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Optimization of heterogeneous 
vehicle logistics scheduling 
with multi‑objectives 
and multi‑centers
Zhaolei He 1, Miaohan Zhang 2, Qiyong Chen 2, Shiyun Chen 2 & Nan Pan 2*

Industrial enterprises have high requirements on timeliness and cost when delivering industrial 
products to their customers. For this reason, this paper studies the vehicle routing problem (VRP) of 
different vehicle models in multiple distribution centers. First of all, we consider the multi-dimensional 
constraints in the actual distribution process such as vehicle load and time window, and build a multi-
objective optimization model for product distribution with the goal of minimizing the distribution 
time and cost and maximizing the loading rate of vehicles. Furthermore, an Improved Life-cycle 
Swarm Optimization (ILSO) algorithm is proposed based on the life cycle theory. Finally, we use the 
order data that Yunnan Power Grid Company needs to deliver to the customer (municipal power supply 
bureau) on a certain day to conduct a dispatching experiment. The simulation and application results 
show that the transportation cost of transportation obtained by the ILSO algorithm is reduced by 
0.8% to 1.6% compared with the other five algorithms. Therefore, ILSO algorithm has advantages in 
helping enterprises reduce costs and improve efficiency.

The Council of Supply Chain Management Professionals (CSCMP) in its "33rd annual state of logistics report" 
shows that although the inventory of American commercial logistics enterprises fell to the lowest level in history 
in 2021, the related transportation costs increased by 21.7%1. Therefore, many enterprises urgently need to reduce 
transportation costs. At present, the loading rate of trucks used by the Metrology Center of China Southern 
Power Grid Co., Ltd to distribute electric power metering devices (a kind of electric power equipment) to the 
municipal power supply bureau is only about 55%, which wastes a lot of transportation resources2. In view of 
the current problems in the electric power equipment logistics distribution system of power enterprises, such 
as low quality and efficiency of decision-making, unscientific and unreasonable scheduling2, this paper studies 
the corresponding VRP problem against the background of the electric power equipment logistics distribution 
of Yunnan Power Grid Corporation, so as to successfully help power enterprises achieve cost reduction and 
efficiency increase. The logistics distribution of electric power equipment can be summed up as the problem of 
highway trunk transportation in cargo transportation. The core of trunk transportation is to solve the problem 
of trunk transportation no-load rate3, that is, to increase the quantity of electric power equipment delivered by a 
single vehicle on the premise of ensuring the delivery time. Below, we briefly describe the specific characteriza-
tion of the problem, in which the business model flowchart is shown in Fig. 1.

For power grid enterprises, there are usually multiple distribution centers that deliver goods to the municipal 
power supply bureau within their jurisdiction, and the models of transportation vehicles in the distribution 
centers are different. For example, China Southern Power Grid Co., Ltd has four logistics distribution centers in 
different cities. Its customers (municipal power supply bureau) are also distributed in different cities, and each 
logistics distribution center has different transport vehicles to distribute electric power equipment. In order to 
maintain profitability, the transportation companies only carry out the distribution task when the actual load 
tonnage of vehicles is higher than the minimum load limit. In addition, it is also necessary to consider the time 
window limit of the arrival time of electric power equipment required by each municipal power supply bureau. 
Therefore, the distribution of electric power equipment has the characteristics of multiple vehicle types, covering 
multiple cities, and multiple distribution centers. It is a multi-objective complex vehicle routing problem (VRP) 
involving many constraints4,5.
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In view of the above problems, different from the existing research, this paper constructs a multi-objective 
optimization model involving power equipment distribution. In the case of considering more real constraints, the 
minimum fitness function of distribution cost, the minimum fitness function of delivery time and the maximum 
fitness function of the municipal power supply bureau for single vehicle distribution are built, which makes the 
established mathematical model more practical. Further, we developed a heuristic algorithm, which draws on 
the biological life cycle characteristics to improve the group search optimization algorithm (GSO). Then, the 
variant group strategy is introduced to design an improved life-cycle swarm optimization (ILSO) algorithm for 
the model solution. Finally, based on the actual business scenario data, the simulation experiments are compared 
with other heuristic algorithms.

The paper is organized as follows: in Section “Literature review”, we present the existing literature studies. In 
Section “Modeling the distribution path problem of heterogeneous vehicles for industrial products in multiple-
depot with time windows”, we construct the corresponding mathematical model. In Section “Model solution 
based on ILSO algorithm”, we design the ILSO algorithm. In Section “Results and analysis”, we show the simula-
tion results with the application of the model and algorithm. Finally, in Section “Conclusion”, we summarize 
the whole paper.

Literature review
The VRP problem was first proposed by Dantzig et al. in 1959 in order to solve the distribution problem of oil 
tank trucks6. Further, Clarke et al. proposed a heuristic algorithm called C-W saving algorithm to solve VRP 
problem7. On this basis, relevant researchers have carried out extensive research on the problem, improved 
relevant models and algorithms, and studied the variants of VRP8,9. Therefore, this paper reviews the problem 
from three aspects: relevant models, algorithms and variants of the problem.

Model.  At this stage, most of the research on logistics distribution focus on a single distribution center10. For 
the logistics distribution of multiple distribution centers in most researches, each distribution center is respon-
sible for the customers in one region11. Unfortunately, this method is not applicable to the distribution problem 
due to the different inventory structure of each distribution center for industrial products, the influence of the 
logistics distribution radius of industrial products, and the transfer costs imposed by the legal permit system. 
In addition, some researchers have simplified the vehicle routing problem of multiple distribution centers to 
the vehicle path problem of a single distribution center12. Sadati et al. studied the trilevel r-interdiction selective 
multi-center vehicle routing problem (3LRI-SMDVRP)13. When Xiang Yang et al. studied the logistics distribu-
tion problem of multiple distribution centers, they established the corresponding objective function, but only 
minimized the distribution cost without involving other dimensions such as distribution time14. La Vega et al. 
studied the logistics distribution problem of a fleet of vehicles with the same type without considering the differ-
ent models of contracted carriers15. Z. Su et al. studied the heterogeneous vehicle logistics distribution problem 
based on the parallel heuristic algorithm, but it does not involve the logistics distribution of multiple distribution 
centers16.

