
tion with the silicon layer is still an unresolved barrier. Therefore, due to its natural compatibility with CMOS 
manufacturing process and general performance, standard TW-MZM configuration continues being the focus 
of different works.

Since the performance of a TW-MZM highly depends on its constitutive integrated-phase shifters, its optimi-
zation becomes critical to achieve a competitive performance. Nevertheless, the large number of design param-
eters (including section dimensions, doping concentrations, and bias voltage), alongside the complex simulation 
(accounting for both electrical and optical fields and their interrelation) makes the optimization process chal-
lenging and computationally expensive. Consequently, brute force optimization is generally unfeasible, requiring 
extremely powerful and expensive computational platforms. Even state-of-the-art heuristic optimization algo-
rithms require an elevated number of iterations, leading to large processing times. Since the most computational 
expensive stage of these optimization algorithms is the electromagnetic simulation of the solution candidates, 
which requires the 3D simulation of the optical structure, we propose to substitute it by a lower complexity artifi-
cial neural network (ANN)-based model, significantly reducing the time required to optimize this structure. For 
that, in this work we develop an accurate ANN-based model of an integrated carrier-extraction TW-MZM and 
use it in combination with a well-established heuristic optimization method, i.e. the differential evolution (DE), 
to find different high-performance configurations, allowing us to design this devices with better performance 
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with lower computational cost. The remaining of this paper is organized as follows: “ANN-basedmodel of the 
MZM” section introduces the device to be optimized and describes the develop ANN-based model, including 
its architecture, training, and prediction performance; “Optimization of the MZM employing differential evolu-
tion” section briefly present the DE algorithm and apply it in combination to the developed ANN-based model 
to obtain different configurations; finally, in “Conclusions” section, the most relevant conclusions are drawn.

ANN-based model of the MZM
In the present section we describe the modeling of an integrated TW-MZM using ANNs. In “Device to be 
optimized” section, we introduce the device to be optimized, including the design parameters, and the chosen 
figures of metrics. Following, the dataset obtained using electromagnetic simulations is described in “Simulation 
of random configurations” section. Then, the adopted ANN architecture and its particularities are presented in 
“ANN model and training” section. Finally, in “Analysis of the model prediction accuracy” section, the prediction 
accuracy of the developed model is quantified and discussed.

Device to be optimized. The device to be optimized is an integrated MZM employing PDE-based phase 
shifters. In particular, we considered a modulator operating in carrier extraction mode equipped with TWEs, 
as this configuration presents the best overall performance for large-bandwidth MZMs. More specifically, since 
the performance of such modulator is fundamentally determined by the properties of the phase shifters in each 
arm, the optimization process will be focused on these elements. Figure 1a shows the PIN rib waveguide used 
to implement the phase shifter, with the structure biased at Vbias and being defined by a length L, a waveguide 
width WC , and presenting six different regions with different doping concentrations and widths. In specific, this 
regions are defined by the variables Wpp-slab , Wp-slab , Wn-slab , Wnn-slab that corresponds to the widths of the p+, p, 

Table 1.  Optimization variable and design parameters.

