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Multiquanta flux jumps 
in superconducting fractal
Vitalii K. Vlasko‑Vlasov 1*, Ralu Divan 2, Daniel Rosenmann 2, Ulrich Welp 1, Andreas Glatz 1,3 & 
Wai‑Kwong Kwok 1

We study the magnetic field response of millimeter scale fractal Sierpinski gaskets (SG) assembled of 
superconducting equilateral triangular patches. Directly imaged quantitative induction maps reveal 
hierarchical periodic filling of enclosed void areas with multiquanta magnetic flux, which jumps inside 
the voids in repeating bundles of individual flux quanta Φ0. The number  Ns of entering flux quanta 
in different triangular voids of the SG is proportional to the linear size s of the void, while the field 
periodicity of flux jumps varies as 1/s. We explain this behavior by modeling the triangular voids in 
the SG with effective superconducting rings and by calculating their response following the London 
analysis of persistent currents,  Js, induced by the applied field  Ha and by the entering flux. With 
changing  Ha,  Js reaches a critical value in the vertex joints that connect the triangular superconducting 
patches and allows the giant flux jumps into the SG voids through phase slips or multiple Abrikosov 
vortex transfer across the vertices. The unique flux behavior in superconducting SG patterns, may be 
used to design tunable low‑loss resonators with multi‑line high‑frequency spectrum for microwave 
technologies.

Fractal structures with self-similar repetition of topologically identical features at diminishing length scales are 
universally found in nature (from plant leaves and seashells to blood vessels and neural  networks1,2). They are 
frequently reported in materials studies (from molecular  assemblies3 to domain structures in quantum  magnets4), 
and are often employed in technological devices (from compact antenna  designs5 to efficient heat  exchangers6 
and advanced load  supports7).

In particular, Sierpinski gaskets (SG), formed by triangles of progressively decreasing size (the fractal 
recursive rule is illustrated in Fig. 1) offer unique electromagnetic response desirable for advanced microwave 
 applications8,9. Their parameters essentially can be improved using loss-less superconducting materials, in which 
case the SG becomes a multiply connected superconductor (SC) with different scale array of voids. Prior studies 
of SGs comprised of SC wires or wires with Josephson Junctions which showed distinct hierarchical and repetitive 
changes in resistivity and inductance of the samples in applied fields near the SC transition temperature  (Tc)10–15. 
These samples were lattices of Sierpinski gaskets up to 6th order with elementary triangles of submicron or a 
few micron size. In small applied magnetic fields, it was possible to successively fill different triangular subsets 
composing the SG with individual magnetic flux quanta, Φ0 = πħ/e. The hierarchy of flux filling, resulting in 
sharp changes of  Tc or inductance of the SG arrays, followed digital flux quantization rules, NΦ0 → (N ± 1)Φ0, 
commonly reported for multiply-connected superconductors, with specifics imposed by the fractal pattern geom-
etry. For experiments close to  Tc, the data analysis is simplified due to negligible Meissner screening, resulting 
in homogeneous magnetic field distribution  (see10–16 and refs. there). However, at low temperatures (T), where 
losses are desirably minimized, the screening effects become important and the magnetic field is modified by SC 
persistent currents. Moreover, due to increased critical currents at low T, the flux entry into the samples is strongly 
delayed and may depend on the dynamics of phase slips or entry of Abrikosov vortices which can transfer single 
or multiple flux quanta into the voids inside the superconductor.

In this work we directly image the magnetic flux entry in a millimeter sized Sierpinski gaskets comprised of 
equilateral superconducting triangles encasing sequentially decreasing triangular voids. We find that at tempera-
tures well below  Tc, flux behavior is characterized by consistent well-structured hierarchical succession of multi-
quanta flux jumps. The flux entry is qualitatively similar to single-quantum-flux jumps observed in microscopic 
SG patterns at T ~  Tc. However, unlike such single-Φ0 representative of Little-Parks oscillations, in our samples 
at T ~  Tc/2 the repeating flux jumps consist of thousands of Φ0, depending on the size of the triangular voids in 
the SG structure. Also, the imaged inhomogeneous field distributions induced by SC persistent currents affected 
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by the flux jumps, reveal interactions between different flux cells, sometimes resulting in combined positive and 
negative jumps in the neighboring voids of the SG.

We envision that our superconducting SG patterns, where changes of inductance, caused by the redistribution 
of currents due to orderly flux jumps controlled by small magnetic fields, can shift the SG eigen-frequencies, and 
hence can be used as tunable low-loss multiline resonators for quantum IT devices and sensors. In turn, a wide 
set of possible combinations of diverse  NsΦ0 flux bits trapped in the 2D array of different SG triangular voids 
could be employed for advanced digital recording.