The multi-center VRP problem was studied in literature17. However, similar to literature12, it only estab-
lishes the single objective function of the lowest distribution cost, and does not consider the two objectives of 

Figure 1.   Business model flow chart.
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vehicle utilization and distribution duration, nor does it consider the constraints of different types of vehicles. 
Srivastava et al. studied the multi-objective, single-center, single-type vehicle routing problem, and focused on 
the two objectives of distribution cost and distribution time18. Similarly, this work did not consider the vehicle 
utilization. On this basis, literature19 studies the path planning problem of vehicles with multiple objectives, 
single centers and multiple models. From the above work, it can be concluded that the current work on VRP has 
not established the corresponding mathematical model with the goal of minimum distribution cost, minimum 
distribution time and maximum utilization of distribution vehicles. There is no work to study the VRP problem 
of multi-target, multi-center and different types of vehicles at the same time. In addition, the above research is 
mostly based on some assumptions, such as the assumption that as long as there are goods vehicles, they will be 
delivered. This is not true in reality. The distribution company will deliver only after the loading rate of vehicles 
reaches a certain threshold.

Algorithm.  Most of the studies in the literature on algorithms for solving VPR problems are exact and heu-
ristic algorithms5. Exact algorithms struggle to give effective solutions when the objective function and con-
straints are complex. Heuristic algorithms20 are widely used because of their better parallelism and low require-
ments on the characteristics of the objective function21. Montes et al. and Onieva et al. studied the optimization 
of logistics distribution paths based on evolutionary strategies22,23. Further, Peng Jiang et al. developed an evo-
lutionary multi-objective algorithm24 to reduce the risk of dangerous goods transportation, based on which Z. 
Zhang et al. developed a multi-objective local search (MOLS) algorithm to avoid the algorithm from falling into 
local optima during the operation25. To solve the large-scale vehicle routing problem quickly and improve the 
algorithm’s convergence accuracy, Y. Zhou et al. introduced a weight-space partitioning strategy and proposed 
a decomposition-based local search algorithm26. In addition, algorithms such as Ant Colony Optimization27–29, 
Genetic Algorithm30,31, and Particle Swarm Optimization32–34 are also widely used in the field of logistics and 
distribution routing optimization. In the process of algorithm improvement, all aforementioned algorithms aim 
to improve the convergence speed and shorten the search time.

The basic Group Search Optimizer (GSO) algorithm has been widely used in optimization problems since 
it was proposed in 200635,36. Laithadualigah et al. successfully applied GSO algorithm to function selection 
(FS) problem in machine learning field, and studied the application of improved GSO search strategy in multi-
objective optimization problem37. Further, Hamidteimourzadeh et al. established a single objective mathematical 
model with the goal of reducing the total loss of the distribution system. In order to make the GSO algorithm 
have better performance in solving such problems, they improved the GSO algorithm according to the problem 
characteristics38. Literature39 also introduced the mechanism of intraspecific competition (IC) and the searching 
strategy of Lévy walk (LW) into the basic GSO algorithm to improve the performance of the GSO algorithm. It 
can be seen that GSO algorithm and its improved algorithm have been widely used in optimization problems, but 
it is worth pointing out that because of the characteristics of the search strategy composed of discoverer, follower 
and wanderer in GSO algorithm, only the discoverer can change the search direction, and its ability to jump out 
of the local extreme value is not strong in the limited solution space. In addition, no relevant researchers have 
applied GSO algorithm to VRP problems and variants of VRP problems. According to the characteristics of GSO 
algorithm and based on the characteristics of biological life cycle, an improved life-cycle swarm optimization 
(ILSO) algorithm is designed to solve the model.

Problem extension.  With the further exploration of VRP by researchers, many variants of VRP have been 
developed at this stage. For example, the traditional VRP problem is improved, and the green VRP problem is 
generated with the goal of reducing carbon emissions40; Based on the background of emergency rescue after 
the disaster, the humanitarian logistics problems41. In addition, VRP is also applied to other fields. For exam-
ple, Fanjul-Peyro et al. studied the machine scheduling problem in the manufacturing industry, improved the 
traditional VRP problem, and established a linear programming model for the machine scheduling problem42. 
Literature43 also improves the traditional VRP problem and applies it to the berth allocation and crane allocation 
of the terminal.

Modeling the distribution path problem of heterogeneous vehicles for industrial 
products in multiple‑depot with time windows
Problem description.  A industry company has multiple distribution centers in a certain area and multiple 
commercial client companies in several other areas. The statutory transportation permit system for the transpor-
tation of industrial products imposes the following limitations:

1.	 Each order of a commercial customer company must correspond to a time-effective shipping permit issued 
by the administrative department, and the order must be delivered within the validity period of the shipping 
permit.

2.	 Orders cannot be shipped by the way of cross-warehouse (Cross-warehouse or cross-docking refers to loading 
some goods from one distribution center and then loading them in another distribution center as shown in 
Fig. 1, which is not allowed.). When the inventory structure of the distribution center does not match the 
order demand, the inventory structure can be adjusted by transferring to the central warehouse to match 
demand and inventory.

3.	 A truck can carry more than one order, but each order can only be shipped by one carrier vehicle and cannot 
be shipped in separate vehicles for the same order.
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Assume that each distribution center has enough industrial products of each model. However, due to the dif-
ferent warehouse models and inventory structures of various distribution centers, their outgoing capabilities are 
also different. Assume that the stacking gap is not considered in the consideration of the maximum load capacity, 
the default is no gap, different specifications of cargo packaging are the same. The unloading time is the same at 
each commercial customer company: three hours. Industry enterprises stipulate that when the no-load rate of 
each vehicle is less than 5%, a subsidy of 40 China Yuan (CNY) per vehicle trip is provided.

Symbol description.  Table 1 gives the symbol description of part of the model as follows.