Optimizable parameters Fixed parameters

Parameter Range Unit Parameter Value Unit

Vbias −10 up to −2.5 V p concentration 3× 10
17 cm−3

WC 450 up to 500 nm n concentration 3× 10
17 cm−3

L 0.5 up to 4 mm p+ concentration 4× 10
18 cm−3

Wp−slab 50 up to 500 nm n+ concentration 4× 10
18 cm−3

Wpp−slab 600 up to 1000 nm p++ concentration 1× 10
20 cm−3

Wn−slab 50 up to 500 nm n++ concentration 1× 10
20 cm−3

Wnn−slab 600 up to 1000 nm Waveguide height 220 nm

PNoffset −225 up to 225 nm Slab height 61 nm

Figure 1.  (a) 3D view of the PM to be optimized indicating the different optimization variables. (b) Five-
layer MLP model designed to emulate the electromagnetic simulation model, with the indication of the 
number of neurons per layer. A skip connection is set between the input layer and the last hidden layer, 
demanding a padding to equate the array’s size. The figure also shows the neuron operation, on which the 
linear transformation is the first block, followed by the BN, the DO and, finally, the nonlinear activation ReLu 
function.
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n, and n+ regions, respectively, and the offset of the PN interface, PNoffset . Moreover, the doping concentration 
of each region, as well as the waveguide and slab heights, are not subject to optimization since they are usually 
fabrication constraints imposed by the foundry. In Table 1, the ranges of the optimization variables and other 
design parameters are summarized.

Different performance metrics can be used to assess the performance of a MZM, among them we can high-
light three widely adopted metrics that usually are employed in a complementary manner. The first metric is the 
optical insertion loss (IL), which depends on the length of the structure and the amount of carriers within the 
modal area, in consequence also depending on the bias voltage. Next, the electro-optical bandwidth ( BWEO ) is 
also an important assessment parameter, defining the modulator baud rate limits in high-capacity optical sys-
tems. Finally, the voltage required to impose a phase shift of π radians is critical since it determines the device 
power consumption, which is becoming an increasing concern. However, the importance of each metric should 
be weighted based on the particular application requirements and limitations.

Simulation of random configurations. The first stage to develop an ANN-based model is to build a 
dataset composed of randomly generated representative MZM configurations. For that, each configuration cor-
responds to a combination of the optimization parameters randomly chosen within the limits listed in Table 1. 
To assess the MZM performance under these conditions, each of these configurations was simulated by com-
bining specific commercial software packages, i.e. CST Microwave  Studio27 and  Lumerical28, and high-level 
programming language (Python). Figure 2a shows the schematic of the simulated phase shifter equipped with 
T-shape multi-stage slow-wave traveling wave electrodes implemented on the coplanar stripline (CPS) technol-
ogy. In Fig. 2b, we show the equivalent transmission line model of the phase shifter, which includes both the 
CPS electrode and the PN load. In order to integrate this model, first of all, the parameters of the unloaded CPS 
line were calculated using CST Microwave Studio, which is capable of calculating both the transmission line 
impedance and the RF losses. These parameters were then used to calculate using a high-level programming 
language the parameters of the loaded CPS line, where the intermediate PN section is considered employing 
the model proposed  in8. The parameters of the loaded CPS line, alongside the optical group refractive index 
calculated using Lumerical Mode, were used to calculate the electro-optical bandwidth BWEO . Regarding the 
computation of both Vπ and the IL, the Lumerical Device module was used. The detailed semi-analytical model 
is described  in29. The block diagram of the co-simulation environment is shown in Fig. 2c. Since the two arms 
of the MZM are equal, the design process is reduced to the phase shifter of each arm. In total, the datasets are 
composed of 10,000 MZM configurations, which histograms obtained for the BWEO , IL, and Vπ are shown in 
Fig. 3a–c, respectively. As can be seen, most of the random configurations present IL values close to 1.25 dB , with 
Vπ distributed around 12.5 V . Furthermore, the BWEO histogram is characterized by two well-defined peaks, one 
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Figure 2.  (a) Representation of the simulated phase shifter, (b) equivalent transmission-line model and 
(c) block diagram of the employed model to assess the BWEO , IL, and Vπ . Blue indicates the part of the 
model implemented in CST whereas gray and red blocks represent implementation in Python and Lumerical, 
respectively.
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centered at approximately 30 GHz , with a second narrower peak at 50 GHz . Thus, most of the samples present 
IL, Vπ , and BWEO values concentrated in an average region, where none of the individual metrics is excessively 
penalized. In order to achieve more uniform histograms, the design parameters can be engineered instead of 
considering uniform randomly generated values. Although these histograms give valuable information about 
the aforementioned metrics, they do not give any knowledge on the relation between them. Thus, to understand 
this relation, in Fig. 3d, we show the values of Vπ in terms of the BWEO with the IL as a color scale for each MZM 
configuration present on the here employed dataset. The first point to note is a lower bound in the Vπ versus 
BWEO relation, indicating the expected trade-off between these parameters. Moreover, in this boundary it is 
possible to notice high IL values, not being the most viable solution for the proposed MZM design and justifying 
the need for the proposed optimization methodology. Finally, the dataset was split into training and test subsets, 
being the former composed of 9,000 samples, whereas the remaining 1,000 samples compose the latter.