Figure 1.  (a) Picture of a  3d-order Sierpinski gasket (SG) consisting of 100 nm thick Nb film equilateral 
triangular patches (bright) with triangular voids (dark) of proportionally decreasing size marked as  TV1 (1 mm 
side) to  TV4 (125 µm side). The insert shows the expanded view of 1 µm bridges between the Nb patches. (b–f) 
Magneto-optical images of a few successive flux jumps in triangular voids of the SG with increasing magnetic 
field  Hz

a applied perpendicular to the sample plane at T = 3.5 K. The strength of contrast in the MO image 
inside the TVs and at their boundaries corresponds to the strength of the normal field induction  Bz. Short 
arrows in (b) point to the enhanced positive  Bz (B↑↑Hz

a, bright) at the vertices of the internal TVs caused by the 
distributed Meissner currents in the SG. Long arrows in (b) show increased negative  Bz (B↓↑Hz

a, dark) near the 
vertices of TVs abutting the sample’s edge. Bright contrast lines along the outer periphery of the sample reveal 
the enhanced edge field due to the screening effect similar to that in a continuous SC triangle. Consecutive 
instant flux jumps in the TVs begin with the largest central  TV1 and proceed to smaller TVs. Numbers in 
(b–f), indicate the sequence of flux filling order of the TVs. The order of flux filling from large to small TVs 
is sometimes disrupted by early flux entry into the smallest TVs. Likewise, with increasing field, periodic flux 
entry into the largest TV may repeat several times before the flux entry occurs in smaller TVs (see the second 
round of jumps into  TV1 and  TV2 marked as 1 + in (e), and 2 + in (f)).
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Experiment
We used the magneto-optic indicator technique (MOI)17 to image the magnetic flux penetration in an equilateral 
triangular SG structure with maximum triangle side of 2 mm fabricated from a 100 nm niobium film with super-
conducting (SC) transition temperature  Tc = 8.75 K, grown by high-vacuum magnetron sputtering. A Sierpinski 
gasket obtained after successive removal of progressively decreasing triangular areas while leaving narrow 1 µm 
bridges between vertices of the remaining triangular SC patches is shown in Fig. 1. In SG structures made of 
thin wires, the 0-order gasket is a simple equilateral triangle and the order increases upon successive addition 
of wires connecting the centers of the larger triangle sides. In our case the 0-order gasket corresponds to three 
triangular patches surrounding the central triangular void. The equivalence with the 0-order wire gasket is that 
we similarly begin with one hole in the SC structure. Below we present the main results for our highest  3d-order 
SG pattern (Fig. 1a), which is formed after an eightfold reduction of the largest triangular void, yielding the 
smallest triangles with 125 µm sides.

The macroscopic magnetic response of the samples in a magnetic field was measured using SQUID mag-
netometry, and the flux distributions at T <  Tc were observed using MOI. The samples were mounted on a cold 
finger of a commercial Montana cryostat and covered by an indicator film with a large Verdet constant to spa-
tially visualize the normal magnetic field at the sample surface,  Bz(x,y), in polarized light. Careful calibration of 
image intensity versus applied normal field  Hz

a at T slightly above  Tc allows accurate quantitative assessment of 
induction distributions in the sample.

We start with demonstration of the magnetic flux entry in our  3d-order SG structure using a set of MOI 
pictures obtained by gradually increasing the applied field,  Hz

a, where the image intensity corresponds to the 
local strength of  Bz. Quantitative changes of local  Bz within various triangles in our SG samples will be presented 
below as  Bz(Hz

a) plots.
Figure 1b–f show successive evolution of the  Bz map in the sample with increasing  Hz

a in steps of ΔHz ~ 0.03 
Oe at T = 3.5 K. At this temperature, the magnetic field ≲ 0.4 Oe is mostly screened from the entire sample by 
Meissner currents  JM (Fig. 1b).  Bz increases only outside the peripheral of the sample as expected in a continu-
ous SC triangle. However, peculiar weak  Bz features concurrently appear inside the sample along the contours 
of all triangular voids (TVs). Specifically, small negative  Bz↓↑Hz

a (dark contrast as opposed to bright  Bz↑↑Hz
a) 

is observed at the sides and in the vertices of the TVs located adjacent to the outer-edges of the SG sample as 
marked by longer arrows in Fig. 1a (see also enlarged images in Fig. A1 of the Supporting Info).

