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Minimization of the threshold 
voltage parameter of the co‑doped 
ZnO doped liquid crystals 
by machine learning algorithms
Gülnur Önsal 1*, Onur Uğurlu 1, Ümit H. Kaynar 1 & Deniz Türsel Eliiyi 2

This study aims to examine the influence of the co‑doped semiconductor nanostructure (Al‑Cu):ZnO 
on the electro‑optical properties of the E7 coded pure nematic liquid crystal structures and minimize 
the threshold voltage of pure E7 liquid crystal. To determine the ideal concentration ratios of the 
materials for the minimum threshold voltage, we employed different machine learning algorithms. 
In this context, we first produced twelve composite structures through lab experimentation with 
different concentrations and created an experimental dataset for the machine learning algorithms. 
Next, the ideal concentration ratios were estimated using the AdaBoost algorithm, which has an R2 
of 96% on the experimental dataset. Finally, additional composite structures having the estimated 
concentration ratios were produced. The results show that, with the help of the employed machine 
learning algorithms, the threshold voltage of pure E7 liquid crystal was reduced by 19% via the 
(Al‑Cu):ZnO doping.

Zinc Oxide (ZnO) is an exhaustively researched material as its bandgap of around 3.3 eV renders it attractive 
for optoelectronic applications such as Light-emitting diodes (LEDs) and solar cells. Its bandgap also lets it to 
absorb photons with high energies, making it suitable for photodetection and photocatalysis. Moreover, its non-
toxic structure, chemical and thermal stability, high electron mobility, inexpensive production cost, and unique 
electrical-optical and dielectric characteristics at room temperature are this material’s additional  advantages1,2. 
For this reason, ZnO became a popular material for short wavelength opto-electronic devises, transistors, photo 
diodes and Liquid Crystal (LC) based sensors and laser  applications3. The ZnO structure can be doped with some 
elements such as  Fe4,  Cu5,6,  Co7,  Gd8, or  Al9 to improve its optical and electrical properties. In the past few years, 
many studies have been conducted to examine the effect of co-dopants such as (Cu-Mg)10, (Cd-Ni)11, (Al-In)12, 
(Fe-Al)13, (Al-Cu)14 on the electro-optical properties of ZnO, and it was shown that the electro-optical properties 
of the ZnO nanomaterial are improved through co-doping.

Copper doped Zinc Oxide (Cu:ZnO) has lately attracted significant interest due to its unique optical and 
electrical properties. One of the main advantages of Cu:ZnO is its ability to enhance the optical properties of ZnO. 
The insertion of copper ions into the ZnO lattice leads to a shift in bandgap energy, which can result in a change 
in the optical absorption and emission  properties6,15. This makes Cu:ZnO a promising material for optoelectronic 
applications such as ultraviolet (UV) LEDs and solar cells. Another advantage of Cu:ZnO is its ability to enhance 
the electrical properties of ZnO. The presence of copper ions in the ZnO lattice results in creation of additional 
electrons and hole carriers, which increases conductivity and mobility of the material. This makes Cu:ZnO attrac-
tive for electronic applications such as sensors and transistors. The doping of Aluminum into ZnO is a technique 
used to improve the electronic and optical properties of the material. Some advantages of this process include 
increased conductivity, improved optical absorption, and enhanced thermoelectric  performance16. Potential 
applications of Aluminum-doped zinc oxides are very promising in the field of electronics, optoelectronics, 
thermoelectrics, biomedical and antimicrobial  applications17. Due to these features, in this study Al and Cu were 
chosen as the elements to be doped to ZnO for the co-doped ZnO nanoparticle.