Mathematical model.  Molina et al. established an adaptation degree function with minimum transporta-
tion cost and maximum service customers based on the heterogeneous vehicle path problem with hard time 
windows, which is valuable for the heterogeneous vehicle scheduling problem44. But its shortcoming is that it 
sets the transportation cost as a secondary optimization objective and does not consider the loading rate of the 
vehicle. Under this model, the loading rate of the vehicle is often too low, wasting resources and decreasing effi-
ciency. In addition, there are also some studies2,3 in which the shortest total transportation mileage is the objec-
tive. They do not consider the vital influence of transportation volume. For example, when the aim is to mini-
mize the transportation mileage, minimizing the freight expense (fuel consumption) when the vehicle is empty 
is neglected, leading to incomplete optimization and other problems. Therefore, this paper further improves the 
mathematical model established in document41, and builds the objective functions for shortest transportation 
time, lowest transportation cost, and most customers served by a single vehicle. Taking multiple objectives into 
account ensures the lowest transportation cost and shortest distribution time, improves the vehicle loading rate 
as much as possible, avoids wasting resources, and optimizes transportation routes and vehicle allocation. These 
improvements all contribute to improved distribution of industrial products.

Calculation rules for logistics, distribution, and transportation costs of industrial products are as follows:

where Pactual represents the actual freight, η represents the unit price of transportation in CNY/(Ton× km) ; ω 
is the weight of the cargo transported in Ton ; L is the transportation distance in km.

(1)Pactual = η × ω × L

Table 1.   Symbol description of part of the model.

Symbol Meaning

G Distribution network,G = (V ,A)

V Point set,V = U ∪ J

A Arc set,A =
{(

i, j
)
∣

∣i, j ∈ V , i �= j
}

U Distribution center collection,U = {1, 2, · · ·, u}

J Business customer company collection, J =
{

1, 2, 3, · · ·, j
}

Luj The distance from the u distribution center to the j commercial customer company,∀Luj ∈ A

Ljj′ The distance from the j to the j′ commercial client company,∀Ljj′ ∈ A

M Model collection of contracted carriers,M={1, 2, · · · ,m}

X Contracted carrier vehicle number,X = {1, 2, · · ·, x}

xm The model of vehicle x is m

ωj Tonnage of the order of the j commercial customer company

ωxmj Tonnage of cargo delivered by vehicle x to the j − th commercial customer company

ωxmu The tonnage of cargo loaded by vehicle x at the u− th distribution center

txmu Pick-up time of vehicle x at the u− th distribution center

txmj The storage time of vehicle x in the j − th commercial customer company ( tcmj = 3)

T
uj
xm The time for vehicle x from the u− th distribution center to the j − th commercial customer company

T
jj′

xm The time for vehicle x from the j − th to the j′ − th commercial client company for vehicle

Vu Shipment speed of the u distribution center

Px Indicates the total cost of vehicle x in the transportation process

Tx Indicates the total time of vehicle x in the transportation process

vm Average speed of vehicles of model m

Wumax Maximum daily shipment weight of distribution center u

βxmj Decision variable, which indicates whether vehicle x distributes to commercial customer company j,βxmj ∈ {0 1}

αxmu Decision variable, which indicates whether vehicle x starts from distribution center u,αxmu ∈ {0 1}

ξxm
Decision variable, ξxm ∈ {0 1} , which indicates whether the loading rate ( ωcmu/ωcmax ) of goods loaded by vehicle x is greater 
than 95%

yxmj,j′
Decision variable, which indicates whether vehicle x directly arrives at commercial customer company j′ from commercial 
customer company j during distribution,yxmj,j′ ∈ {0, 1}
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Therefore, this paper aims to minimize the transportation time, minimize the transportation cost, and maxi-
mize the average number of customers distributed by each vehicle. The model of the distribution route problem 
of heterogeneous vehicles with time windows for products in multiple distribution centers is as follows:

where jmax is the number of commercial client companies.

where formula (3) is the calculation formula for the total cost of vehicle x in the transportation process. 
H
∑

j=1

ωxmj 

is the weight of industrial products of commercial customer companies that have been delivered by vehicle x 
before delivery to customer j′ . Where, H is the number of commercial customer companies that vehicle x has 

delivered before delivering to customer j′, j′ is the customer ∀H ∈ J , ∀j′ ∈ J . When 
H
∑

j=1

ωxmj = 0 , Ljj′ = Luj.

The total time Tx of a vehicle during transportation is defined as follows.

where txmj is the warehousing time of vehicle x in the j-th commercial customer company, which is easy to know 
from the assumption txmj = txmj = 3h.The calculation methods of Tuj

xm , Tjj′

xm and txmu are respectively shown in 
formulas (5), (6) and (7).

The constraints of this article are shown in formulas (8)-(18).
s.t.

(2)min f =
∑

x∈X

Px ×
∑

x∈X

Tx×

∑

u∈U

∑

x∈X
αxmu

jmax

(3)

Px = η ×
�

j∈J



(ωxmu −

H
�

j=1

ωxmj)× Ljj′



− 40×
�

x∈X

ξxm

= η ×
�

j∈J



(
�

j∈J

ωxmj −

H
�

j=1

ωxmj)× Ljj′



− 40×
�

x∈X

ξxm

(4)
Tx = txmu + T

uj
xm +

∑

j,j′∈J
j �=j′

(

T
jj′

xm × xxmj,j′
)

+
∑

∀j∈J

(

txmj × βxmj

)