Another peculiarity, a slightly enhanced positive  Bz (bright contrast), emanates from the vertices of the small-
est voids,  TV4, at the sides of larger internal TVs as marked by short arrows in Fig. 1b. These features appear due 
to the unidirectional screening currents  JM distributed over triangular patches of our SG. In the Meissner state, 
in a multiply connected SC structure with a single hole, such as a ring, the screening current,  JM, is concentrated 
near the inner and outer ring edges but has the same polarity across the ring’s  width18–21. As a result, the applied 
field is enhanced at the outer ring edge, while the local negative (opposite to  Hz

a) field appears at the inner edge 
(see Fig. A2 in Supporting Info). Further inside the hole, the field reverses sign again and a small positive  Bz forms 
in the center, but the total flux over the entire ring area is smaller than Φ0 and the ring remains in the Meissner 
state. The sketch of the  JM distribution in SG structures following the above scenario, which explains details of the 
Meissner  Bz map observed in our samples, is shown in Fig. 2a. The time dependent Ginzburg–Landau (TDGL) 
solution for the current distributions in the SG is presented in Fig. A3 of the Supporting Info.

With slow increase of  Hz
a, the above described features remain qualitatively unchanged although their contrast 

slightly increases. Then, at  Hz
a ~ 0.4 Oe the magnetic flux suddenly jumps into the large central  TV1 (Fig. 1c) 

where the enhanced bright contrast at the edges signify  Bz >  Hz
a. The  Bz contrast at the sides of  TV1 changes from 

dark to bright, indicating the inversion of the current direction near these edges. Consequently, the local SC 
current here, responds to the injected flux Φ1 instead of just screening the applied field  Hz

a. Appropriate sketch 
of the changed current distribution is shown in Fig. 2b (the TDGL solution is presented in right panel of Fig. A3 
of Supporting Info). The total flux in the central  TV1, estimated using measured  Bz in the triangle at  Hz

a ~ 0.4 Oe 
and the triangle area, is ΔΦ1 ~ 6600 Φ0 (see details below).

With further increasing field, the jump-wise flux filling occurs in the next smaller sized,  TV2 (s = 0.5 mm) 
marked as 2–3–4 in Fig. 1d.  TV2-#2 and -#3 are filled simultaneously and  TV2-#4 is filled at slightly larger  Hz

a. 
The abrupt flux jumps are accompanied by the dark-to-bright reversal of contrast at the  TV2 edges, as described 
above for  TV1. Following the jump, the field in  TV2 is higher than  Bz in  TV1 but the flux change is smaller 
(ΔΦ2 ~ 2600 Φ0) due to the smaller triangle area.

After the flux enters the set of  TV2, the next smaller  TV3 voids (#5, 6, 7…, s = 0.25 mm) begin to fill with 
magnetic flux at  Hz

a > 0.8 Oe (Fig. 1e). Flux jumps in voids of  TV3-set progress at small field intervals, sometimes 
in pairs of TVs, but not simultaneously in all  TV3 voids. In some cases, during the process of filling the smaller 
TVs, the additional flux jumps occur in larger TVs where the total flux is repeatedly increased by the same value 
of ΔΦi (see  TV1 after the 2nd jump marked “1 + ” in Fig. 1e, and “2 + ” for  TV2 in Fig. 1f). With further increasing 
field, at  Hz

a > 1.32 Oe, slightly before all  TV3 voids are filled, the next smaller set of voids  (TV4, s = 0.125 mm, #12, 
#13 and so on) begin filling (Fig. 1f). In some cases, they fill in pairs with TVs of the same or different size, and 
the succession of appropriate filling steps is intermittent with incremental ΔΦi jumps in larger TVs.

Finally, following multiple repeated flux jumps in larger voids, all 40 TVs in the SG are filled with flux at 
 Hz

ap ~ 2.9 Oe. The sequence of filling presented in Fig. 3 shows how the first flux jump occurs in each of the  TVi 
upon increasing  Hz

a. Clearly, the field of the initial flux jump, and the range of fields required for filling all the 
 TVi of the same size s, increases with decreasing s. With further increase in  Hz

a, additional flux jumps repeat 
periodically in all the  TVi. Eventually, after the triangular voids are filled, Abrikosov vortices start entering the 
SC patches at relatively large fields  Hz

a > 22 Oe (Fig. 4).
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Important details of the changing current patterns during the flux jumps in our samples are revealed by 
difference images presented in Fig. 5. They are obtained by subtraction of sequential  Bz images before and after 
the flux jump and represent increments of ΔBz(x,y) =  Bz(Hz

a + 0.03 Oe)-Bz(Hz
a) corresponding to appropriate 

changes of the currents ΔJ (x,y) during the jump. Figure 5 shows that the flux jumps ΔΦi in any sized  TVi yield 
qualitatively the same picture of a homogeneous ΔBz over the main  TVi area with enhanced positive ΔBz at the 
 TVi periphery. Pronounced contrasting features emerge in three neighboring triangular regions around the 
 TVi. They have the same size as  TVi, but contain smaller triangular voids surrounded by SC patches. Together 
with the central  TVi where the flux jump occurred (brightest contrast), these neighbors make up the Sierpinski 
sub-gaskets (sub-SG) of a lower order. Such smaller sized sub-SGs of order 2, 1 and 0 are isolated with dashes 
in Fig. 5b,c,e, respectively.