LCs have become increasingly popular in recent years due to their unique combination of liquid- and solid-
like properties. One of the main reasons for the popularity of LCs is their ability to change their electro-optical 
properties in response to an applied electric field. This property is known as the electro-optic effect, and is widely 
used in Liquid Crystal Displays (LCDs), which are the most common application of LCs. In addition to LCDs, 
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LCs have also been used in other electronic devices such as electro-optic modulators, sensors, and solar  cells18. 
The doping of LCs can lead to a wide range of benefits, such as improved electro-optical properties, enhanced 
thermal stability and increased alignment properties. Dopants such as as metal oxides have been found to 
enhance the electro-optical characteristics of  LCs19. Metal oxides used as dopants are typically transition metal 
oxides such as titanium dioxide ( TiO2)20, zinc oxide (ZnO)21, and barium titanate ( BaTiO3)22. The doping ZnO 
nanoparticles (NPs) into LC change the molecular orientation and decrease the threshold voltage ( Vth ), which 
leads lower power  consumption23,24. Particularly, the doping with low concentrations of ZnO enhanced the 
dielectric and electro-optical responsiveness.

The process of material creation is time-consuming, exhaustive and expensive. Numerous samples are 
required to create a composite material with the desired properties, resulting in increased material costs. Thus, 
in this study, we adopt a quasi-experimental methodology, which combines physical experiments with strong 
machine learning-based prediction algorithms. Designing robust prediction models can provide helpful insights 
into the properties of samples that have not been experimentally produced.

The usage of machine learning (ML) techniques in materials science has increased thanks to their capability 
to handle non-linear  relationships25–27. Especially in recent years, several researchers have used ML algorithms 
to predict certain properties of LCs, such as average order parameter, sample temperature, cholesteric pitch 
length, and phase transition  temperature28–30. In addition to these works, some researchers used ML algorithms 
to estimate the threshold voltage of some materials. Moparthi et al. employed a ML approach for assessing the 
process variability impact on the threshold voltage of silicon-on-insulator junctionless  transistor31. Mishra et al. 
presents a genetic algorithm-based deep learning algorithm to estimate the threshold voltage of gallium nitride-
based high electron mobility  transistor32. They used maximum transconductance on current and subthreshold 
slope as input parameters, and reported an R2 of 0.978.

The main aim of this study is to minimize the threshold voltage of the E7-coded pure nematic liquid crystal 
by doping it with co-doped semiconductor nanostructure (Al-Cu):ZnO. However, determining the optimal 
concentration ratios of the materials used to form the composite structure with a low V − th is a fundamental 
problem. To handle this challenge, initally, (Al-Cu):ZnO semiconductor nanomaterials with different concen-
trations were synthesized and the synthesized nanomaterials were added to E7 nematic liquid crystal at 1%, 3% 
and 5% weight ratios. In this way, we obtained 12 composite structures and created an experimental dataset by 
utilizing an electro-optical transmittance system on these composites. Next, we developed a reliable prediction 
model using ML algorithms to estimate the threshold voltage of the composites. After training our prediction 
model on the experimental dataset, we tried to find the optimal concentration ratios of the materials which would 
yield the minimum threshold voltage. Then, three new composite structures were obtained using the determined 
concentration ratios by the prediction models, and the electro-optical properties of these composite structures 
were investigated. Figure 1 represents the general methodology followed in this study.

The main contribution of this work is the established material design methodology to produce compos-
ites with desired properties. Commonly, LC has been dispersed with pure  ZnO33,34 or single-doped ZnO 
 nanomaterial35. In the literature, co-doped ZnO and LC were examined in only one study. Eskalen et al. inves-
tigated the effect of (Multi-Walled Carbon Nanotube-MWCNT; Silicon Dioxide-SiO2 ) MWCNT/SiO2@ZnO 
nanocomposite on the thermal and electrical behavior of the E7 nematic liquid  crystal21. The authors only 
examined the predetermined concentration ratios of nanocomposites and reported the electrical behavior of 

Figure 1.  General overview of this study.
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the E7 nematic liquid crystal. Thus, the main novelty of our study is the usage of machine learning algorithms 
to determine the ideal concentration ratios of nanocomposites with the lowest voltage values.