ANN model and training. To model the MZM, the employed ANN architecture was a fully-connected 
multi-layer perceptron (MLP), which is widely adopted due to its versatility and efficient  training30. The MLP 
had eight inputs and three outputs corresponding to the design variables and the three figures of merit. Moreo-
ver, ANNs with different amounts of hidden layers were tested, in particular with 4, 5, and 6 layers, here denoted 
as MLP4 , MLP5 , and MLP6 , respectively. The number of neurons of each layer, alongside with the number of 
model hyperparameters and the total neuron count, are listed in Table 2. Furthermore, we adopted the rectified 
linear unit (ReLU) as activation function in all neurons and the root mean squared (RMS) error as cost function 
between the output of the ANN and the desired values for the optimization metrics. Next, regarding the ANN 
training, the Kaiming uniform method was used to initialize the synaptic  weights31 and the decoupled weight 
decay Adam optimizer (AdamW) with β1 = 0.9 and β2 = 0.999 was employed to optimize the cost func-
tion. Additionally, two versions of each MLP configuration were implemented. The base version of the MLPs 

Figure 3.  Modulators dataset utilized to train and test the ANNs: (a), (b) and (c) illustrates the histograms of 
the dataset in relation to BWEO , IL, and Vπ ; (d) shows Vπ in relation to the BWEO , with the IL given in a blue 
color scale.

Table 2.  Summary of the proposed ANNs, including its architecture characteristics, activation function, and 
training parameters. The implemented improvements are also included.

Parameters Parameters with BN Neurons 1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer 6th Layer

Architecture

MLP4 213203 215203 1000 200 300 300 200 — —

MLP5 333553 336253 1350 200 300 350 300 200

MLP6 456403 459803 1700 200 300 350 350 300 200

Act. function ReLu

Cost function MSE

Training

Initialization Kaiming uniform method

Optimizer AdamW

Wd  parameter 0.05

β1 parameter 0.9

β1 parameter 0.99

Improvements

Dropout �

Batch normalization �

Residual connections �
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considers no additional features. The full version of the MLPs, on the other hand, considers the following three 
improvements: Connection dropout (DO)32, Batch normalization (BN)33 and Residual connections (RCs)34.

In addition to ANNs with different numbers of hidden layers (denoted as MLP4 , MLP5 , and MLP6 ), we also 
considered variations in which the improvements DO, BN, and RCs are implemented or not. In particular, we 
denote as ‘base configuration’ the ANN in which none of the aforementioned improvements is implemented. 
The ‘full configuration’, on the other hand, stands for the configuration considering simultaneously DO, BN, and 
RCs implementation. In Fig. 1b, we show one of the considered ANN configurations, i.e. full MLP5 , where, for 
illustration purposes, the DO and BN blocks and the RCs are highlighted in different colors.

