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Theoretical studies 
of magneto‑optical Kerr 
and Faraday effects 
in two‑dimensional second‑order 
topological insulators
Wan‑Qing Zhu  & Wen‑Yu Shan *

Optical approaches are useful for studying the electronic and spin structure of materials. Here, based 
on the tight-binding model and linear response theory, we investigate the magneto-optical Kerr 
and Faraday effects in two-dimensional second-order topological insulators (SOTI) with external 
magnetization. We find that orbital-dependent Zeeman term induces band crossings for SOTI phase, 
which are absent for trivial phase. In the weak-magnetization regime, these crossings give rise to giant 
jumps (peaks) of Kerr and Faraday angles (ellipticity) for SOTI phase. In the strong-magnetization 
regime, we find that two nearly flat bands are formed at the high-symmetry point of Brillouin zone 
of SOTI phase. These flat bands give rise to two successive giant jumps (peaks) of Kerr and Faraday 
angles (ellipticity). These phenomena provide new possibilities to characterize and detect the two-
dimensional SOTI phase.

In recent years, there has been a surge of interest in the topological properties of quantum materials. Amongst 
these, the concepts of topological invariants have been generalized to higher orders1–18. Different from the 
conventional correspondence between d-dimensional bulk and ( d − 1)-dimensional boundary states in topo-
logical insulators, second-order topological insulators (SOTI) have a correspondence between d-dimensional 
bulk and ( d − 2)-dimensional boundary states. For example, in three dimensions ( d = 3 ), there exist one-
dimensional hinge states, which have been observed experimentally in bismuth8,19, bismuth halide20 and tung-
sten ditelluride21. The roles played by hinge states in physical phenomena have later been revealed, including 
higher-order interferometer22, three-dimensional (3D) quantum Hall and quantum anomalous Hall effect23,24, 
spin transport25, etc. By contrast, two-dimensional (2D) SOTI has received relatively less attention due to the 
difficulties in the material growth and detection of higher-order topology26–28.

Optical measurements may provide efficient ways to detect the higher-order topology, as they are bulk sensi-
tive and do not rely on the details of boundary states. When a light is incident into magnetic materials, its angular 
momentum is transferred to the reflected and transmitted light, respectively, giving rise to the rotations of polari-
zation planes (see Fig. 1). These correspond to the magneto-optical Kerr and Faraday effects, respectively. Such 
effects have been widely adopted in the detection of time-reversal symmetry breaking in various systems. When 
applied to 3D topological insulators, quantized and universal Faraday and Kerr rotations have been predicted29–31 
and experimentally observed32–34. Kerr and Faraday effects are not restricted to 3D bulk or film systems, but can 
be employed to 2D materials. For example, polar Kerr effect may provide fingerprints of spontaneously broken 
time-reversal symmetry in bilayer graphene35. Experimentally, giant Faraday rotations have been observed in 
monolayer graphene under modest magnetic fields36,37. Furthermore, magneto-optical Kerr effects have also been 
used to experimentally demonstrate the 2D ferromagnetic behaviors of monolayer CrI338 and Cr2Ge2Te639. Since 
magneto-optical Kerr and Faraday effects can characterize the magnetism and spin behaviors of electrons40,41, it 
motivates us to study the topological properties of 2D SOTI by using these techniques.

In this work, we study the magneto-optical Kerr and Faraday effects in 2D SOTI with out-of-plane magneti-
zation. We consider the generic tight-binding model of 2D SOTI, constructed by the model of 2D topological 
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insulators2,3,42,43 with some symmetry-breaking terms. The advantage of the model is that we can switch SOTI 
phase on and off by tuning parameters. This provides opportunities to compare the results of SOTI with trivial 
insulators. The light is normally incident into 2D SOTI and magnetic substrate from the vacuum, whose electro-
magnetic field (also that of reflected or transmitted light) follows the standard Maxwell’s equations31. We relate the 
electromagnetic fields in the vacuum and substrate region by the modified boundary conditions incorporating the 
conductivities contributed by 2D SOTI. By solving these equations, the Kerr and Faraday angles are then directly 
obtained from the reflection and transmission coefficients of electric field. On the other hand, the finite-frequency 
longitudinal and Hall conductivities of 2D SOTI are derived by using the Kubo formula based on linear response 
theory44. Particularly, the Hall conductivity tensor is a consequence of out-of-plane magnetization in 2D SOTI.

