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Synthesis of trimetallic oxide 
(Fe2O3–MgO–CuO) nanocomposites 
and evaluation of their structural 
and optical properties
A. H. Al‑Hammadi 1, Adnan Alnehia 1,2, Annas Al‑Sharabi 2, Hisham Alnahari 1* & 
Abdel‑Basit Al‑Odayni 3

In this paper, tri-phase Fe2O3–MgO–CuO nanocomposites (NCs) and pure CuO, Fe2O3 and MgO 
nanoparticles (NPs) were prepared using sol–gel technique. The physical properties of the prepared 
products were examined using SEM, XRD, and UV–visible. The XRD data indicated the formation of 
pure CuO, Fe2O3 and MgO NPs, as well as nanocomposite formation with Fe2O3 (cubic), MgO (cubic), 
and CuO (monoclinic). The crystallite size of all the prepared samples was calculated via Scherrer’s 
formula. The energy bandgap of CuO, Fe2O3 and MgO and Fe2O3–MgO–CuO NCs were computed from 
UV–visible spectroscopy as following 2.13, 2.29, 5.43 and 2.96 eV, respectively. The results showed 
that Fe2O3–MgO–CuO NCs is an alternative material for a wide range of applications as optoelectronics 
devices due to their outstanding properties.

Due to their unique optical, electrical, thermal, photocatalytic, mechanical, adsorbent and structural proper-
ties, metal oxide (MO) nanocomposites (NCs) have attracted much attention in recent years1–5. The NCs are 
composed of two or more nano-oxides and possessing properties which depend on the concentration of each 
constituent oxide in the mixture6–8. They are useful in a variety of applications, including solar cells, photovoltaic 
instruments, battery materials, gas sensors, and fuel cells9–15. Copper oxide (CuO) is a p-type semiconductor 
with a narrow bandgap of 1.2 eV8. It has unique optical and structural properties with low-cost preparation. 
It has attracted considerable attention due to its potential applications in superconductivity, gas sensing, solar 
cell and supercapacitor16,17. Furthermore, it is a non-toxic and readily available semiconductor18,19. Magnesium 
oxide (MgO), with a direct bandgap of 5.2–7 eV, is an n-type semiconductor that displays noticeable structural, 
catalytic, optical, and chemical properties17,20–22. Iron(III) oxide (Fe2O3) is a narrow bandgap of nearly 2 eV. 
It is associated with certain features, like the low toxicity, low cost, magnetic behavior and high solubility23,24. 
Hence, it is engaged in various applications involving biomedicine, cosmetics, diagnostics, sensors, radiology, 
and vaccines9,23,25,26.

By combining the different metal oxides (MOs) to form new NCs, various properties of individual oxide 
could significantly enhanced and, consequently, open up a new avenue of research for optoelectronics, electrical, 
thermal, photo-catalysis, and biological applications26,27. Mixed metal oxide NCs can be fabricated via differ-
ent approaches such as the co-precipitation28, sonochemical7, solution combustion29, microwave technique10, 
ultrasonic-assisted30 and green methods2,11.

In this work, tri-phase Fe2O3–MgO–CuO NCs and pure CuO, Fe2O3 and MgO NPs were prepared using 
sol–gel method. It has the advantages of being environmentally friendly, simple, cheap and fast to perform 
without any special equipment. Herein, the novelty lies in the designed combination of the three metal oxides 
in one NC, which supposedly could lead to enhanced properties and potential applications. The obtained oxides 
were characterized for their structural and optical properties using XRD, UV–visible, and SEM.
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Materials and methods
Materials.  Magnesium nitrate hexahydrate (Mg(NO3)2·6H2O; 97%), Iron nitrate nonahydrate 
(Fe(NO3)3·9H2O; 97%), copper nitrate trihydrate (Cu(NO3)2·3(H2O; 98%) and absolute ethanol were purchased 
from BDH and used as received without additional treatment.

Synthesis.  The sol–gel method20,31 was used to fabricate the Fe2O3–MgO–CuO NCs, which involves the 
following steps: Cu(NO3)2·3(H2O) (3.382 g in 20 mL ethanol), Fe(NO3)3·9(H2O) (5.65 g in 20 mL ethanol) and 
Mg(NO3)2·6(H2O) (3.589 g in 20 mL ethanol) with constant molar ratio (1:1:1) were synthesized as three sepa-
rate solutions. Each solution was stirred for 10 min at 23 ± 2 °C to obtain a homogeneous solution. The solutions 
were mixed under constant stirring for 70 min at 80 °C until gel was obtained. After that, the gel burns to create 
xerogel, which grinded to fine powder and annealed at 800 °C for 90 min. The individual pure oxides (Fe2O3, 
CuO, and MgO) were separately prepared following similar steps as composite, using the corresponding salt.