(5)T
uj
xm =

Luj

vm
, ∀x ∈ X; ∀u ∈ U; ∀j ∈ J; ∀m ∈ M

(6)T
jj′

xm =
Ljj′

vm
,∀x ∈ X; ∀m ∈ M; ∀j, j′ ∈ J; j �= j′

(7)txmu =
ωxmu

Vu
, ∀x ∈ X; ∀u ∈ U; ∀m ∈ M

(8)ωmmin ≤ ωxmu ≤ ωmmax,∀x ∈ X; ∀u ∈ U; ∀m ∈ M

(9)ωxmu =
∑

j∈J

ωxmj × βxmj , ∀x ∈ X; ∀u ∈ U; ∀m ∈ M

(10)
∑

u∈U

ωxmu ≤ Wumax,∀x ∈ X; ∀m ∈ M

(11)
∑

x∈X

αxmj = 1, ∀m ∈ M; ∀j ∈ J

(12)
∑

j∈J

βxmj ≤ 3, ∀m ∈ M; ∀x ∈ X

(13)
Tj ≥ txmu + T

uj
xm +

∑

j,j′∈J
j �=j′

T
jj′

xm +
∑

j∈J

txmj × βxmj , ∀x ∈ X; ∀u ∈ U; ∀m ∈ M

(14)
∑

x∈X

αxmu ≤ δmmax,∀m ∈ M; ∀u ∈ U
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where formulas (8) and (9) constrain the upper and lower limit of loading of vehicle x . Formula (10) is the daily 
shipment limit of the distribution center u , which is determined by the warehouse structure, staff, and work-
ing hours. Formulas (11), (12), and (13) represent the limitation of the statutory transportation permit system. 
Formula (11) indicates that the vehicle cannot be loaded cross-warehouse; Formula (12) means that a delivery 
vehicle visits no more than three municipal power supply bureaus; Formula (13) enforces completion of the 
delivery task within the specified time. Formula (14) indicates that the vehicle type performing the delivery task 
does not exceed its upper limit. Formula (15) indicates that a customer can be served only once. Formula (16) is 
the sum of the customers served by each vehicle equals the total number of customers constraint. Formula(17) 
restricts the conservation of the in and out flow of vehicles in the distribution center, which means that vehicles 
can only directly reach one customer point from a distribution center. Formula (18) ensure the balance of the 
flow of vehicles entering and leaving the customer company in the service process.

Model solution based on ILSO algorithm
The basic Group Search Optimizer (GSO) algorithm has been widely used in optimization problems since it was 
proposed in 200632–34. However, when solving a problem with strong constraints, the optimal solution produced 
may no longer meet the requirements, and many local optimal solutions may also be produced. In addition, tra-
ditional mathematical optimization methods or some exact methods start from a single point in the search space 
and determine the next point through specific conversion rules. Compared with swarm intelligence optimization 
algorithms, their parallelism is lower. Therefore, this paper adopts the Life-cycle Swarm Optimization (LSO) 
algorithm, which is based on the life cycle characteristics of organisms and varies the number of populations 
in the algorithm. Further, we innovatively use the logistic population prediction model to predict the number 
of individuals in the control population and dynamically adjust the number of individuals in the population. 
This method simulates the natural evolution process of the population in the biological world. By making the 
population individuals more diverse, convergence happens faster in the optimization process. One can also 
control the time cost of the algorithm and improve the solution speed. The LSO algorithm provides an excellent 
choice to solve the problem of cargo distribution. Moreover, the LSO algorithm represents the parameter set 
of the problem as an individual and runs in the form of code instead of solving the parameters themselves as 
in traditional optimization algorithms. Therefore, when a computer processes the complex logistics scheduling 
model, the algorithm in this paper has good operability.

The basic LSO algorithm simulates the main processes of the life cycle, including growth, development, 
reproduction, and death. The summary of the basic LSO algorithm is as follows:

1)	 Parameter initialization.
2)	 Initialize the population randomly.
3)	 Assess the fitness value.
4)	 Iterative update of population individuals:

a)	 Perform chaotic chemotaxis operation: use Logistic equation to perform a chaotic search on the basis 
of the best individual in the current population.

b)	 Perform assimilation or transposition operation: the assimilation operation makes the individual evolve 
toward the optimal individual position, and the transposition operation makes the individual search 
within the energy range of its own.

c)	 Perform a breeding operation: pair the individuals in the population in sequence and perform a single-
point crossover operation.

d)	 Perform death operations: sort the population individuals linearly according to their fitness values, 
adjust the fitness values, and select individuals for better optimization using roulette.

e)	 Perform mutation operation: change the evolution direction of the population according to the mutation 
probability.

f)	 Update the global extremum: calculate the fitness of individuals in the current population and update 
the current optimal individuals.

5)	 If the preset iteration stop condition is reached, the optimal solution and its fitness value will be output; if 
not, return to step 4.

(15)
∑

x∈X

βxmj = 1, ∀m ∈ M; ∀j ∈ J

(16)
∑

x∈X

∑

m∈M

∑

j∈J

βxmj = n

(17)
∑

x∈X

yxmj,u = 1, ∀ j ∈ J; ∀u ∈ U; ∀m ∈ M

(18)

∑

j∈J
j �=j′

yxmj,j′ =
∑

k,j′∈J
k �=j′

yxmj′ ,k ,∀x ∈ C; ∀m ∈ M
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Explanation of symbols involved in the ILSO algorithm.  Xk
i  : In the k-th generation, the transporta-

tion scheduling plan represented by the i-th individual;NU : Number of distribution centers;NM : Number of mod-
els;Nod : Number of orders;Num : The number of vehicles with model m under the u-th distribution center;Xk

i (j).u : 
Delivery center number of the shipping order number j , u = 1, 2, 3, 4;Xk

i (j).m : Model number of shipping order 
number j , m = 1, 2, 3;Xk

i (j).δ : The vehicle number of the shipping order number j , δ = 1, 2, . . . ,Num;Tmax : Max-
imum number of population iterations.

The application of ILSO algorithm in the model.  When applying the algorithm to a specific model, it 
is necessary to design the specific structure of the solution according to the actual problem, so that the problem 
can be adapted to the algorithm. The ILSO is divided into different phases to optimize different aspects of the 
problem at hand, just like how individuals go through different stages in their life cycle. And it draws on the char-
acteristics of the biological life cycle: the number of individuals in the biological population is constantly chang-
ing, which conforms to the logistic population growth model. The ILSO algorithm also incorporates reproduc-
tion and mutation, which are biological processes that help population adapt and evolve over time. We also 
adopt multi-point crossover instead of single-point crossover to breed offspring individuals, and add roulette 
strategy when eliminating individuals. Based on this, we proposed the ILSO algorithm.

The algorithm flow chart is shown in Fig. 2.