In order to assess the training and the effect of the combination of DO, BN, and RCs on it, in Fig. 4, we show 
the MSE curves in terms of the iteration number (epoch) for both the training (dashed lines) and validation 
(straight lines) sets, considering different ANN configurations. In particular, in Fig. 4a, we present the loss func-
tions for the base and full configurations of MLP4 , MLP5 , and MLP6 . As can be seen, in the initial stage, the MSE 
curves of the training and validation follow a clear downward tendency. However, as expected, as the number of 
epoch increases, the values of the training and validation MSE saturate. Moreover, comparing the training and 
validation MSE curves, independently of the ANN configuration, the loss function of the training subset remains 
decreasing for a larger number of epochs, tending to lower values than for the validation subset. Nevertheless, 
when we compare the training and validation MSE curves in terms of the ANN configuration, as shown in 
Fig. 4b, it is possible to observe that some configurations lead to higher training MSE but lower validation MSE, 
which indicates that the model is less affected by overfitting. Thus, among the investigated configurations, the 
full MLP5 is the one showing the lowest impact of the overfitting, presenting training and validation MSEs after 
400 epochs of 2.07× 10−3 and 4.85× 10−3 . Furthermore, to isolate the effect of DO, BN, and RCs in the training 
performance, Fig. 4b presents the ‘base’ and ‘full’ configurations for the MLP5 compared to implementations 
considering all the possible combinations of the ANN improvements here considered. Comparing the configu-
rations implementing just DO, BN, or RCs, the first improvement shows the higher performance gains in terms 
of validation MSE. As can be seen, this configuration also presents a high training MSE, which indicates that, as 
expected, DO indeed tackles partially the effect of overfitting. When two of the three enhancement techniques 
are applied, we found that the combination of DO and BN leads to the best performance. This performance is 
further enhanced when we implement simultaneously DO, BN, and RCs, resulting in the ‘full’ configuration here 
proposed. In summary, this analysis reveals that an intermediate number of hidden layers (i.e., five character-
izing the MLP5 architecture), and the simultaneous adoption of DO, BN, and RCs lead to the optimum valida-
tion performance among all considered configurations. Thus, this ANN configuration will be employed on the 
MZM optimization process discussed in “Optimization of the MZM employing differential evolution” section.

At last, it is important to highlight that, while the electromagnetic simulation model (i.e., the here employed 
Lumerical Device and Model modules) takes about 3 minutes to evaluate a MZM structure on an Intel Xeon 
E5-2650 CPU, the ANN takes only 17 µs to predict the proposed metrics parameters. It is important to highlight 
that these times were calculated performing 1000 evaluations and dividing the total required time by the number 
of runs. Considering the obtained computational complexity reduction, we can now execute an heuristic algo-
rithm, such as DE, taking into consideration large size populations and high number of iterations for the MZM 
optimization, increasing the possibility to achieve the optimum configuration for a given set of requirements.

Analysis of the model prediction accuracy. The MSE adopted here as the analysis cost function con-
sidered the average value of the errors of the three MZM considered performance metrics (i.e., BWEO , IL, and 
Vπ ). Therefore, the average MSE cannot be used to assess the accuracy of the trained ANN to predict the isolated 
ANN accuracy for each metric. In order to analyze the capability of the model to predict each of these metrics, 
in Fig. 5a–c, we present a set of 50 samples of randomly selected MZM configurations from the validation subset 
to compare the outcomes of the proposed ANN model to the output of the Finite-Difference Time-Domain 
(FDTD) simulation. Thus, Fig. 5a–c, reveal that, as expected, the outputs of the ANN are qualitatively very close 

Figure 4.  MSE loss, in logarithmic scale, of the training set (dashed lines) and the validation set (straight lines) 
during the DNN training for: (a) the three investigated ANNs architectures (i.e., MLP4 , MLP5 , and MLP6 ) 
in its ‘base’ and ‘full’ configurations (i.e., without and with DO, BN, and RC, respectively); and, (b) the MLP5 
configuration with all the possible combinations of DO, BN, and RC.
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to the simulated values for the three considered MZM performance metrics. To ensure that the improved per-
formance is not an artifact introduced by the ANN and that it really corresponds to optimized MZM configura-
tions, the found configurations were simulated using the commercial FDTD simulator. Therefore, in Fig. 5d–f, 
we show the output of the ANN-based model in comparison with the values obtained through the electromag-
netic simulation model in terms of BWEO , IL, and Vπ , respectively. As can be observed, each metric is accurately 
predicted by the developed model, highlighting the BWEO and IL predictions, which meet almost perfectly the 
simulated values. However, in comparison, the Vπ ANN-based predictions present a higher error, especially for 
Vπ values above 25 V, which are not usually desired in MZM designs as they are extremely high. Overall, the MSE 
values obtained for the BWEO , IL, and Vπ performance metrics are 0.23, 5× 10−4 and 1.56, respectively, and the 
Pearson correlation coefficient is above 98% for all metrics.