Instruments.  The optical properties of the synthesized materials were investigated using UV–Vis spectro-
photometer (Hitachi U3900 with a software of Varian Cary 50). The structural properties were investigated by 
X-ray diffraction (XRD) using a Shimadzu EDX-720 (China) with CuKα radiation (λ = 0.154 nm). Morphologi-
cal properties were assessed using SEM machine from JEOL (Jeol Ltd., Tokyo, Japan).

Results and discussion
The structural integrity of the synthesized metal oxides is confirmed via powder X-ray crystallography. The tar-
geted substances were obtained via sol–gel route followed by calcination at 800 °C. The annealing temperature 
of 800 °C suggests high crystalline products as reported elsewhere32. However, such high temperature could 
stimulate production of pure substances with better performance.

X‑ray diffraction.  The crystalline arrangements and phase of the prepared nanopowder are estimated by 
XRD. Figure 1 shows the XRD pattern of the fabricated Fe2O3–MgO–CuO NCs. The observed diffraction peaks 
of pure oxides are close to the diffraction patterns reported in the X-ray database of JCPDS CuO (45-0937), 
Fe2O3 (33-0664) and MgO (45-0946). Similarly, in Fe2O3–MgO–CuO NCs, the diffraction patterns of CuO (48-
1548), Fe2O3 (39-1346), and MgO (45-0946) match well with their respective standard reference cards. The 

Figure 1.   XRD patterns of CuO, Fe2O3, MgO and Fe2O3–MgO–CuO nanocomposites.
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diffracted peaks in composite were assigned for MgO (cubic), Fe2O3 (cubic) and CuO (monoclinic) phases. The 
characteristic diffraction peaks of CuO, Fe2O3 and MgO are well specified with no peaks relating to secondary 
or impurity segments or hydroxide in the sample, confirming the successful growth of Fe2O3–MgO–CuO NCs. 
The crystalline nature of the sample is assessed based on the sharp and strong diffraction peaks in Fig. 1. The cell 
volume (v), lattice constants (a, b, c) and d-spacing for pure CuO monoclinic, MgO cubic and Fe2O3 hexagonal 
phase and Fe2O3–MgO–CuO nanocomposite were calculated22,33–36 and listed in Table 1.

The Scherrer equation37 was utilized to compute the crystallite size (D) of CuO, Fe2O3, MgO and 
Fe2O3–MgO–CuO NCs. Then, their dislocation density was also calculated1,38,39, Table 2. As can be seen, the 
average D values of CuO, and MgO were larger than in the NCs as compared with individual oxides, due to the 
agglomeration of particles caused by the presence of Fe2O3. The Fe2O3 particles act as nucleation sites for the 
CuO and MgO particles, resulting in aggregation into larger clusters. This phenomenon is known as the Ostwald 
ripening effect, where smaller particles dissolve and re-deposit on larger particles, resulting in an increase in 
their size. Hence, the presence of Fe2O3 in the NCs leads to an increase in the particle size of CuO and MgO.

SEM analysis.  Figure 2 represents the SEM images of grown pure CuO, Fe2O3, MgO and Fe2O3–MgO–CuO 
NCs. It is seen that the formed nanostructures have spherical shapes with hardly distinct morphology. Further-
more, due to the low resolution of the presented SEM images, the non-size and thus, particle sizes and distribu-
tion are difficult to be counted. Nevertheless, the XRD data supported the claimed nanostructures. To improve 
the seen, and thus the suggested nanostructures, a higher magnification of the SEM image was presented as an 
insert within the corresponding image. The resulting magnified view is simply support that the particles are in 
nanometer range. In addition, some nanoparticles are well separated and thus could be counted. For example, by 
counting of the obviously countable particles of the composite image (Fig. 2D), it is found that the averaged par-
ticle size is 153 ± 30 nm, which is higher than that calculated from XRD (56 ± 4 nm) shown in Table 2. According 
to literature40,41, the SEM-based particle size is often larger than those measured by other techniques like XRD, 
the case that can be seen herein.

UV–Vis spectroscopy.  The optical properties of the Fe2O3–MgO–CuO NCs were studied by UV–visible 
spectroscopy. Figure 3 displays the absorption spectrum of Fe2O3–MgO–CuO NCs within 200–1000 nm. The 
absorption spectrum of the scattering radiation is observed in the longer wavelength region, and a larger-tail is 
seen due to the mixing of different oxides.