Materials and methods
Synthesis of co‑doped ZnO nanoparticles. Al-Cu doped ZnO materials were prepared by the gel-
ignition method. Zinc nitrate (Zn(NO3)2 , >99%, Merck) and urea ( NH2CONH2 ) as fuel were used for ZnO 
synthesis. High purity Aluminum Nitrate ( Al(NO3)3 , >99%, Merck) and Copper(II) Nitrate ( Cu(NO3)2 , >99%, 
Merck) were used for the co-doped samples. All items were weighed using stoichiometric proportions. In a 
quartz beaker, 10 ml of distillated water was used to dissolve nitrates. Urea was put in the beaker and the mixture 
was stirred for 1 hour at 80 ◦ C using a magnetic stirrer. The top of the beaker was then removed and the mixture 
was stirred to evaporate excess water at the same temperature until a gel-like consistency was  attained36. Follow-
ing the evaporation of the water, a flame combustion reaction concluded the synthesis process. The product was 
heated to 800 ◦ C in a muffle furnace in order to eliminate organic impurities in the form of fly ash, and change 
unstable crystalline phases into stable  phases37. The obtained materials were stored in a desiccator to prevent 
interaction with atmospheric gases. Thus, four NP containing different ratios of Al and Cu were synthesized. The 
list of these NPs is provided in Table 1.

Preparations of the nanoparticle doped LC composites. A room temperature nematic LC E7 from 
Merck, compositions: 4-cyano-4 ′-n-pentyl-biphenyl (51%), 4-cyano-4 ′-n-heptyl-biphenyl (25%), 4-cyano-4 ′

-n-oxyoctyl-biphenyl (16%) and 4-cyano-4′′-n-pentyl-biphenyl (8%) with dielectric anisotropy ( �ε′ ) = +13.8, 
birefringence ( �n)= 0.20 and nematic-isotropic temperature ( TN−I ) = 60.5◦ C were used for the experiments. 
The molecular structures of E7 nematic liquid crystal are depicted in Fig. 2.

Four synthesized NPs were doped in E7 in 1%, 3% and 5% wt/wt concentration, and 12 different samples were 
obtained, which are listed in Table 2. Chloroform was also added to these samples as a solvent to dissolve the NPs. 
The samples were maintained in an ultrasonic bath at 50 ◦ C for 6 hours to ensure a homogeneous dispersion. 
The samples were then heated to 60 ◦ C for a period to remove the solvent (chloroform), before they were cooled 
to room temperature for 24 hours. LC cells with planer alignment were filled with samples using the capillary 
technique at a temperature around 5 ◦ C higher than the isotropic temperature. The Indium Tin Oxide (ITO)-
coated 7.7 µ m thick LC cells (produced by Instec, USA) have a sheet resistance of 100 �.

Using an electro-optical switching technique, electro-optical measurements were performed at 1 kHz square 
wave frequency and 0–20 Vpp voltage range. In this technique, a He-Ne laser beam with a wavelength of 632.8 
nm was used as the input signal, and the beam passed through the LC cell positioned between a polarizer and 
an analyzer that were in a crossed position. During this process, the voltage value was increased by 10 mV incre-
ments with a function generator, and the detected light intensity signal was recorded.

Machine learning algorithms. Machine learning algorithms are methods that perform a learning process 
to create a model for describing the relationship between particular input and output data. The learning process 
is accomplished by adjusting the hyper-parameters of the model to minimize prediction error on an independ-
ent validation dataset. Two different approaches can be applied in ML algorithms, namely classification and 

Table 1.  Synthesized nanoparticles.

Nanoparticle Host crystal Ion Ion Fuel

NP1 ZnO 1%Al 1%Cu Urea

NP2 ZnO 1%Al 8%Cu Urea

NP3 ZnO 8%Al 1%Cu Urea

NP4 ZnO 8%Al 8%Cu Urea

Figure 2.  The molecular structures of E7 nematic liquid crystal.
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regression. In classification, the sample is labeled with one of the predetermined class labels, whereas a numeric 
value is estimated as output in regression. As we aim to predict the transmittance values in this study, we used 
the regression version of ML algorithms.

Four different ML regression algorithms (k-Nearest Neighbor, Decision Tree, Extra Tree, and AdaBoost) 
were employed on the experimental dataset for estimating the threshold voltage. To run the ML algorithms, 
Scikit-learn, which is a widely used Python machine learning library, was used. The prediction performances of 
the algorithms were evaluated using k-fold cross-validation. The hyper-parameters of algorithms are one of the 
most important factors in their predictive performance. Hence, a grid search technique was carried out within 
Scikit-learn to determine the optimal levels of hyper-parameters for the algorithms.