For the treatment of magnetization, we consider the Zeeman effect in multi-orbital systems2,43, which can 
be decomposed into orbital-independent and orbital-dependent terms. By symmetry analysis, we find that only 
orbital-dependent Zeeman term contributes to the Kerr and Faraday effects in such systems. We also find that the 
magnetization induces band crossings in conduction and valence bands only for the SOTI phase. In the regime 
of weak magnetization, these crossings lead to giant jumps (peaks) of Kerr and Faraday angles (ellipticity). In the 
regime of strong magnetization, two nearly flat bands are formed at the high-symmetry X point of Brillouin zone 
of SOTI. These give rise to two successive giant jumps (peaks) of Kerr and Faraday angles (ellipticity) for the SOTI 
phase. By the quantitative analysis, we find that the model parameters and order of magnitude of rotation angles 
are all within experimental reach for realistic materials. Therefore these phenomena provide new features to 
characterize the SOTI phase, which may have practical applications in distinguishing SOTI from trivial insulators.

Model
We consider a generic tight-binding model of two-dimensional chiral second-order topological insulators 
H(k) = H0(k)+HΛ(k)+Hz

7,9,13, with

Here m(k) = M − 2B[2−
∑

α=x,y cos(kαa)] and Λ(k) = Λ[cos(kxa)− cos(kya)] . kx , ky are the wave vectors and 
a is the lattice spacing (set to be unity). Pauli matrices σα and sα ( α = 0, x, y, z ) act on orbital and spin degree of 
freedoms, respectively. H0(k) is the minimal tight-binding model for topological insulators3,42. H0(k) describes 
topological insulating phase with gapless edge states when 0 < M/B < 8 ; otherwise it describes trivial phase. 
Here we choose the hopping parameters t = 0.06 eV adopted from the HgTe quantum well systems2,43. Other 
parameters such as M and B are discussed in the units of t in the following. HΛ(k) represents a T̂  (time-reversal) 
symmetry breaking term which gaps the edge states and destroys the topological insulating phase. This leads to 
the formation of second-order topological insulators.

In this paper, we consider the external magnetization-induced rather than magnetic-field-induced Kerr and 
Faraday effects. Thus there are no Landau levels and the only consequence of magnetization is the Zeeman energy. 
For the HgTe quantum wells2,43, the Zeeman term reads

(1)
H0(k) = m(k)σzs0 + t sin(kxa)σxsz + t sin(kya)σys0,

HΛ(k) = Λ(k)σxsx , Hz = gσzsz .

Figure 1.   Schematic illustration of magneto-optical Kerr and Faraday effects in 2D second-order topological 
insulators (SOTI) on a magnetic substrate. θK and θF are Kerr and Faraday angles, respectively. The reflected 
light is shifted a bit for better visibility.
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gE and gH originate from different effective g factors of electronic orbitals |E1� and |H1� . Zeeman term Hzeeman can 
be decomposed into orbital-independent part σ0sz and orbital-dependent part σzsz . Here orbital-independent 
Zeeman term σ0sz can be neglected since it leads to a zero Hall response. Later we will demonstrate it by sym-
metry analysis. As a result, we only need to consider the orbital-dependent Zeeman term, which is relabeled by 
Hz in Eq. (1).

The symmetry properties of the Hamiltonian H(k) are summarized in Table 1. In the absence of Zeeman 
term Hz , the Hamiltonian H(k) preserves the combined Ŝ4 = Ĉ4Î  and Ĉ4T̂  symmetries, whereas breaking Î  , 
T̂  and Ĉ4 symmetries, respectively. Either Hz or σ0sz term will break the Ĉ4T̂  symmetry. Additonally, there is a 
“hidden” symmetry operation P̂ = σxsyK relating the states with momentum (kx ,±ky) , which can be broken by 
Hz rather than σ0sz . The effect of P̂ on the Hall conductivity σxy will be discussed in the following.