The ΔBz patterns show that after the flux jumps into a  TVi, the screening currents  JM in the SC patches sur-
rounding the  TVi are inverted along the edges of the  TVi and also along the sides of the smaller TVs making up 
the sub-SGi structure. At the same time,  JM is noticeably reduced at the sub-SGi’s outer boundary. The picture 
corresponds to the changes from pattern (a) to (b) in current distributions sketched in Fig. 2. Note that for suc-
cessive jumps in the same TV taking place with increasing field, the difference pattern remains the same (compare 
Fig. 5a and d) confirming the replicability of the repeated flux jump cycle. Also, at  Hz

a beyond the jump field, 
the sub-SGi  Bz-maps (not shown) restore the pre-jump features qualitatively similar to Fig. 1b and reveal the 
reemerging screening current distribution akin to the Meissner state pattern sketched in Fig. 2a.

In addition to successive flux jumps with increasing  Hz
a, at larger fields we observe unexpected local nega-

tive flux jumps, as illustrated by dark triangles (ΔBz < 0) in Fig. 5h–i. Here, the negative ΔBz in prior flux filled 
TVs is accompanied by a partial positive ΔBz

p in their neighbors (larger brighter triangles near dark triangles in 
Fig. 5h–i), which is smaller than their regular ΔBz flux jump value. In this case, the flux redistributes by jumping 
between neighboring TVs due to their magnetostatic coupling assisted by the change in current in the surround-
ing SC patches. It is different from purely magnetic coupling between electrically insulated SC rings observed  in22.

To quantitatively analyze the magnetic flux evolution in our SG pattern, we measured the MOI signal  (IMOI) 
averaged over the area of individual TVs, and transformed  IMOI into a median Bz value for the triangle using 
 IMOI(Bz) calibration. Multiplying the obtained Bz by the triangle area we obtain the magnetic flux Φi acquired by 

Figure 2.  Sketch of the current trajectories (red lines with arrows) and current induced fields (small circles with 
red dots and blue crosses for  Bz pointing Up and Down respectively) in 0th-order superconducting Sierpinski 
gasket in the Meissner state (a) and after the magnetic flux jump inside the triangular void (b). Bottom panels 
illustrate the current pattern around the narrow bridges linking the triangular SC patches in the SG.
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the  TVi. Figure 6 shows a set of characteristic Bz(Hz
ap) plots for TVs of all four sizes composing the SG. The Bz 

steps in different  TVis are periodic. They have basically the same amplitude and are separated by identical field 
gaps ΔHz

a between jumps. The height of the jumps Δ Bz increases with decreasing the  TVi size.
There is a slight variation in Δ Bz among different triangles of the same size, especially in the smallest  TV4 

(Fig. 6d). This can be due to a small difference of the vertex joints between the SC patches in the structure, which 
are also responsible for the observed scatter in the first flux jump field for same sized TVs shown in Fig. 3b. Also, 

Figure 3.  (a) Numerical order of the sequence of first flux jumps into the triangular voids (TVs) of the 
Sierpinski gasket with increasing applied field  Hz

a. (b) Dependence of the flux filling sequence (from TV#1 to 
TV#40, left ordinate) on the magnetic field  Hz

a (red dots). Blue squares show the side length s of the appropriate 
TVs (right ordinate) indicating the major tendency of the flux entry, from the largest to the smallest triangles. 
Arrows mark fields of the first flux entry in successively smaller triangular voids, from  Hc1

(1) for s = 1 mm to 
 Hc1

(4) for s = 125 µm.

Figure 4.  (a) Entry of Abrikosov vortices into the superconducting areas of the Sierpinski gasket. All the 
triangular voids are filled with magnetic flux (bright contrast) and vortices start penetrating the flux-free 
(dark) Nb triangles. MOI taken at T = 3.5 K,  Hz

a = 32.7 Oe. Right panel (b) shows the expanded view of the 
boxed fragment on the left. Arrows point to flux balloons of multiple vortices penetrating from all edges of the 
superconducting triangles.
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the recurrence is disrupted in rare cases of negative or partial flux jumps, when the flux rearranges between 
neighboring TVs and Δ Bz reaches ~ 1/3–1/2 of its regular value (see Fig. A4 in the Supplemental Info).