Employed algorithms. k-Nearest Neighbor (kNN) is a straightforward ML algorithm, which works on the 
assumption that similar data points are close to each other in terms of  distance38. To estimate the value of a new 
data point, the distance of that point to the existing ones are calculated, and its k close neighbors are checked. 
The most critical hyper-parameters that affect the performance of the kNN algorithm are the number of neigh-
borhoods and the distance metric. In this study, the number of neighbors was optimized in [1, 2, 3,..., 20] and 
the distance metric was optimized in [minkowski, euclidean, manhattan] metrics to design the kNN algorithm.

The decision tree (DT) algorithm uses a tree structure to represent a set of possible decision paths and an 
outcome for each path. The nodes in the tree represent an event or choice, and the branches represent the deci-
sion rules or  conditions39. The first node of the decision tree is called the root node, and the lowest nodes are 
called the leaf nodes. The nodes between the root and the leaves are called the interval nodes. The leaf nodes 
provide the final prediction. For regression problems, the DT algorithm uses decision trees to predict the numeric 
outcomes by repeatedly dividing the tree. The most critical hyper-parameter of the decision tree algorithm are 
the maximum depth of the tree. For designing the DT algorithm in this study, the maximum depth of the tree 
was optimized in [2,3, 4, 5, ..., 20].

Extra trees (EXT) is an ensemble learning algorithm. Ensemble learning is one of the new trends in ML 
research, which uses the same learning model with different training sets or combines more than one learning 
model instead of using a single model on the same training set. Ensemble learning approaches usually outperform 
traditional learning  algorithms40. EXT uses a random subset of features to train each base learner by using the 
whole training set for training each  tree41. Besides, random branching is preferred in EXT instead of calculating 
the locally optimal separation using decision criteria. The most critical hyper-parameters of the EXT algorithm 
are the maximum depth of the tree and the number of estimators. For designing the EXT used in our study, the 
maximum depth of the tree was optimized in [2, 3, 4, ..., 20] and the number of estimators was optimized in 
[10, 20, 30, ..., 200].

AdaBoost (Adaptive boosting- AB) is another ensemble learning algorithm that is based on the boosting 
method. In the boosting method, the models are trained sequentially. Each model sees the previous model and 
learns from it. AB algorithm executes a large number of learning algorithms called weak learners, one after the 
other, to increase the prediction performance. The final estimate of the algorithm is obtained by the weighted 
average of the weak learners’  outputs42. At the beginning of the AB algorithm, the training samples start with 
equal weights. Then, at each iteration, the sample weights are changed separately and the learning algorithm is 
applied again to the re-weighted data. While the weights of the training samples incorrectly predicted by the 
model in the previous step are increased, the weights of the correctly-predicted samples are decreased. As the 
algorithm works, the weights of the hard-to-guess samples gradually increase. Thus, each subsequent weak learner 
is forced to focus on more complex cases. The most important hyper-parameters for AB are the base learner and 
the number of estimators. For designing the AB in this study, the number of estimators was optimized in [10, 20, 
30, ..., 200], and the base learner was optimized in [kNN, DT, EXT]. Figure 3 illustrates the ML algorithms used 
in this study, and Table  3 lists the error metrics used for evaluating the performance of the algorithms (where 
n is the number of observations).

Table 2.  The composite structures.