Representation of the solution.  In the LSO algorithm, the position of an individual represents a solution to 
the problem, that is, a transportation scheduling plan. Due to the complex and complementary constraints of 
the model in this paper, the coding scheme must be intelligently designed, or it will be difficult to optimize the 
problem. But after modeling the problem reasonably and expressing the solution structure of the problem with 
an appropriate coding scheme, the algorithm proposed in this paper is suitable for most logistics scheduling 
optimization problems and has good adaptability.

Based on this model, for a transportation scheduling scheme u , the distribution center g accepts the order 
group m and distributes it to the δ-th vehicle of the model. The order group m consists of 1–3 orders, which is a 
non-empty subset of the batch of orders, and the intersection of all order groups in a transportation scheduling 
plan is an empty set. The allocation of these orders is the multi-objective problem to be solved in this paper, 
including transportation time, transportation costs, and the completeness of order allocation. The algorithms 
need to balance the three of them to obtain the optimal objective function value. To make the delivery distance 

Figure 2.   Algorithm flow chart.
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as short as possible, the delivery order of each order in the order group is determined by the Prim algorithm. It 
can be seen that the transportation scheduling plan of an order is determined by (u,m, δ) pair. The schematic 
diagram of the above-mentioned dispatching transportation process is shown in Fig. 3. The individual coding 
adopts the form of a structure array.

Initialization of the population.  Due to the constraints of the upper and lower limits of vehicle loading and the 
number of orders, the allocation of orders is restricted. When the number of orders increases, the schemes that 
meet all constraints will drastically decrease, which is not conducive to the optimization of the algorithm. First, 
divide a batch of orders into several order groups, and filter the order groups that meet the upper and lower lim-
its of vehicle loading and the number of orders. This initial optimization of the population individuals avoids the 
situation where the fitness of a large number of individuals in the population is extremely low.

Based on the above discussion, the population initialization steps are as follows:

1.	 Initialize the X · u , X ·m of each order according to the number of distribution centers NU , the number of 
vehicle types NM , and the order grouping scheme.

2.	 Find the number of vehicles X · u with model X.m under distribution center Num and X · δ as a random 
integer of [1,Num].

3.	 Repeat steps 1 and 2 to generate popmax individuals.

The schematic diagram of the initial population generation is shown in Fig. 4, which is the structure matrix 
(popmax × Nod).

After popmax individuals are generated, the individual fitness value is calculated, and N1
pop individuals are 

selected as the primary population according to the roulette method.

Evaluation of individual fitness.  The fitness value of the individual is calculated by the objective function. The 
corresponding law of the objective function is denoted as f  , then for the individual Xk

i  , its fitness value is f (Xk
i ) . 

If the individual does not meet the constraints, assign a maximum value to its fitness.

Chaotic chemotaxis operation.  The chaotic chemotaxis operation is a global search operation, which prevents 
the algorithm from falling into a local optimum due to insufficient search capabilities. The logistic equation is 
a typical chaotic system. The specific steps of using the logistic equation to perform chaotic operations on the 
optimal transportation scheduling plan Xk

g are as follows:

Map Xk
g to the domain [0, 1] of the logistic equation to generate the initial chaotic variable Z(1)

c  , as shown in 
formula (19).

Figure 3.   Schematic diagram of forming a dispatching transportation plan.
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2. From the initial chaotic variable Z(1)
c  , a sequence of chaotic variables is generated iteratively according 

to the Logistic equation. The formula for the (n + 1)-th chaotic variable Z(n+1)
c n = 12,3... is shown in (20).

3. The chaotic variable sequence Z(n)
c  is restored to the solution space by inverse mapping to obtain X(n)

c

(n = 1, 2, 3...) . Since the variables involved in this paper are integers, it needs to be rounded after restoration. 
The calculation formula for X(n)

c  is

4. Calculate f (X(n)
c )(n = 1, 2, 3 . . .) , if f (X(n)

c ) < f (Xk
g ) , update the k-th generation optimal transportation 

scheduling plan, that is, let Xk
g = X

(n)
c .

Assimilation operation or transposition operation.  Except for the best individual in the population, other indi-
viduals perform assimilation or transposition operations according to the selection probability Pselect . The math-
ematical model that generates Xk+1

i  from the assimilation operation of the transportation scheduling plan Xk
i  is:

The mathematical model of Xk
i  transposition operation to generate Xk+1

i  is

(19)Z(1)
c (j)







































Z(1)
c (j) · u =

Xk
g (j) · u− 1

NU − 1

Z(1)
c (j) ·m =

Xk
g (j) ·m− 1

NM − 1

Z(1)
c (j) · δ =

Xk
g (j) · δ − 1

Num − 1

(j = 1, 2, . . .Nod)

(20)Z
(n+1)
c = Z

(n)
c · (1− Z

(n)
c )

(21)X(n)
c (j)























X(n)
c (j) · u =

�

Z
(n)
c (j) · u× (NU − 1)+ 1

�

X(n)
c (j) ·m =

�

Z
(n)
c (j) ·m× (NM − 1)+ 1

�

X(n)
c (j) · δ =

�

Z
(n)
c (j) · δ × (Num − 1)+ 1

�

, (j = 1, 2, . . .Nod)

(22)Xk+1
i (j)















Xk+1
i (j) · u = [Xk

i (j) · u+ r1 · (X
k
g (j) · u− Xk

i (j) · u)]

Xk+1
i (j) ·m = [Xk

i (j) ·m+ r1 · (X
k
g (j) ·m− Xk

i (j) ·m)]

Xk+1
i (j) · δ = [Xk

i (j) · δ + r1 · (X
k
g (j) · δ − Xk

i (j) · δ)]

(j = 1, 2, . . .Nod)

Figure 4.   Schematic diagram of the generation of the initial population.
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� is the range of the entire solution space, the range between ubki  and lbki  is the maximum search range of Xk
i  , 

ϕ is called the transposition step length of Xk
i  , and r1 , r2 are uniformly distributed random numbers in (0, 1), Xk

p 
is the optimal transportation scheduling plan for population in k-th generation.