Figure 5.  Difference images, obtained by subtraction of  Bz-maps preceding and following the flux jump in 
different sub-SGs, revealing the abrupt change of the sub-SG current flow pattern. In (a), the enhanced bright 
contrast (ΔBz > 0) along the edges of the central triangular void  (TV1) corresponds to the inversion of the 
screening currents  JM near these edges to support the trapped flux in  TV1. In turn, the stronger dark contrast 
along the boundaries of the entire sample (ΔBz < 0) shows a noticeable drop in  JM there. Qualitatively similar 
difference patterns are observed after flux jumps in smaller  TVis. They show ΔBz changes well localized within 
appropriate lower order sub-SGi due to the current inversion at the  TVi edges and decreased currents at the 
sub-SGi boundaries. In panels (b), (c), and (e) the  2d, 1st, and 0-order sub-SGis are encircled by dashes. Similar 
ΔBz changes repeat after second and further jumps in the same TV (compare e.g. (a) and (d) or (b) and (h)). 
The distributed Meissner currents, which spread over the sub-SGi area define slight increase or decrease of  Bz at 
the vertices and along the sides of smaller TVs inside the sub-SGi in all pictures. More complex patterns appear 
during rare negative jumps (dark triangles in (h)–(i) pointed by arrows) which are accompanied by a partial 
positive jump in neighboring TVs.
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The distribution of successive flux jump amplitudes ΔΦi in  TVis of different sizes, obtained from Δ Bz as 
those in Fig. 6, is presented in Fig. 7. Here, the average ΔΦi decreases with s from ~ 6600Φ0 for the largest  TV1 
to ~ 650Φ0 for the smallest  TV4. Some scatter among successive ΔΦi in the same  TVi is within accuracy of our 
measurements. Note that the ratio of TV areas  Si ~ s2 in our SG is 1:4:16:64, while ratios of the flux jump values 
in these TVs (in units of Φ0) are ~ 650:1350:2650:6600 (~ 1:2.1:4.1:10.2), i.e. ΔΦi changes practically linearly with 
s (logΔΦ-logs fit gives ΔΦ ~ s1.131). Assuming that the SC currents, screening the applied field or  Bz in the  TVi 
due to flux jumps, are concentrated along the sides of the SC triangular patches and at their vertex links, we can 
model the individual sub-SGs as narrow rings with effective radius R =  (rinRci)1/2 = s/61/2, intermediate between 
the inscribed  (rin) and circumscribed  (Rci) circles confining the  TVi. The ring width was chosen as w = 1 µm, 
corresponding to the width of the bridges between all triangular patches. Appropriate values of inductance L of 
four of our sub-SGs calculated using formula for narrow  rings18, L = µ0R[ln(8R/w) − 2 + ln4], shown by squares 
in Fig. 8, are consistent with measured mean values of ΔΦi (round dots) in TVs of different size. This indicates 
that the inductance of the sub-SGs defines the size of the flux jumps in their central voids.

Figure 6.  (a–d) Changes of median normal induction  Bz in different size triangular voids of the Sierpinski 
gasket with increasing field  Hz

a at T = 3.5 K. The insert in (a) shows the measurement areas for estimating the 
median  Bz in TVs. Successive flux jumps fill the TVs by repeating values of ΔBz in field intervals ΔHz

a which 
increase with decreasing s.  Bz scales in the plots are different. The jump fields  Hz

a slightly vary for same size 
TVs. There is a small difference in ΔBz, most noticeable in the smallest TVs, possibly due to imperfections in 
the narrow bridges between niobium patches. Note the small slope in  Bz(Hz

a) between the steps as expected in 
superconducting rings within the London approach.
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Discussion
Experiments on superconducting Sierpinski samples were previously realized on periodic lattices of different 
order SGs with basic triangles of narrow few-micron long SC  nanowires10–13 or similar samples containing 
Josephson junctions in the  wires14,15. Macroscopic transport and susceptibility measurements on these samples 
revealed a rich hierarchy of sharp changes of the transition temperature,  Tc(Hz

a), and inductance, L(Hz
a), corre-

sponding to the complex filling of different size triangles composing the SG with single flux quanta. The theoreti-
cal treatment of these results was usually based on the Ginsburg-Landau (GL)  equations13–16,23–25 assuming the 
homogeneous magnetic field distribution, i.e. neglecting the SC screening fields. Basically, the superconducting 
nature of the samples was accounted through the field dependent phase relations of the SC order parameter, 
which dictate the flux quantization in multiply connected samples. In the case of SG, the flux quanta are predicted 
to enter the n-order SG with elementary (minimum size) triangles of area  A0 at fields H >  Hc = Φ0/(4nA0)16. In our 
SG formed by SC patches,  A0 is the area of the smallest triangular void, yielding  Hc ~ (1/4n)3 ×  10–3 Oe, which is 
much smaller than the observed flux entry fields (~ 0.37 Oe for the 1st flux jump in the central triangle), while 
the values of flux jumps we measure are much larger than Φ0. At the same time, theoretical expectation for suc-
cessive flux entry, starting from the largest triangle and proceeding to smaller triangles with increasing  Hz

a, is 
consistent with our observations (compare our Fig. 3 and the diagram of the flux filling sequence in Fig. A5 of 
Supporting Info, which is plotted using calculations  of16). However, in our case, the succession of flux entry in 
different sub-SGs is defined by a distinct mechanism which we discuss below.