Composite structure Concentration ratios

CS1 E7+1%NP1

CS2 E7+1%NP2

CS3 E7+1%NP3

CS4 E7+1%NP4

CS5 E7+3%NP1

CS6 E7+3%NP2

CS7 E7+3%NP3

CS8 E7+3%NP4

CS9 E7+5%NP1

CS10 E7+5%NP2

CS11 E7+5%NP3

CS12 E7+5%NP4
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Results
Chemical characteristics of the nanoparticles. Scanning electron microscope (SEM) images were 
analyzed to examine the morphological structure and characteristics of nanostructures synthesized with and 
without additives. The well-known hexagonal crystal structure of the undoped ZnO appears morphologically as 
plates in Fig. 4a43. Figure 4b–d show ZnO NPs doped with Al-Cu ions under different magnification. It is shown 
that the influence of the ignition reaction of the doping process in the doped structures boosts the ignition fea-
ture of the fuel. It is seen in Fig. 4b–d that the heat generated during the reaction increases the pore density and 
the gas output of the synthesized samples. Furthermore, these factors in combustion show that the hexagonal 
form in the sintered structure is deteriorated. According to the morphological structure, it is seen that the dop-
ing process changes many properties of the material, such as the reduction of the surface area and particle  size44.

According to the SEM-EDX/Elemental Mapping images of the synthesized ZnO nanoparticles, the distribu-
tion of Al and Cu additives in the structure are shown in Fig. 5. The mapping images confirm that the Al and Cu 
additives are homogeneously distributed in the main  structure45.

The crystal phase evaluation for the structure accuracy of all undoped and doped ZnO samples synthesized 
by the ignition reaction was determined by the X-ray diffraction (XRD) technique. Figure 6 depicts the reflection 
lines of the synthesized NPs, the reference reflection lines of the ZnO structure, and the Miller index reflection 
lines. Here, the crystal phase of the samples synthesized by the Ignition method corresponds to (a) the pure 
ZnO crystal and (b) the ZnO nanomaterial doped with Al and Cu. Although the miller does not disrupt a crystal 
structure according to the reflection lines, they cause stresses in the crystal lattice in the main structure of the 
doped materials. Nevertheless, no difference was observed in the  structure44.

These results show us that the changes in particle size and charge balance in the doped synthesized structure 
cause electrostatic interaction of charged particles and change in surface potential.

Figure 3.  Illustration of the employed machine learning algorithms: (a) kNN, (b) DT, (c) ET and (d) AB.

Table 3.  Error metrics used for evaluating the ML algorithms.

Metric Description Equation

MAE Mean absolute error 1
n

∑n
i=1 |y

i
actual − yipredict |

RMSE Root mean square error
√

1
n

∑n
i=1(y

i
actual − yipredict )

2

R2 Coefficient of determination
∑n

i=1(y
i
predict−ymean)

2

∑n
i=1(y

i
actual−ymean)

2
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Detection of threshold voltage of the composites. Utilizing an electro-optical transmittance system, 
the electro-optical performance of the LCs was assessed. In this system, transmittance values corresponding 
to various voltage values were detected and transmittance-voltage plots were created. During the transmission 
measurement, the LC cells were positioned between crossed polarizers at a 45 ◦ angle with the incident light’s 
optic axis. The intensity of light transmitted through a cell is given by the following  equation46:

where ϕ1 and ϕ2 are the angles between the orientation direction and the two polarizers, and δ is the phase retar-
dation. The threshold voltage is defined as the voltage when the initial transmission of the cell begins to change, 
and is expressed with the following  equation19:

where �ε′ and K11 are defined as dielectric anisotropy and splay elastic constant parameters, respectively. ε0 
dielectric constant of the free space charge ( ε0 = 8.85× 10−14Fcm−1).

Vth which is a crucial parameter for the LC is the minimal voltage value necessary to reorient LC molecules, 
and can be calculated from the Transmittance-Voltage (T-V) plots by determining the voltage value at which the 
transmitted light intensity changes by 10%. Normalized T-V plot for E7 pure liquid crystal is given in Fig. 7. Using 
the Fig. 7, Vth value of the E7 was determined to be 0.78 V, which is consistent with results from the  literature47. 
Hsu et al. reported similar outcomes of the Vth value of the E7 liquid crystal utilizing the T-V  graph19. Similarly, 
Nayek and Yi determined that the Vth of E7 nematic liquid crystal at 1 kHz frequency was 0.77  V48. Furthermore, 
when the LC molecules’ director is oriented at 45 ◦ with regard to the crossed polarizer and analyzer, a bright 
state is obtained. When LC molecules are rotated by 45 ◦ once more, the director aligns parallel to the analyzer, 
resulting in a dark  state47.