Breeding operation and its improvement.  The multipoint crossover was used for two individuals to reproduce 
offspring individuals according to the crossover probability Pcross . The multipoint crossover schematic is shown 
in Fig.  5. The reproduction operation in the original algorithm uses single-point crossover. Compared with 
multi-point crossover, single-point crossover is slower. In larger-scale problems, it will significantly increase 
the time cost of the algorithm, and the contribution to the diversity of offspring is less than that of multi-point 
crossover. Therefore, the algorithm in this paper adopts a multi-point crossover method.

Death operation and its improvement.  The original algorithm uses a linear sorting method to adjust the popu-
lation individuals according to their fitness values, and the adjusted fitness values are arranged in descending 
order, and then the individuals are selected by the roulette method. On this basis, this paper uses the logistic 
population growth model to control the number of individuals in each generation. The number of population 
individuals dynamically changes according to the logistic population growth model, which can shorten the algo-
rithm’s running time while ensuring the accuracy of convergence.

Assuming that the number of individuals in the k-th generation of the population is Nk
pop , the number of 

individuals in the initial generation is N1
pop , and the maximum population size set by the algorithm is popmax . 

When the number of individuals in the population reaches popmax

2
 at k = Tmax

2
 , we can use the following equation 

of the logistic model to calculate the population growth rate r , and the number of individuals per generation:

In this paper, we use the elite strategy, i.e., the best individual is retained each time the roulette is performed, 
to prevent the best individual of the population from being eliminated, resulting in the algorithm’s stability 
being affected.

The roulette algorithm uses the idea that each individual’s probability is proportional to its fitness. The 
implementation steps are as follows:

(a)	 Calculate the probability of each individual being inherited into the k + 1 generation population from the 
fitness value f (Xk

i ) for each individual in the kth generation P(Xk
i ):

(b)	 Calculate the cumulative probability of each individual q(Xk
i ):

(c)	 Randomly generate random numbers r3 in [0,1]. If q(Xk
i−1) < r3 ≤ q(Xk

i ) , then select individual Xk
i .

(23)
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Figure 5.   Schematic diagram of multi-point crossing.
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Mutation operation.  Mutation is used to promote the diversification of individuals in the population and pre-
vent the algorithm from falling into a local optimum. The individual Xk

i  in the population performs a directional 
mutation operation according to the mutation probability Pmutate , and changes the asynchronous length to Lki :

Then Xk
i  is updated after mutation:

Results and analysis
Results.  In this section, we take an example of some pending orders for delivery on a particular day from 
China Southern Power Grid Co., Ltd,. The order information is shown in Table  2, and the distance matrix 
between each commercial customer company as well as the distribution center is shown in Table 3. S1, S2, S3 

(28)Lki (j)















Lki (j) · u = [r3 · (NU − 1)]

Lki (j) ·m = [r3 · (NM − 1)]

Lki (j) · δ = [r3 · (Num − 1)]

(j = 1, 2, . . .Nod)

(29)Xk
i (j)















Xk
i (j) · u = Xk

i (j) · u+ Lki (j) · u

Xk
i (j) ·m = Xk

i (j) ·m+ Lki (j) ·m

Xk
i (j) · δ = Xk

i (j) · δ + Lki (j) · δ

(j = 1, 2, . . .Nod)

Table 2.   Order information table.

Order city Order weight (tons) Valid time of transport permit (days) Order city Order weight (tons)
Valid time of transport 
permit (days)

C1 7 8 C21 8 10

C2 8 8 C22 6 10

C3 9 8 C23 10 10

C4 7 8 C24 6 10

C5 10 8 C25 11 10

C6 5 8 C26 9 11

C7 7 9 C27 5 11

C8 9 8 C28 6 12

C9 6 9 C29 6 12

C10 15 9 C30 6 11

C11 8 8 C31 8 11

C12 9 8 C32 8 11

C13 6 8 C33 7 11

C14 5 8 C34 7 13

C15 11 10 C35 5 13

C16 7 10 C36 10 13

C17 13 10 C37 11 8

C18 11 10 C38 11 8

C19 5 10 C39 9 8

C20 7 10 C40 5 8

Table 3.   Distance matrix (Unit: km).

C1 C2 … C40 S1 S2 S3 S4

C1 0 96 … 775 2781 2612 2722 2423

C2 96 0 … 862 2759 2590 2702 2477

C3 394 388 … 766 2335 2186 2265 2037

C4 141 168 … 727 2529 2482 2562 2253

… … … … … … … … …

C30 1073 1034 … 1756 3854 3715 3887 3643

C31 918 910 … 1499 3848 3699 3732 3471

C32 1057 1043 … 1650 3968 3819 3919 3658

C40 775 862 … 0 2518 2479 2651 2316
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and S4 respectively represent Honghe, Huize, Kunming and Qujing distribution centers in Yunnan Province. 
This enterprise has four distribution centers, which are responsible for the distribution of industrial products for 
municipal power supply bureaus across the country and the information of each distribution center is shown in 
Table 4. All vehicles of each contracted carrier are one of three types of vehicles M = {1, 2, 3} , and the vehicle 
information is detailed in Table 5. According to the data provided by China Southern Power Grid Co., we found 
that the unit price of transportation is µ = 0.25CNY/(Ton · km) and a box of industrial products weighs 50 kg. 
The location codes for each commercial customer company are shown in Table 6.

The parameters of the algorithm, such as the population size, are shown in Table 7. These parameters are the 
best parameters selected by multiple tests to solve the problem in this paper.

The algorithm programming tool in this paper was MATLAB R2017a, the operating system was Windows 
10, the computer memory was 16G, and the CPU was Intel i7-8750H. For comparison, the developed algorithm 
was compared with five other biological heuristic algorithms including Bat Algorithm (BA), Particle Swarm 
Algorithm (PSO), Whale Algorithm (WOA), Gray Wolf Algorithm (GWO), Mayfly Algorithm (MA), and con-
ducted fifteen simulation experiments in total. The results are as follows, including the planning results of the 
ILSO algorithm during the fifteen runs of each algorithm randomly selected (Table 8), the convergence curve of 
the five algorithms at that time (Fig. 6), and the comparison table of each dimension index (Table 9). The com-
parison chart of the optimal/worst convergence curves of the five algorithms running fifteen times (Figs. 7,8), 
the comparison of average convergence curves, and the comparison table of indicators (Fig. 9, Tables 10, 11).