Obviously, in our samples at T <  Tc/2 the screening effects are important. Under these conditions, the flux 
penetration into TVs should occur either through phase slips or by the transit of Abrikosov vortices across the 
1 µm bridges connecting the triangular SC patches. Flux penetration occurs when the screening current in 

Figure 7.  Amplitudes of flux jumps, ΔΦ, in different triangular voids of the Sierpinski gasket at T = 3.5 K. ΔΦ 
are obtained from measurements of  Bz(Hz

a) after multiplication by the triangle area. Note different ΔΦ scales in 
the plots.
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these bridges acquires a critical value  Ic. The screening currents flowing over the patches converge in the narrow 
bridges yielding there the enhanced current density, and with increasing  Hz

a, the total current reaches  Ic first in 
these regions. The resulting phase slips or moving vortices temporary suppress the SC order parameter |Ψ| near 
the vertices of the central  TVis in the sub-SGs and provide channels for flux entry. Clearly, the largest current is 
initially achieved (see Fig. 2a) around vertices of the largest  TV1 (#1 in Fig. 1) where the first jump occurs. This 
is then followed by flux jumps into smaller  TV2-4, and so on, as we observe in our samples.

To understand the regularity and large values of the flux jumps in different  TVis in the SG, we presume that the 
sub-SGs can be considered as inhomogeneous SC islands with a large hole in the center and revisit prior theories 
of flux quantization in SC rings. For SC rings smaller than the penetration depth λ and with outer radius R of a 
few ξ, the magnetic field response was widely studied using analytical and numerical solutions of static and time 
dependent Ginzburg–Landau (TDGL)  equations21,26–39. These works explained many experimental observations 
of sharp changes in the microscopic SC ring properties due to the periodic entry of single flux quantum Φ0, such 
as oscillations in  Tc, resistivity, susceptibility, inductance, and heat  capacitance29,30,37,40–44.

However, computer simulations of TDGL  equations21,31,33 accounting for different relaxion times of the phase 
(τφ) and amplitude (τ|Ψ|) of the SC order parameter in relatively large rings (R ≳ 10ξ) showed that transitions 
between many metastable states with different vorticity  Lv can yield ΔLv >  > 1 (e.g. ΔLv up to 9, i.e. ΔΦ = 9Φ0, 
for R = 15ξ31). These transitions repeat at appropriately large field steps (ΔH). They occur if τ|Ψ|> > τφ through 
phase slips with complicated temporal and spatial variation of φ and |Ψ| depending on the values of relaxation 
parameters, radius and width of the ring, and ξ, when the gauge-invariant momentum of the SC pairs reaches a 
critical value  pc (i.e. at a critical current)31,33,35,36.

In earlier experiments, giant flux jumps with ΔLmax = 11 at  Happ < 40 Oe and gradually decreasing ΔL at larger 
fields were found in narrow 4µm Al ring at T <  Tc/345. ΔL = 3 jumps were reported for 2µm Al  rings33. Later, giant 
flux jump transitions between metastable SC states with ΔLv up-to 70 were detected through sharp changes of 
the low-T tunnel current in narrow 25 µm square Al rings with a normal electrode in one  corner34,46,47.

The most intuitive and clear picture of flux quantization in multiply-connected SC samples appears in the 
London description of the induction and current pattern variations in  rings18–20,48,49. Unlike the GL formalism, 
which is mostly applied to mesoscopic rings, the London description is based on electrodynamics equations 
appropriate for any sample size, while anchoring the flux quantization requirement that maintains the coherent 
state in the SC material of the ring.

For thin SC rings with dimensions much smaller than the Pearl length (Λ = 2λ2/d for ring thickness d << λ), 
where one can neglect the field induced by the screening currents, the periodic flux entry was explicitly described 
 in49. Transitions between states with N and N ± 1 flux quanta in the ring were suggested to occur via the nuclea-
tion of Abrikosov (or Pearl for d << λ) vortex or antivortex, either at the outer or inner ring edge, and its motion 
across the ring width, thus adding or removing one Φ0 in the ring annulus. The barrier for this process is defined 
by the vortex nucleation field. Interestingly, at some fields H ~  (N1 +  N2)/2 the energy for  N1 and  N2 states with 
|N1 −  N2|> > 1 is the same, which could in principle allow large changes of vorticity in the ring.