In the beginning, the applied voltage is minimal, and due to anchoring conditions, the LC molecules are 
aligned in the plane of the LC cell substrate (Fig. 8a,b); this continues until a Vth value is reached. When the 
applied voltage exceeds the Vth , the orientation of LC molecules changes from planar to homeotropic (Fig. 8c), 
which is explained by the electrically controlled birefringence effect. If the voltage keeps on rising, the 

(1)T =
1

2

[

cos2(ϕ1 − ϕ2)− sin2ϕ1sin2ϕ2sin
2 δ

2

]

,

(2)Vth = π

√

K11

ε0�ε′
,

Figure 4.  SEM images of the synthesized (a) pure ZnO and (Al-Cu):ZnO under different magnification (b) 10 
µ m (c) 2 µ m (d) 100 nm.
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Figure 5.  (a) EDX spectrum of the co-doped ZnO and elemental mapping of the (b) Zinc (Zn) (c) Oxygen (O) 
(d) Aluminum (Al) and (e) Copper (Cu).

Figure 6.  X-ray diffraction pattern for the synthesized (a) pure ZnO (b) co-doped ZnO and (c) ZnO reference 
No: 01-073-8765.
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transmittance decreases progressively until it reaches its lowest value. The LC molecules are aligned along the 
applied electric field due to the reorientation of the molecules (Fig. 8d). It is observed that the minimum and 
maximum peaks are obtained as the voltage keeps increasing. The reason for these peaks can be explained by the 
LC cell’s thickness, the sample’s birefringence value, and the wavelength of the laser used in the measurement. As 
a result, the number of maximum and minimum peaks in the T-V graph varies, which is equal to about �n.d/� . 
Here, d symbolizes the thickness of the cell, � is the wavelength of the light source and �n  birefringence47,49.The 
T-V plot for E7 clearly shows two peaks in Fig. 7.

The objective of this investigation is to establish composite structures with a lower Vth than pure E7. To 
determine the Vth values of 12 composite structures created by different doping ratios of (Al-Cu):ZnO nano-
particles, normalized T-V plots were obtained as in Fig. 9. In a low-voltage range, the transmittance of the com-
posites is nearly constant and the LC molecules are aligned parallel to the LC cell’s substrates and exhibit higher 

Figure 7.  Transmittance-applied voltage plots of E7 nematic liquid crystal.

Figure 8.  Schematic diagrams for molecules in planar geometry at states without voltage (a) V = 0 and with 
voltage (b) V < Vth (c) V = Vth and (d) V > Vth.
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transmittance. However, the transmittance decreases significantly above a certain voltage value as the molecules 
begin to reorient from planar to homeotropic, resulting in a condition of a dark state or very low transmittance.

The Vth values of the 12 LC composite structures doped with different concentrations of (Al-Cu):ZnO nano-
particle are presented in Table  4. Compared to pure E7 liquid crystal, it was seen that the Vth parameter of (Al-
Cu)ZnO nanoparticle doped composite structures changed. It is seen that the Vth is lower in composite structures 
where NP2 containing low ratio Al and high ratio Cu are doped in to the E7 at low concentration (CS2 and CS6). 
Additionally, the Vth increases with the increasing concentration of nanoparticles (NP2 and NP4) containing 
especially high Cu in pure LC. The (Al-Cu):ZnO doped composite system produces an energy barrier as a result 
of the higher charge density. The doping of nanoparticles into the LC causes to create free electrons, ZnO, Al, 
and Cu; these free electrons then enter the LC layer, resulting in a rise in charge density along the interface. This 
situation requires the molecules to have a higher threshold  voltage18.

Prediction of threshold voltage using machine learning algorithms. Dataset. The experimental 
dataset consisted of 942 samples (measurements were conducted at an average of 78 different voltage values for 
each composite structure) with four input features (dispersion rate of Al in ZnO, dispersion rate of Cu in ZnO, 

Figure 9.  Transmittance-applied voltage plots of composite structures.
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dispersion rate of nanostructure in nematic LC and applied voltage value) and one output parameter (transmit-
tance value). Table  5 presents the basic characteristics of the experimental dataset.