The transmission spectra of all the synthesized materials showed almost an opposite behavior to that seen in 
Fig. 4. Obviously, the optical transmission increased in the visible region for all the synthesized materials and 
possesses maximum value for Fe2O3–MgO–CuO NCs. The absorption coefficient (α) value can be computed via 
the following equation α =

2.303A
t

34.
The change in α (λ) for CuO, Fe2O3, MgO and Fe2O3–MgO–CuO NCs is presented in Fig. 5. From this Figure, 

it can be seen that α decreases as the wavelength ( � ) of the incident photon increases. The extinction coefficient 
(α) value can be calculated via the following equation k =

α�

4π

42,43.

Table 1.   Geometric parameters of CuO, Fe2O3 and MgO in grown Fe2O3–MgO–CuO nanocomposites 
determined from XRD analysis.

Material Oxide ID phase a (Å) b (Å) c (Å) Volume (Å3) d-spacing (Å)

Pure oxides (CuO, Fe2O3, MgO)

CuO Monoclinic 4.685 3.426 5.130 82.3 1.875

Fe2O3 Hexagonal 5.036 5.036 13.749 301.9 1.966

MgO Cubic 4.211 4.211 4.211 74.7 1.992

Nanocomposite (CuO–Fe2O3–MgO)

CuO Monoclinic 4.688 3.423 5.132 81.2 2.523

Fe2O3 Cubic 8.351 8.351 8.351 582.4 2.521

MgO Cubic 4.211 4.211 4.211 74.7 2.099

Table 2.   Structural parameters of CuO, Fe2O3 and MgO in grown Fe2O3–MgO–CuO nanocomposites 
determined from XRD analysis.

Material Oxide Average crystallite size (nm) Average dislocation density (lines/m2) × 1014

Pure (CuO, Fe2O3, MgO)

CuO 22.110 20.456

Fe2O3 89.141 1.258

MgO 30.120 11.022

Nanocomposite (CuO–Fe2O3–MgO)

CuO 51.457 3.777

Fe2O3 55.954 3.194

MgO 60.305 2.749
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The change in k (λ) for CuO, Fe2O3, MgO and Fe2O3–MgO–CuO NCs is presented in Fig. 6. It can be observed 
that k increases as the wavelength of the incident photon increases.

The energy bandgap (Eg) values of CuO, Fe2O3, MgO and Fe2O3–MgO–CuO NCs for the direct electronic 
transition between the valence band (VB) and conduction band (CB) can be computed via Tauc’s relation38,44,45 as 
shown in Fig. 7. The Eg values of CuO, Fe2O3, MgO NPs were calculated to about 2.13, 2.29, and 5.43 eV, respec-
tively. However, Fe2O3–MgO–CuO NCs displayed the Eg of 2.96 eV. In comparison to individual CuO, Fe2O3, 
MgO NPs, Fe2O3–MgO–CuO displayed significant increased absorbance in the visible region due to incorpora-
tion of three metal oxide. The reason for the change in the bandgap energy of the NCs compared to the individual 
metal oxides is likely due to the formation of new energy states at the interfaces between the different metal 

Figure 2.   SEM images of (A) CuO, (B) Fe2O3, (C) MgO, (D) Fe2O3–MgO–CuO nanocomposites. Inserts are 
magnification of the shown selected area.

Figure 3.   Absorption spectra of CuO, Fe2O3, MgO and Fe2O3–MgO–CuO (FMC) nanocomposites.
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Figure 4.   Transmission spectra of CuO, Fe2O3, MgO and Fe2O3–MgO–CuO (CFM) nanocomposites.

Figure 5.   Absorption coefficient versus wavelength of CuO, Fe2O3, MgO and Fe2O3–MgO–CuO (FMC) 
nanocomposites.

Figure 6.   Extinction coefficient (k) versus wavelength of CuO, Fe2O3, MgO and Fe2O3–MgO–CuO (FMC) 
nanocomposites.
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oxides. This can result in a shift in the electronic structure and a change in the bandgap energy. Additionally, the 
presence of multiple metal oxides in the NCs can also lead to increased electron–hole separation and improved 
charge transport properties, which can further affect the bandgap energy. This result was in good agreement 
with the literature46, which showed the possibility of using the prepared materials in some optical application.

Conclusion
In Summary, tri-phase Fe2O3–MgO–CuO NCs and pure CuO, Fe2O3 and MgO NPs were successfully fabri-
cated using a sol–gel approach. The XRD emphasized the formation of pure CuO, Fe2O3 and MgO NPs and 
CuO–Fe2O3–MgO NCs. The variation in the average crystallite size (D) and lattice constant were observed due to 
the interaction of the corresponding metal oxides. The optical bandgap was reached 2.13, 5.43, 2.29 and 2.96 eV 
for CuO, MgO, Fe2O3 and Fe2O3–MgO–CuO NCs, respectively.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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