For large SC rings, where the self-induction contribution becomes important, and where the flux jumps 
with large vorticity were predicted by the GL calculations, the accurate description of the magnetic response 
accounting for the self-field induced by the Meissner current was given  in19,20. The combined solution of Max-
well and London equations showed that the screening currents of the total Meissner state at small applied fields 

Figure 8.  Measured average values of flux jumps ΔΦ in the triangles of different size s (red dots) and calculated 
inductance (blue squares) of narrow rings with geometrically mean radius between circles inscribing and 
circumscribing the triangle and the same width as the bridge between triangles (see main text).
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are concentrated near the inner and outer ring edges and have the same sign across the entire ring width. They 
yield a small induction in the ring annulus, with total flux of less than a flux quantum. At larger  Hz

a, when the 
flux Φ = NΦ0 (N ≥ 1) jumps inside the annulus, the screening current at the inner ring edge changes direction 
to support Φ, and with further increasing field, the Meissner screening current pattern restores itself until the 
next flux entry. This picture corresponds to changes of the MOI patterns observed around different voids in our 
SG samples.

In20 Brandt and Clem calculated the SC ring energy in a homogeneous applied field Ha = Ba/µ0, accounting 
for the screening currents j in the presence of a fluxoid inside the ring and the fields Bj induced by these currents:

Here, the first term is the energy of the total field B = Ba + Bj and the second term is the kinetic energy of the 
currents. The total current and vector potential were divided into parts driven by the fluxoid and by the applied 
field respectively (details are described in the Supplemental Info). Finally, the Gibbs potential G = E − mBa/2 
was obtained, which describes the state of the ring accounting for the Ba source inducing the magnetic moment 
m in the ring. Depending on the applied field, minima of G defined stable flux values in the ring annulus with 
neighboring states distinct by ± 1Φ0.

If we approximate the sub-SGi containing central triangular void  TVi with side length s as narrow ring with 
effective radius R =  (rinRci)1/2 = s/61/2 and follow the same calculations as  in20 (see Supporting Info S1) we obtain 
the Gibbs potential responsible for the number, N, of flux quanta in the  TVi (omitting the constant homogene-
ous applied field contribution):

Here  Aeff = πR2 = (π/6)s2 is the effective area of the  TVi in the sub-SGi and C =  [tanh−1(a/b) − 1 + ln4] comes 
from the inductance of a narrow ring of width w, inner radius a = R − w/2, and outer radius b = R + w/2. The 
minima of  GN correspond to the multiquanta states defined by  Aeff and  Ba. However, transitions between dif-
ferent states are delayed until  Ba reaches a characteristic value allowing either phase slips or nucleation and 
transit of Abrikosov (Pearl) vortices across the narrow bridges in the corners of the  TVi. These fields are reached 
when the total screening current in the bridge acquires a critical value  Ic, which yields the flux jump in the  TVi: 
Φ = NΦ0 = Ls-SGIc (Ls-SG is the inductance of the sub-SG). After the flux jump, the total current in the bridge van-
ishes (−   jΦ screening the fluxoid inside  TVi and +  jH screening the applied field compensate each other). With 
further increasing  Ba,  jH restores the Meissner distribution over the entire bridge until the total current reaches 
 Ic again and an additional fluxoid Φ = NΦ0 jumps in. In small fields, as in our experiment, which do not affect 
the critical current, the jumps should be periodic in field, repeating in steps of ΔBa = Ls-SGIc/Aeff.

Similar 1 µm bridges in  TVis of all our sub-SGs, should have the same  Ic. However, due to the hierarchical 
current flow in the entire sample, the critical current is first achieved near the vertices of the largest  TV1. After 
the flux enters the largest  TV1 and the total current through it’s bridges vanishes (∫(jH-jΦ)dr = 0), the current tra-
jectories form closed loops in the three neighboring smaller sub-SGs and reach  Ic at their respective  TVi bridges 
with further increasing  Ha, resulting in subsequent flux jumps in these  TVis. Similar scenario repeats for the 
next smaller sub-SGs. The flux jumps for smaller structures occur between repeating jumps in larger sub-SGs.

From our data, we can not specify whether the flux jumps in the SG occur due to the phase  slips39,50,51 or due 
to the vortex  transfer48 across the narrow bridge at the vertices. However, quantitative estimates show a faint 
probability of phase slips in our samples: P ~ exp(− ΔF/kBT) with the barrier height ΔF ~  104  kBTc and appropri-
ate critical current density  Jc ~ 2MA/cm2 (see Supporting Info S1). At the same time,  Jc values obtained from 
transport measurements of sputtered ~ 100 nm Nb films similar to  ours52 suggest a high probability of vortex 
transfer across the SG bridges.