Optimization of the MZM employing differential evolution
In this section, we describe the employment of the proposed ANN-based MZM model jointly with the DE 
optimization algorithm to design optical modulators considering the proposed performance metrics. For that, 
initially, the optimization methodology is described in “DE optimization employing ANN-based model” section, 
detailing the DE algorithm and its integration with the ANN-based models. Afterwards, in “Optimization of the 

Figure 5.  Accuracy results of the DNN modeling. (a)–(f) show the comparative of the ANN modeling in 
relation to the test dataset. (a), (b), and (c) show a comparative between the DNN prediction and the simulation 
setup results, for the BWEO , IL and Vπ , respectively. We utilized 50 random samples for this comparative. (d), 
(e) , and (f) show the relation between simulated and predicted performance parameters, accounting the entire 
test set. It also displays the comparison of the values of the metrics of the optimized MZMs obtained by the 
ANN-based model and by electromagnetic simulation. (g)–(l) show the comparative of the ANN modeling 
and the simulation model results for the optimisation method obtained MZMs. (g), (h) and (f) present the 
BWEO , IL, and Vπ of 50 samples, respectively. Whereas in (j), (k) and (l) it is shown the values of BWEO , IL, 
and Vπ obtained by the ANN model in terms of the simulated values for the whole set of 1,700 optimized 
configurations. The ideal relation is plotted as a dashed line, and each point is a MZM.
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MZMs for different performance metrics” section, we show that the proposed approach can effectively find MZM 
configurations that cannot be obtained by random selection of parameters unless a prohibitively large number 
of configurations are tested, being a viable solution for the design of integrated optical modulators.

DE optimization employing ANN-based model. Once the ANN model of the integrated MZM has 
been trained and validated, it can be employed to substitute the more computationally complex electromag-
netic simulation model in the figure of merit (FOM) assessment within the desired optimization  algorithm35. 
In particular, we chose the differential evolution (DE) algorithm due to its trade-off between optimization and 
computational  complexity36, being an iterative heuristic optimization method that emulates the natural evolu-
tion of the species. For that, an initial population of N tentative solutions (denominated ‘individuals’) undergoes 
an iterative process in which the best individuals in terms of the cost function are selected, combined (crosso-
ver stage), and randomly modified (differential mutation stage) to generate a new population that outperforms 
the precedent one, as depicted in the flow diagram in the inset of Fig. 6. Particularly, in the present work, we 
employed a population size of 1000 elements, a single-point crossover with a probability of 0.7, and a mutation 
intensity of 0.5. Moreover, in order to avoid any dependency on the initialization, we considered 100 independ-
ent initial populations.

Aiming to observe the refinement of a given figure of merit through the DE optimization process, in Fig. 6 
we show the evolution of the FOM of the best individual of the population considering a general FOM defined 
as BW2

EO/V
1.8
π  for each one of the 100 initial populations. This FOM was defined based on our previous  work37. 

In the present case, we did not include IL, since the optimization of BWEO already leads to lower optical  losses17. 
We slightly adjusted the weight of the parameters in order to achieve a better trade-off between the efficiency and 
modulation speed. The FOM, however, can be modified to meet specific requirements, as will be demonstrated 
in “Optimization of the MZMs for different performance metrics” section.