In Table 9, the definitions of individual indicators (I1, I2,…) are shown in Table 10. Noteworthily, objective 
function value is calculated by multiplying the time spent on each group of orders by the freight of this distance, 
and then sum them up, rather than simply multiplying the total freight by average transit time.

A further experiment involved selecting the city name from the database and randomly generating a series 
of orders of different numbers corresponding to the valid time of the transportation permit. We conducted 16 
random generation orders, and the order quantity increased from 15 to 30. This examined the stability and 

Table 4.   Daily shipment limit and shipment speed of each distribution center.

Storage section S1 S2 S3 S4

Sunrise storage capacity (box) 7140 1200 10,600 17,000

Single shift speed (Box/hour) 2520 480 3780 2400

Table 5.   Vehicle Information Parameter Table.

Vehicle model (m) 1 2 3

Loading limit (ωmmin) 13t 16t 15t

Loading limit (ωmmax) 24t 27t 25t

Average daily mileage of

Vehicles (km) 648 648 648

Vehicle quantity 16 11 18

Table 6.   Business customer company location code.

City Symbol City Symbol City symbol

Beijing C1 Dalian C16 Songyuan C31

Tianjin C2 Benxi C17 Harbin C32

Handan C3 Anshan C18 Daqing C33

Baoding C4 Dandong C19 Heihe C34

Shijiazhuang C5 Fushun C20 Qiqihar C35

Hengshui C6 Tieling C21 Shangzhi C36

Qinhuangdao C7 Panjin C22 Ulanhot C37

Cangzhou C8 Jinzhou C23 Erenhot C38

Chengde C9 Yingkou C24 Hailar C39

Zhangjiakou C10 Fuxin C25 Linhe C40

Xingtai C11 Changchun C26 Honghe S1

Langfang C12 Siping C27 Huize S2

Shahe C13 Tonghua C28 Kunming S3

Botou C14 Baicheng C29 Qujing S4

Shenyang C15 Dunhua C30
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dynamic performance of the algorithm, and the effect of varying the number of orders on the running time of 
each algorithm and the optimal objective function. The results over sixteen runs are shown in Fig. 10.

Figure 10a shows the effect of the change in the number of orders on the running time of each algorithm. 
Figure 10b shows the effect of the change in the number of orders on the optimal objective function over the 
fifteen runs of each algorithm.

Table 7.   Algorithm parameter table.

Algorithm Parameter Symbol Value

PSO

Initial population popnew 807

Maximum number of iterations Tmax 60

Learning factor c1 2

Learning factor c2 2

Inertia weight ω′ 0.65

Maximum particle velocity VMAX 1.2

Particle minimum velocity VMIN -1.2

ILSO

Initial population N1
pop 10

Maximum population popmax 807

Maximum number of iterations Tmax 60

Probability of choice Pselect 0.8

Crossover probability Pcross 0.7

Mutation probability Pmutate 0.1

BA

Initial population popmax 807

Maximum number of iterations Tmax 60

Minimum frequency fmin 0

Maximum frequency fmax 1

Initial transmission frequency ro 0.7

Constant α 0.9

Constant γ 0.9

WOA
Initial population popnew 807

Maximum number of iterations Tmax 60

GWO
Initial population popnew 807

Maximum number of iterations Tmax 60

MA

Initial population popnew 807

Maximum number of iterations Tmax 60

Positive attraction constants a1 0.6

Positive attraction constants a2 0.8

The fixed visibility coefficient β 0.2

Table 8.   Randomly selected planning results for one of the fifteen runs of the ILSO algorithm.

Route Specific route Delivery model

1 S1 → C5 → C12 → S1 Model 1

2 S1 → C10 → C28 → S1 Model 3

3 S2 → C15 → C21 → S2 Model 1

4 S2 → C9 → C25 → C24 → S2 Model 1

5 S2 → C18 → C16 → C34 → S2 Model 2

6 S2 → C13 → C17 → C27 → S2 Model 2

7 S2 → C14 → C7 → C35 → S2 Model 3

8 S2 → C22 → C29 → C36 → S2 Model 3

9 S2 → C11 → C40 → C38 → S2 Model 3

10 S2 → C20 → C26 → C31 → S2 Model 3

11 S3 → C8 → C23 → S2 Model 3

12 S3 → C2 → C30 → C32 → S2 Model 3

13 S4 → C4 → C1 → C19 → S2 Model 1

14 S4 → C37 → C33 → S2 Model 2

15 S4 → C3 → C6 → C39 → S2 Model 3
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In addition, in order to further study the stability and reliability of the algorithm, we also conducted the 
Solomon’s benchmark test of vehicle routing problem with time window constraints and parameter sensitivity 
analysis of ILSO algorithm. The average iteration curve after 50 runs of each of the six algorithms is shown in 
Fig. 11. More detailed results are shown in Table 12. Parameter sensitivity analysis of ILSO algorithm is shown 
in Fig. 12. In Fig. 12, (a) ps in the figure represents probability of choice, (b) pc in the figure represents crossover 
probability, and (c) pm in the figure represents mutation probability.

In Table 12, the definitions of individual indicators (I6, I7,…) are shown in Table 13.

Figure 6.   Convergence curve of the objective function in a certain run of five algorithms.

Table 9.   Comparison table of the metrics for each of the five algorithms for a given run.