Fine‑tuning. The hyper-parameters of the machine learning algorithms have a significant effect on preventing 
over-learning and increasing prediction performance. When the hyper-parameters were optimized through the 
grid search method, for kNN, the best result was attained using the Manhattan distance measure with k = 2. A 
maximum depth of 13 gave the highest accuracy for DT. For ET, the highest accuracy was obtained when the 
maximum depth was 20 and the number of estimators was 110. Lastly, the best result for AB was obtained with 
Extra Trees Regressor estimator using 100 as the base learner.

Prediction results. All ML algorithms were performed with the 10-fold cross-validation technique, and the 
prediction performances of these algorithms for transmittance values were tested using MAE, RMSE, and R2.

Figure 10 shows the correlations between the measured and predicted transmittance values. In the graphs, 
the horizontal axes represent the measured transmittance values whereas the vertical axes represent the values 
predicted by the algorithms. Based on these results, it seems that the AB algorithm has the highest prediction 
performance, while DT has the worst prediction performance in predicting the transmittance value.

Table 6 shows the comparison of the MAE, RMSE, and R2 values of the algorithms. The table indicates that 
the R2 value of the AB algorithm is over 96. In addition, considering that the average transmittance value in the 
experimental dataset is 74.21, the MAE value of the AB algorithm (4.44) is at an acceptable level. Thus, it can 
be concluded that using the AB algorithm, the transmittance values of a composite structure can be predicted 
with high accuracy.

On‑demand composite structure prediction. The prediction results show that our prediction model 
using the AB algorithm can predict transmittance values with high accuracy. To determine the concentration 
ratios of the materials with the minimum Vth , we performed a brute-force search approach via the developed 
model. In the brute-force search, the concentration ratios of Al and Cu in (Al-Cu):ZnO change between 1 and 
8 (with increment 1), the concentration ratio of (Al-Cu):ZnO in E7 nematic LC changes between 1 and 5 (with 
increment 1) and the voltage value in electro-optical measurements changes between 0.01 and 10 (with incre-
ment 0.005). We predicted the transmittance values for each combination using the AB algorithm trained on 
the experimental dataset. Then, each composite structure’s Vth was estimated as explained in Sect. "Detection of 
threshold voltage of the composites".

After brute-force search, 26 different composite structures (among 320 different concentration ratio combina-
tions) were found to have lower threshold voltages than the pure nematic liquid crystals. When these composite 
structures were analyzed, it was seen that the concentration ratio of Al in (Al-Cu):ZnO changed between 1 and 
5, and the concentration ratio of Cu in (Al-Cu):ZnO changed between 5 and 8. Furthermore, the concentration 

Table 4.  Threshold voltage values of the composites structures.

Composite structures Threshold voltage (V)

CS1 0.92

CS2 0.71

CS3 0.93

CS4 0.81

CS5 0.92

CS6 0.80

CS7 0.94

CS8 0.90

CS9 0.81

CS10 0.91

CS11 0.86

CS12 0.92

Table 5.  Characteristics of the experimental dataset.

Parameters Unit Min value Max value Mean

Al rate % 1 8 4.5

Cu rate % 1 8 4.5

ZnO rate % 1 5 3

Voltage value V 0.01 11.4 2.12

Transmittance value a.u 0.056 124.4 74.21
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ratios of (Al-Cu):ZnO in E7 liquid crystal were 1 and 2. These results are compatible with the  literature18. 
Experimentally obtaining all predicted composite structures is not practically meaningful in terms of cost and 
time. Hence, we considered the composite structures with concentration ratios of 1, 5 and 8 for Al and Cu in 
(Al-Cu):ZnO and 1 and 2 (Al-Cu):ZnO in E7 liquid crystal since these were the limits and most common values 
in predictions. Therefore, we decided to create 3 new structures that meet the prescribed conditions.