As can be observed from Fig. 6, all the initial populations converged to a similar value of the FOM for the 
best individual of the population, indicating that, for this optimization problem and the aforementioned DE 
configuration, it would be possible to consider just one initial population. Nevertheless, we decided to use 
multiple initial populations to ensure that any possible influence of the initial population is avoided. Moreover, 
regarding the computational cost for the optimization process, the proposed methodology requires the evalua-
tion of 5,0000,000 MZM configurations (which can be calculated by multiplying the number of initial popula-
tions, 100, the population size, 1000, and the number of iterations, 50). Thus, if each modulator configuration 
was simulated using the FDTD model, the optimization process would require 10,417 days (equivalent to 28 
years) of continuous numerical simulations. However, employing the ANN-based model here proposed only 21 
days are required to obtain the training/validation datasets, with the optimization process itself requiring only 
85 seconds. Furthermore, the same dataset can be employed as a base for several optimization processes, each 
one aiming to design the MZM that best fits the requirements for a given application scenery.

Optimization of the MZMs for different performance metrics. To analyze the MZM trade-off 
between the different metrics introduced in Sect. II.B (i.e., BWEO , IL, or Vπ ), we impose a limit for the value 
of one of them, while the other two metrics were optimized using DE. In this case, the metric constraint was 
implemented using a penalization term, which filtered out the solutions that did not verify the limit condition. 
For the case of Vπ and IL, we define two FOMs: ǫ · V−1

π  and ǫ · IL−1 . The optimization process is executed until 
Vπ reaches the threshold value Vthres

π  and IL reaches ILthres . Once this condition is met, the FOMs are redefined 
as BWEO/IL and BWEO/Vπ , respectively. Similarly, for BWEO , we define a FOM as ǫ · BWEO , and the optimiza-
tion continues until BWEO reaches the threshold value BWthres

EO  . Subsequently, the FOM becomes 1/(IL · Vπ ) . 

Figure 6.  Figure of merit (FOM) of the best individual in each generation for each iteration taking into 
account 100 different initialization configurations. In addition, as an inset, the flowchart of the DE optimization 
algorithm, in which the FOM (fitness) is estimated via the ANN-based model for the MZM.
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The term ǫ represents a small value, specifically 10−6 , which is introduced to avoid undesired regions in the 
optimization space once the appropriate threshold is achieved. As a stopping condition, we adopted a maximum 
iteration number (in this case 50 iterations), which preliminary tests indicated was enough to ensure conver-
gence. In addition, as we mentioned earlier, to reduce the convergence probability to suboptimal solutions, we 
executed the optimization algorithm with 100 independent initial populations. Following this methodology, the 
optimized FOMs for the MZMs are shown in Fig. 7. In each case, on which the left horizontal axis of the plots 
are identified in gray to indicate the constrained metric. As expected, we can note that when limiting one of the 
MZM metrics, there is a clear relation between the other two metrics. For example, in Fig. 7a we show the Vπ 
and IL of the MZM when the BWEO is limited to 30, 35, 40, and 45 GHz . These results indicate that the larger 
minimum value of BWEO is, the larger Vπ and lower IL are. Moreover, the trade-off between BWEO and Vπ is 
confirmed when we limit the value of IL, as shown in Fig. 7b, and Vπ , in Fig. 7c. This relation can be explained 
by noting that broader BWEO requires shorter MZM, which, in consequence, results in lower IL. In addition, 
since the structure is shorter, the voltage required to achieve a given phase shift is higher. Quantitatively, we can 
observe that a MZM with a 30 GHz bandwidth can be achieved with a Vπ of around 4.3 V , but, as we increase the 
bandwidth up to 50 GHz , the value of Vπ rises to almost 8 V.