Note, that the succession of giant flux jumps, from largest to smallest sub-SGs, is similar to jump-wise 
single-Φ0 filling of mesoscopic SG numerically calculated within the Ginzburg–Landau  approach16 (see Fig. A4 
in Supporting Info). However,  in16, where the screening fields are neglected, the flux entry in different sub-SGs is 
mostly defined by the fluxoid quantization over the sub-SG area in slowly increasing applied field and recurrent 
current/electric field relations in the SG wire network. In our case, the giant fluxoid entry threshold is defined by 
the critical current in narrow bridges at the vertices of the sub-SG in the presence of screening effects. Our Gibbs 
potential analysis models the sub-SGs as independent rings and does not account for their mutual interactions 
which can be envisioned as magnetostatic coupling between the fluxoids entering different TVs. In our samples 
we observed a few cases of the flux redistribution between neighboring sub-SGs during separate jumping events 
(Fig. 5h–i) which are defined by these interactions. However, they were very rare and the individual ring picture 
seems to capture the main features of the giant flux jumps we imaged.

Conclusions
In this work, we directly imaged periodic multiquanta magnetic flux jumps in hierarchical fractal-like patterns 
of superconducting triangular Sierpinski gaskets. Unlike in earlier experiments addressing magnetic oscillations 
of  Tc and inductance in Sierpinski structures of microwires or SG networks of Josephson junctions, we studied 
SG samples of triangular niobium patches with 1 mm to 125 µm sides and directly observed discrete flux filling 
among proportionally decreasing triangular voids in small perpendicular magnetic fields at low temperatures.

The succession of flux jumps into central triangular voids,  TVi, of composing the sample sub-gaskets starts 
with the largest SG and proceeds to sequentially smaller sub-SGs with increasing field. We associate the orderly 
flux entry into our multiply-connected fractally designed superconducting sample with the controlling role 

(1)E = (1/2µ0)

∫
B2

d
3
r+ (µ0�

2/2)

∫
j2d3r

(2)GN = (1/µ0)(3/2)
1/2

[AeffBa − N�0]
2(1/s)/2C
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of narrow bridges between continuous SC patches. Here the screening currents converge and with increasing 
applied field, periodically reach the critical current value, thereby allowing phase-slips or Abrikosov (Pearl) 
vortex transfer to fill the  TVi with multiple flux quanta, NΦ0. Considering different sub-SGis, independently, the 
fluxoid vorticity N is proportional to the inductance Ls-SG of the sub-SGi, which can be approximated by a nar-
row ring of the order of sub-SGi  TVi size s, so that  Ns-SG ~ s. In turn, the field periodicity of flux jumps ΔHa ~ 1/s.

We observe changes of the current patterns during the flux jumps when the screening current around the 
 TVi reverses its direction. The flipped current may compensate the Meissner current induced by  Ha and the total 
SC current in the  TVi joints vanishes, allowing larger current collection at the narrow bridges of smaller TVs 
and enabling their flux filling. Eventually, multiquanta flux jumps repeat, alternating between large and small 
sub-SGs where appropriate  Ns-SG enter at appropriate  Ha.

We anticipate that the superconducting Sierpinski structures, where regular giant flux jumps are induced 
by small applied magnetic fields, may be used for designing low-loss tunable resonators for information and 
communication technologies. Fine changes in the inductance of the SG pattern due to the controlled fast flux 
entry in separate sub-SG can allow controlled switching in high frequency operations, in/out signal delivery, and 
exchange between elements of quantum electronics devices (sensors, amplifiers, memory cells, and computer 
nodes). The characteristic zero-field frequency response can be adjusted by the SG size and form a wide band of 
resonance lines depending on the SG order.

Methods
The samples were fabricated by lift-off procedure of 100 nm niobium film deposited with high vacuum DC 
magnetron sputtering on a photoresist pattern prepared using laser lithography on a silicon wafer. The accuracy 
of all 1 µm bridges between triangular patches forming the resulting niobium SGs was inspected in an optical 
microscope using 100 × objective.

The silicon chips with niobium SG structures were mounted on the cold finger of specially designed optical 
castle in a helium closed cycle Montana cryostat. A magneto-optical indicator with large Verdet constant was 
placed on top of the samples, allowing images of the normal magnetic field distributions  Bz(x,y) on their surface 
in a polarized light microscope. To improve the signal/noise ratio, the magneto-optical images were accumulated 
using multiple-exposures in a digital 16 bit camera with cooled 1024 × 1024 CCD array. The image intensities 
I(x,y) were transformed into the  Bz(x,y)-maps using accurate B-I calibration obtained slightly above the super-
conducting  Tc. Digital operations with images were performed using image processing software.

The description of TDGL simulations of the current distributions in the large Sierpinski gasket without and 
with magnetic fluxoid in the central triangular void are presented in the Supporting Info, where we also show 
details of our London calculations of the sub-SG Gibbs potential defining the giant flux jumps in our samples.

Data availability
The datasets obtained and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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