Table  7 lists the related composite structures. These three new composite structures proposed by the ML 
predictions were experimentally produced using the same procedures in Sects. "Synthesis of co-doped ZnO 
Nanoparticles" and "Preparations of the nanoparticle doped LC composites". For this purpose, new nanoparticles 
for NP5 ((1% Al–5% Cu):ZnO) and NP6 ((5% Al–8% Cu):ZnO) were synthesized using identical experimental 
procedures. Then, new composite structures CS13, CS14 and CS15 were obtained by doping 1% NP5, 1% NP6 
and 2% NP2, respectively. Finally, the electro-optical performance of liquid crystals was assessed by utilizing an 
electro-optical transmittance system.

Table  7 also presents the predicted and measured Vth values. It can be observed that 2 of 3 materials suggested 
by machine learning (CS13 and CS15) have a lower Vth than the pure LC (0.78). Furthermore, CS13 has the lowest 

Figure 10.  Prediction performance of the algorithms (a) kNN, (b) DT, (c) EXT (d) AB.

Table 6.  Comparison of the algorithms performances for predicting transmittance value.

Algorithms MAE RMSE R
2

kNN 5.24 13.51 0.92

DT 9.72 19.39 0.83

ET 6.3 12.81 0.93

AB 4.44 9.41 0.96

Table 7.  Predicted and measured threshold voltage values of the ultimate composite structures.

Number Composite structure Predicted Vth (V) Measured Vth (V)

CS13 E7+1%NP5 0.71 0.63

CS14 E7+1%NP6 0.72 0.84

CS15 E7+2%NP2 0.72 0.77
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Vth voltage among all manufactured composites, with a Vth value of 0.63. With a 1%NP5 doping concentration, 
the greatest decrease in Vth is 19%.

Figure 11 presents the measured and predicted transmittance values of CS13, CS14 and CS15. This figure 
demonstrates that the predicted transmittance values are highly consistent with experimental data for all three 
composite structures. Furthermore, it is seen that the developed prediction model can detect the first sharp 
decrease in transmittance values of the composite structures with high accuracy.

Conclusion
Producing materials with desired properties is a fundamental task in material science. In this work, we aimed to 
minimize the Vth of the co-doped ZnO doped LCs. The biggest challenge in this direction is determining the ideal 
concentration ratios of the materials used to form the composite structure. We used different machine learning 
algorithms to determine the ideal concentration ratios of the materials for the minimum Vth . In this manner, 
four NPs containing different ratios of Al and Cu were synthesized, and twelve new composites were produced 
by doping the pure E7 with different concentration ratios of these NPs. Voltage-dependent transmittance data 
of the 12 composite structures were obtained by Utilizing the electro-optical transmittance system. Using pre-
determined concentration ratios, the Vth of pure LC was reduced by 9% (CS2). Then, we developed a prediction 
model for estimating the transmittance values of these composite structures. By training the prediction model 
on the experimental dataset, we estimated the transmittance values of composites with different concentrations 
that were not produced experimentally and calculated the Vth value of these composites. After determining the 
ideal concentration ratios for the composites with the minimum Vth , three new composite structures (CS13, 
CS14, and CS15) were produced. Among these structures, the best result was obtained with CS13. The Vth value, 
which was 0.78 V for pure LC, was reduced to 0.63 by adding 1% NP5 to the LC. Using the concentration ratios 
determined by the machine learning algorithm, the Vth of pure E7 liquid crystal was reduced by 19% (CS13).

In this work, we have shown how to combine experiments with machine learning-based prediction algorithms 
to determine specific materials with certain desired properties. This work also demonstrates how carefully cre-
ated materials data can be used to train machine learning models. The model used in this study merely requires 
the concentration ratios of the materials to estimate the properties of the composite structures. The material 
design methodology applied in this work can be used for any class of composites as long as there is sufficient 

Figure 11.  Comparison of predictions with the experimental data for T-V plots of the ultimate composite 
structures.
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data available for training. Lastly, it should be noted that all property predictions from the on-demand predic-
tion model come with some uncertainties, which are unavoidable in any learning method. Nevertheless, we have 
developed a promising composites design methodology that can actively pursue specific composites that would 
suit desired requirements.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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