To make sure that the optimized MZM configurations were indeed outperforming the randomly generated 
MZMs employed to build the training and validation datasets and that the ANN did not introduce any artificial 
improvement, the optimized configurations in this work were simulated using the method described in “ANN-
basedmodel of the MZM” section. The accuracy of the results was assessed in the same way as performed in 
“Analysis of the model prediction accuracy“ section for the validation set. Thus, in Fig. 5g–i, we compare the 
values of the metrics BWEO , Vπ , and IL for 50 samples, respectively, for optimized MZMs based on ANN pre-
dictions and simulations based on the electromagnetic model. Moreover, to assess the accuracy of the whole 
set of optimized MZMs, composed of 1,700 configurations, in Fig. 5j we show a direct comparison between the 
predicted via ANN and simulated BWEO , whereas in Fig. 5k we perform the same comparison for IL, and in 
Fig. 5l we present the results for Vπ . Overall, the results indicate a MSE of 0.51 GHz2 , 0.015 dB2 , and 0.1 V2 for 
BWEO , Vπ , and IL, respectively, while the Pearson correlation coefficient is above 99% for all cases.

Once we ensure that the FOMs of the optimized configurations were accurately modeled by the trained ANN, 
we can compare the performance of optimized and randomly generated configurations. The goal is to check 
whether the configurations obtained using DE optimization jointly with the ANN-based MZM model present 
lower Vπ values for a given BWEO or, alternatively, for a given value of Vπ , if the MZM has larger BWEO . In the 
terminology of the optimization community, this is denominated as extending the Pareto front. In this sense, 
in order to show that the proposed method indeed shifts the Pareto front, in Fig. 7d, we show the Vπ values 
in terms of the BWEO for the complete simulated dataset, as well as the optimized configurations. In addition, 
we superpose the original Pareto front (identified with a red line), allowing one to notice that the points cor-
responding to the optimized configurations are laid close to the Pareto front. For the sake of clarity, in Fig. 7e, 
we present a magnified section where the points corresponding to the optimized MZM configurations can be 
observed in more detail, revealing that the proposed optimization relaying on ANN-modeling and DE in fact 
leads to improved configurations and, consequently, resulting in the shift of the Pareto front. Furthermore, the 
optimized MZMs represent a smoother front, which indicates that it is closer to the global boundary. In general, 
these results indicate that the here proposed methodology allows one to design an integrated MZM for a given set 
of parameters with lower values of Vπ and IL and/or higher values of BWEO , improving its overall performance.

Figure 7.  Performance metrics for the 1500 attained MZMs using DE optimization. The optimization was 
carried out considering the variation of only two metrics, while the (a) BWEO , (b) IL, and (c) Vπ values were 
limited to those illustrated in the gray axis. Each cluster is composed of 100 optimized MZMs. (d) ANN training 
set and the Pareto front related to the minimum Vπ and the maximum BWEO . (e) Amplified region with 
MZMs configurations attained via DE optimization, on which different colors indicate different optimization 
conditions.
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Comparison with other optimization algorithms. Besides DE, we implemented other alternative 
optimization algorithms: genetic algorithm (GA)38, particle swarm optimization (PSO)39, and dual annealing 
(DA)40. The optimization process followed the approach shown in the inset of Fig 6. For the GA, we used an 
initial population of 10,000, selected 100 parents per iteration, set the crossover rate to 0.7, and the mutation rate 
to 1/8. For the PSO algorithm, we set a population size of 2,000, a moment of inertia of 0.5, and social and cogni-
tive coefficients of 1 and 2, respectively. In the case of the DA algorithm, we configured the initial temperature to 
5200 and defined the visit and acceptance parameters as 2.62 and −5, respectively. All algorithms were executed 
for 50 iterations.