The optical conductivity tensor can be given by using the Kubo formula44

where ǫkµ and |k,µ� refer to the eigenvalue and eigenstate of Hamiltonian H(k) from Eq. 
(1). µ,µ′ = {1, 2, 3, 4} are band indices. At zero temperature, the Fermi-Dirac distribution 
fkµ = 1/[1+ exp((ǫkµ − ǫF)/kBT)] = �(ǫF − ǫkµ) , where ǫF is the Fermi energy and �(...) is the Heavi-
side function. ω is the photon energy and τs is the relaxation time of bulk states. The contribution of edge 
states to τs can be safely neglected when the light is shined away from the edge regions. Current operator reads 
jα = (e/�)∂H(k)/∂kα , with α,β = {x, y}.

When the orbital-independent Zeeman term gσ0sz is taken into account, the Hamiltonian H(k) pre-
serves the P̂ symmetry (see Table 1). As a result, the eigenstates with momentum (kx ,±ky) satisfy the rela-
tions ǫkµ = −ǫ(kx ,−ky)µ̄ and |k,µ� = eiφP̂|kx ,−ky , µ̄� , where φ is arbitrary phase factor. Moreover, the sys-
tem has the particle-hole symmetry ǫkµ = −ǫkµ̄ , where µ and µ̄ label a pair of particle-hole-symmetric 
bands. As an anti-unitary operator, P̂ establishes the following relations between current matrix elements: 
�k,µ|jx |k,µ

′ � = �kx ,−ky , µ̄
′ |jx |kx ,−ky , µ̄�  and �k,µ|jy|k,µ

′ � = −�kx ,−ky , µ̄
′ |jy|kx ,−ky , µ̄� . To gain some 

insight, we can decompose the optical conductivity tensor into k-resolved components σαβ(ω) =
∑

k σαβ(k,ω) . 
As a consequence, we find that σαα(k,ω) = σαα(kx ,−ky ,ω) for α = x, y , and σxy(k,ω) = −σxy(kx ,−ky ,ω) . This 
indicates that the Hall conductivity σxy(ω) = 0 when only the orbital-independent Zeeman term is considered. 
By contrast, the orbital-dependent Zeeman term Hz breaks the P̂ symmetry, thus gives rise to a nonzero σxy(ω).

When a light is propagating along −z direction into 2D second-order topological insulators deposited on a 
magnetic substrate (see Fig. 1), the Kerr and Faraday angles are defined as the relative rotations between left- and 
right-handed circularly polarized light:30,31

where the electric field E(l)± = E
(l)
x ± iE

(l)
y  and l = r, t refer to the reflected and transmitted light, respectively. 

The reflection (transmission) coefficients read

(2)
Hzeeman =







gE 0 0 0
0 gH 0 0
0 0 − gE 0
0 0 0 − gH







= gE + gH

2
σ0sz +

gE − gH

2
σzsz .

(3)

σαβ(ω) =

i�
∑

µµ′

∫

d2k

(2π)2
fkµ − fkµ′

ǫkµ − ǫkµ′

�k,µ|jα |k,µ′��k,µ′|jβ |k,µ�
ω + ǫkµ − ǫkµ′ + i�/2τs

,

(4)
θK = arg{E(r)+ } − arg{E(r)− }

2
= arg{r−} − arg{r+}

2
,

θF = arg{E(t)+ } − arg{E(t)− }
2

= arg{t−} − arg{t+}
2

,

Table 1.   Symmetry of the Hamiltonian H(k) satisfying Ô−1H(k)Ô = ηH(Ô−1
k) with operator Ô and η = ± . 

For hidden symmetry operator P̂ , P̂−1H(k)P̂ = ηH(kx ,−ky).