Algorithm

Index

I1 I2 I3 I4 I5

PSO 436,281.83 53,593.22 5.86 14,380,209.98 3

GWO 439,886.08 53,993.22 5.90 14,595,135.93 2

WOA 437,686.33 53,698.22 5.87 14,448,746.91 1

BA 436,301.83 53,508.22 5.85 14,358,496.82 1

MA 436,387.26 53,564.22 5.89 14,307,749.80 2

ILSO 432,763.58 53,201.22 5.82 14,193,775.96 3

Figure 7.   The convergence curve of the optimal objective function of each algorithm in the fifteen runs of the 
five algorithms.
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In the following, we show the developed model and the interface of the algorithm applied to the scheduling 
system of China Southern Power Grid Co., Ltd. In addition, a screenshot of the order details interfaces after the 
logistics distribution multi-objective optimization model and ILSO algorithm has been calculated for a certain 
day’s order is exhibited. It includes the order quantity, the number of vehicles of the delivered customer company, 
and the required vehicle information, as shown in Fig. 13.

Result analysis.  The above simulation experimental results show that the ILSO algorithm proposed in this 
paper is very applicable to the strongly constrained problem of logistics distribution by multi-center heteroge-
neous vehicles under multidimensional constraints. Table 9 shows that when the corresponding parameters of 
each algorithm are the same, the total freight, total route length, average transportation time, objective func-
tion value, and the number of vehicles with an empty load rate of less than 5%, the ILSO algorithm is the best. 

Figure 8.   Convergence curve of the worst objective function of each algorithm in fifteen runs of five 
algorithms.

Figure 9.   Average convergence curve of the objective function over fifteen runs of the five algorithms.

Table 10.   In Table 9, the meaning represented by each indicator.

Contents Contents

Total freight (CNY) I1 Objective function value I4

Total route length (km) I2 The number of vehicles with an idling rate of less than 5% I5

Average transit time (days) I3
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ILSO algorithm reduces transportation cost by 0.8%, 1.6%, 1.1%, 0.8%, and 0.8% compared with PSO, GWO, 
WOA, BA and MA respectively. According to the survey, the Yunnan Power Grid Corporation’s transfer costs 
counted between May 2019 and May 2020 is 1, 480.371× 104 CNY, which will enable the group to save at least 
11.843× 104 CNY per year on freight costs. In addition, Table 9 shows that the ILSO algorithm results in the 
shortest average transit time, which greatly improves the on-time delivery of industrial products. Figure 6 shows 

Table 11.   The index values of the five algorithms during fifteen runs.

Algorithm

Index

Optimal solution of objective function Worst solution of objective Average running time (seconds)

PSO 14,323,058 15,827,555 152.107

GWO 14,280,636 15,852,784 154.821

WOA 14,293,834 16,247,874 168.380

BA 14,415,635 15,889,506 155.153

MA 14,281,815 16,096,964 158.573

ILSO 14,030,245 15,825,517 104.959

Figure 10.   Effect of variation in the number of orders on the running time and optimal objective function of 
each algorithm.

Figure 11.   The average iteration curve of objective function value for Solomon’s VRPTW benchmark test after 
50 runs.
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that the ILSO algorithm has the fastest convergence speed and highest convergence accuracy than the other five 
algorithms.

Furthermore, from the convergence curves of each algorithm’s optimal, worst, and average objective func-
tion in the fifteen runs of the five algorithms (Figs. 7, 8, 9) and Table 10 can conclude that the ILSO algorithm 
is the best from the perspective of the optimal value, the worst value, and the average value. It can be seen from 
Table 10 that in the process of running the five algorithms fifteen times, the average running time of the ILSO 

Table 12.   The index values of the five algorithms during fifteen runs.

Algorithm

Index

I6 I7 I8 I9 I10

PSO 820,534.94 23 3602.97 22 95

GWO 840,181.88 24 3634.01 25 100

WOA 628,406.96 24 3509.95 22 94

BA 667,769.95 25 3553.67 23 96

MA 710,109.54 24 3666.91 23 96

ILSO 567,334.37 24 3373.42 17 92

Figure 12.   Parameter sensitivity analysis of ILSO algorithm.

Table 13.   In Table 12, the meaning represented by each indicator.

Contents Contents

Objective function value I6 Number of routes violating constraints I9

Number of vehicles used I7 Number of customers violating constraints I10

Vehicle driving distance I8
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algorithm is the shortest, only 104.9593 s. Compared with the other five algorithms, it saves 47.78%-60.42% of 
the calculation time, which provides a guarantee for the designed model and algorithm to solve larger orders. As 
seen in Fig. 10, each algorithm increases the corresponding running time as the number of orders increases, and 
it shows ILSO has better performance on running time. For Solomon’s VRPTW benchmark test, it can be seen 
from Fig. 11 and Table 12 that ILSO has great advantages in the indicators of vehicle driving distance, number 
of routes violating constraints and number of customers violating constraints. Figure 12 shows after more than 
50 iterations, as the parameters change, the objective function value has little impact, indicating that the 60 
iterations set in this work are reasonable. We applied the model and ILSO algorithm in the paper to the actual 
logistics scheduling, and developed a set of logistics scheduling system. Figure 13 is the interface of the system, 
which can efficiently and reasonably conduct logistics scheduling.

Conclusion
This research focuses on the logistics and distribution of industrial products. It focuses on the cross-regional 
heterogeneous vehicle scheduling mathematical model and algorithm design of multi-distribution centers and 
multi-municipal power supply bureaus. It develops an ILSO, making it the best in solving forty commercial client 
companies 6380 dan industrial products.

First, a mathematical model of cross-regional heterogeneous vehicle scheduling with multiple distribution 
centers and multiple municipal power supply bureaus was established, and the ILSO algorithm was further 
developed. Then, finally, by processing the pending orders of China Southern Power Grid Co., Ltd, one day. The 
overall results show that the ILSO algorithm has higher convergence speed, convergence accuracy, and lower 
computing time than the other five biological heuristic algorithms. Furthermore, compared with the other five 
algorithms, the results of this algorithm reduce transportation costs by 0.8%-1.6% and reduce computing time 
by 47.78%-60.42%. Moreover, the ILSO algorithm can solve large-scale examples in the shortest time. It can 
be effectively applied in the dispatching system developed by the group, effectively solving the multi-objective 
complex heterogeneous vehicle routing problem involving numerous constraints.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to the confiden-
tiality agreement signed between Kunming University of Science and Technology and China Southern Power 
Grid Co., Ltd, but are available from the corresponding author on reasonable request.
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