Applying the same FOM as in “DE optimization employing ANN-based model” section, we obtained 100 
optimized MZMs for each optimization method, corresponding to random initial conditions for each execution. 
Fig 8 displays the obtained results. In Fig 8a, we compare the 400 optimized MZMs with the training dataset. 
Fig. 8b–e depict the MZMs obtained by DE, GA, PSO, and DA, respectively. Notably, all considered algorithms 
yielded improved configurations compared to the training dataset. In order to quantify and compare the per-
formance of each optimization algorithm, in Table 3, we present the average FOM for each algorithm based on 
100 different executions. The DE algorithm exhibited the highest average FOM, followed by the DA algorithm. 
Additionally, the DE algorithm demonstrated a lower standard deviation of the FOM, indicating less variation 
across runs. Table 3 also displays the minimum and maximum performance parameters achieved by each algo-
rithm. For the DE case, the BWEO was approximately 38 GHz, while the Vπ was around 6 V. Based on the more 
robust and consistent results obtained with DE, and in agreement with the findings  in41, we selected DE as the 
preferred algorithm.

Conclusions
Due to its compatibility with CMOS, Si photonics has emerged as a high-potential platform for the implementa-
tion of MZMs. However, because of the weak electro-optic effects of Si, MZMs employing this technology must 
be carefully optimized exploring the largest possible number of design parameters to achieve the best overall 
performance. To achieve this goal, in this paper, we proposed an optimization approach based on ANNs and 
DE. For that, in the first stage, we used a consolidated simulation model to acquire a dataset, which was then 
used to train and evaluate different ANN-based models to predict the value of IL, BWEO , and Vπ in terms of 8 

Figure 8.  Comparison of MZMs achieved by using different optimization algorithms. (a) ANN training set 
and the MZMs obtained via DE, GA, PSO, and DA optimization algorithms. The green colorbar shows the IL 
range, in dB, for the optimized samples, whereas the blue colorbar represents the values for the training dataset 
MZMs. (b), (c), (d), and (e) shows the MZMs obtained via DE, GA, PSO, and DA, respectively, together with 
the surrounding training dataset samples.

Table 3.  Average, standard deviation, and maximum FOM obtained for each optimization algorithm 
considering the 100 different executions. The table also shows the minimum and maximum obtained BWEO , 
IL, and Vπ for each algorithm.

Algorithm DE GA PSO DA

Average FOM 56.86 51.06 48.4 56.5

FOM standard deviation 0.17 2.31 9.8 0.53

Maximum FOM 57.09 54.86 57.15 57.11

BWEO [GHz] min/max 37.5/38.9 30/44.8 30.9/40.1 32.2/39.3

IL [dB] min/max 3.8/3.9 2.9/4.4 3.8/4.65 3.8/4.3

Vπ [V] min/max 5.9/6.2 5.1/7.6 4.8/8.1 5.1/6.4
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constitutive and operational parameters. Among the considered configurations, we found that a 5-layer MLP 
with DO, BN, and RCs is the best approach to reduce the MSE of the outputs for this specific problem. Moreover, 
the obtained results indicate that the developed model showed high prediction accuracy requiring an inference 
time 7 orders of magnitude lower than the traditional simulation in a general-purpose workstation. Such drastic 
reduction of the execution time, enabled the application of multi-agent optimization, in particular DE, with 
large population sizes, as well as tuning the optimization parameters. The results achieved using the proposed 
combination of ANN modeling and DE optimization allowed the generation of novel MZM configurations, 
which outperform randomly generated combinations of its design parameters. This is, to our best knowledge, 
the first time that ANNs are employed to design integrated MZMs. Although the obtained results are interest-
ing and show the feasibility and potential of the proposed design method, the work could be extended to more 
sophisticated MZM models, for example including the electrode-related parameters, or to test other heuristic 
optimization algorithms, such as particle swarm optimization or genetic algorithms. Future works will present 
a system performance analysis of the optimized modulator, including experimental results.

Data availibility
The datasets generated and/or analysed during the current study are available in the Figshare repository, https:// 
figsh are. com/s/ 2f4c5 4659b b3e18 f19a3.
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