Symmetry

Î T̂ Ĉ4

Ŝ4 = Ĉ4Î Ĉ4T̂

P̂

σz s0 iσ0syK e
−i

π

4
σz sz

σxsyK

H0(k) + + + + + −

HΛ(k) − − − + + −

Hz + − + + − +

σ0sz + − + + − −
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where σ± = σxx ± iσxy and Z0 = cµ0 =
√
µ0/ǫ0 = 376.7� is the impedance of vacuum. ǫr and µr are the dielectric 

constant and magnetic permeability, respectively. Then θK and θF can be obtained. See Methods for details of 
these calculations. Additionally, we can introduce the Kerr and Faraday ellipticity γK , γF:45

By combining θK , θF and γK , γF , complex Kerr and Faraday angles can be introduced40,46

Results
Here we show numerical results of optical conductivities, Kerr and Faraday angles and ellipticity for 2D chiral 
SOTI in the presence of out-of-plane magnetization. In the absence of magnetization, model Hamiltonian (1) 
describes a second-order topological phase ( ν = 1)9,13,47,48 when 0 < M < 8B and a topologically trivial phase 
( ν = 0 ) otherwise. An introduction of magnetization may affect the topological behaviors of the system, thereby 
inducing a Chern insulating phase49,50. The energy dispersions of Hamiltonian (1) are given by

with the band index µ = 1, 2, 3, 4 . The bulk band gap between two middle bands closes at the high-symmetry 
momentum Ŵ = (0, 0) when g = |M| ; at M = (π ,π) when g = |M − 8B| ; at X = (π , 0) and Y = (0,π) when 
g =

√

(M − 4B)2 + 4Λ2 . As a result, diverse topological phases with different Chern number C can be realized 
by tuning the parameters. The phase diagrams of model Hamiltonian (1) are shown in Fig. 2, where both the 
Chern number C and second-order topological invariant ν are provided. For different regimes of parameters, 
the phase diagrams can be quite different. To make the discussion explicit, we mainly focus on two regimes of 
parameters: weak and strong magnetization case, corresponding to case (a) and (e) of Fig. 2.

A. Weak magnetization. First we consider the case with weak magnetization, corresponding to Fig. 2a. In 
this case, X = (π , 0) and Y = (0,π) are no longer gap closing points for any given parameters. As a result, the 
Chern number becomes C = 1 when −g < M < g or 8B− g < M < 8B+ g , and C = 0 otherwise. To check 
the topological properties, we plot the energy spectrum and wave function distribution of finite-size samples 
in Fig. 3 for parameters: M/t = 1 , 0 and −1 with B/t = 0.25 . In the absence of magnetization, these parameters 

(5)r± =
1−

√

ǫr
µr

− Z0σ±

1+
√

ǫr
µr

+ Z0σ±
, t± = 2

1+
√

ǫr
µr

+ Z0σ±
,

(6)

tan γK = |E(r)+ | − |E(r)− |
|E(r)+ | + |E(r)− |

= |r−| − |r+|
|r−| + |r+|

,

tan γF = |E(t)+ | − |E(t)− |
|E(t)+ | + |E(t)− |

= |t−| − |t+|
|t−| + |t+|

.

(7)
φK = θK + iγK ,

φF = θF + iγF .

(8)ǫkµ = ±
√

[
√

m2(k)+Λ2(k)± g]2 + t2
∑

α

sin2 kα ,

Figure 2.   Phase diagram of model Hamiltonian (1) versus M for different regimes of parameters. C and ν are 
the Chern number and second-order topological invariant, respectively. gΛ =

√

g2 − 4Λ2.
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correspond to the SOTI, semimetal and trivial phase, respectively. When magnetization is induced, according 
to Fig. 2a, these parameters correspond to the SOTI, Chern insulating and trivial phase, respectively. In Fig. 3a 
and b, we can see the existence of zero-energy corner states. In Fig. 3c and d, we can see the existence of gapless 
edge states. Such real-space calculations prove our results of phase diagram.

The band dispersions along the high-symmetry lines of Brillouin zone are shown in Fig. 4. Different values 
of M are considered, and Chern numbers are also labeled. Note that the model shows symmetric behaviors 
between parameters M > 4B and M < 4B , thus we only choose parameters with M ≤ 4B , including M/t = 1 , 
0 and −1 . Ti ( To ) labels the optical transitions for two inner (outer) branches of bands. Remarkably, there are 
new crossings in both conduction and valence bands of SOTI in the Ŵ −M direction (see Fig. 4a), which are 
absent in the trivial phase. The topological protection of band crossings can be understood by noting that in the 
Ŵ −M direction (i.e., kx = ky ), HΛ(k) = 0 for Hamiltonian (1). Thus the model reduces to that of topological 
insulators. For topological insulating phase ( 0 < M < 8B ), the bands are inverted at the Ŵ or M point, leading 
to the band crossings between them. For trivial phase, there are no band inversions or crossings.

The real and imaginary part of optical conductivities σxx and σxy are plotted in Fig. 5, where for convenience 
we set the Fermi energy EF = 0 . A striking difference between SOTI ( M/t = 1 ) and trivial insulators ( M/t = −1 ) 
lies in their order of magnitude. In SOTI, σxx and σxy are enhanced due to the existence of additional channels 
of interband transitions. Threshold photon energies for the interband transitions Ti and To are indicated by 
arrows in Fig. 5. At these transitions, Re[σxx] and Im[σxy] show sudden jumps while Re[σxy] and Im[σxx] show 
positive or negative peaks. For example, in Fig. 5a, Re[σxx] show sudden jumps for M/t = ±1 at ω/t = 1.2 due 
to the activation of inner interband transitions Ti . At ω/t = 2.8 , another jumps occur due to the activation of 
outer interband transitions To . For moderate photon energy ω , the magnitude of Re[σxx] for SOTI ( M/t = 1 ) 
becomes much larger than trivial insulators ( M/t = −1 ). This is attributed to the crossing points along the ŴM 
line of the Brillouin zone of SOTI (see Fig. 4a), which induces new channels of interband transitions at some 
non-high-symmetry momentum along the ŴM line. Moreover, the states at the high-symmetry point M = (π ,π) 
have non-negligible contributions due to the band degeneracy between Ŵ and M. These together contribute to 
the large magnitude of Re[σxx] in SOTI. Similar arguments can be given to Im[σxy] (see Fig. 5d). On the other 
hand, Im[σxx] and Re[σxy] are proportional to the slope of Re[σxx] and Im[σxy] , respectively, thereby exhibiting 
giant jumps near the small peaks at ω/t = 2.8 (see Fig. 5b and c). At even higher photon energy, the magnitude 
of σxx and σxy is greatly reduced due to the closure of optical interband transitions.

According to Eq. (8), the conditions for the occurrence of crossing points are given by m(k) = Λ(k) = 0 . That 
is, kx = ky ( ŴM line) and M − 4B[1− cos(kx)] = 0 . The critical values of parameters are M = 0 and M = 8B , 
which exactly agree with the parameter range for SOTI. This means that the large magnitude of Re[σxx] , Im[σxy] 

Figure 3.   Energy spectrum and wave function distribution of finite-size 2D second-order topological insulators 
(SOTI) for parameters (a), (b) M/t = 1 (SOTI phase), (c), (d) M/t = 0 (Chern phase) and (e), (f) M/t = −1 

(trivial phase). (b), (d) and (f) denote the summation of distributions 
√

∑4
i=1 |ψi|2 of four states highlighted 

in (a), (c) and (e), respectively. Corner states are present in the four corners of (b). Sample size is 40 by 40. 
Parameters: t = 0.06 eV43, B/t = 0.25 , Λ/t = 1.0 , g/t = 0.4.
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and the giant jump of Im[σxx] , Re[σxy] may potentially be used to characterize the SOTI phase. However, such 
argument is not applicable for the critical value M = 0 , in which case the magnetization drives the system into 
Chern insulators with Chern number C = 1 (see Fig. 4b). In this situation, the Chern insulating phase can be 
distinguished by the integer Hall conductivity in the low-energy limit, that is, Re[σxy] = e2/h as highlighted in 
Fig. 5c.

The Kerr and Faraday angles θK , θF and ellipticity γK , γF are plotted in Fig. 6. It is manifest that θK and θF (also 
γK and γF ) are complementary to each other. Basically, θF ( θK ) shows the same (opposite) behaviors as Re[σxy] 
in Fig. 5c. This can be understood from Eq. (5), where Z0σ± ≪ 1 can be treated as perturbations. After some 
algebra, we have θF ∝ −θK ∝ Re[σxy] . This means that Kerr and Faraday angles inherit the properties from Hall 
conductivity Re[σxy] , and hence can also be used to characterize the SOTI. γK and γF seem more likely to inherit 

Figure 4.   Band dispersions and density of states (DOS) of 2D second-order topological insulators (SOTI) with 
weak magnetization for parameters (a), (d) M/t = 1 , (b), (e) M/t = 0 and (c), (f) M/t = −1 . The dispersions 
are plotted along the high-symmetry lines of Brillouin zone, as indicated in the inset of (a). The optically-
induced inner (outer) interband transitions Ti ( To ) are depicted by blue (purple) double arrows. In the absence 
of magnetization, M/t = 1 , 0 and −1 correspond to SOTI, semimetal and trivial insulator, respectively. In the 
presence of magnetization, the Chern number in each case is indicated. Parameters: t = 0.06 eV43, B/t = 0.25 , 
Λ/t = 1.0 , g/t = 0.4.

Figure 5.   Real and imaginary part of optical conductivities (a–b) σxx and (c–d) σxy (in units of e2/h ) as 
functions of photon energy ω (in units of t) for 2D SOTI with weak magnetization. The arrows label the energies 
of optically-induced inner (outer) interband transitions Ti ( To ). The universal value of Re[σxy] in the low-energy 
limit is highlighted in red in (c). Parameters: t = 0.06 eV43, B/t = 0.25 , Λ/t = 1.0 , g/t = 0.4 , ǫr = 431,45, 
µr = 1 , �/τs = 0.05 , EF = 0.
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the properties from Im[σxy] , which, together with the Kerr and Faraday angles, can be adopted to distinguish 
SOTI from trivial insulators.

B. Strong magnetization. Now we consider the case with strong magnetization, corresponding to Fig. 2e. 
We consider two representative parameters: M/t = 4 and M/t = −6 . In the absence of magnetization, they cor-
respond to the SOTI and trivial phase, respectively. When strong magnetization is induced, the band structure 
is modified greatly, and M/t = 4 now reduces to trivial insulating phase. However, we reveal in the following 
that M/t = 4 and M/t = −6 have distinct optical features as they originate from different topological phases 
in the absence of magnetization.

The band dispersions along the high-symmetry lines of Brillouin zone are shown in Fig. 7, where two repre-
sentative parameters are considered: M/t = 4 (SOTI) and M/t = −6 (trivial). We find that similar to the case 
with weak magnetization, there are crossings in both conduction and valence bands of SOTI, which are absent 
for trivial phase. The threshold optical transitions for two inner (outer) branches of bands are labeled as Ti/o at Ŵ 
point, Xi/o at X and Ri/o at the crossing points. At the Ŵ or M point of Brillouin zone, transitions Ti/o are allowed 
since the initial and final states share the same spin angular momentum. At the X point, HΛ(k) from Eq. (1) 
mixes states with different spins, despite the fact that inner and outer states are orthogonal to each other. As a 
result, only transitions Xi/o within inner or outer states are allowed.

The optical conductivities σxx and σxy are plotted in Fig. 8, where the interband transitions contributing to the 
peaks and jumps are indicated by arrows. We find that SOTI show larger peaks of Re[σxx] and jumps of Im[σxx] 
from optical transitions Ri/o than trivial insulators. Nevertheless, their differences are much smaller than those 
in the weak-magnetization case. This is due to the loss of degenerate channels of optical transitions driven by 
strong magnetization. On the other hand, strong magnetization induces nearly flat bands at X point for SOTI 
(see Fig. 7a), which still gives rise to giant peaks and jumps of optical conductivities as a result of the enhanced 
joint density of states for optical transitions Xi/o (see Fig. 7c). This may provide another way to distinguish SOTI 
from trivial insulators.

The resulting Kerr and Faraday angles and ellipticities are plotted in Fig. 9. There are two successive giant 
jumps (peaks) in both θK and θF ( γK and γF ) originating from optical transitions Xi/o for SOTI. By contrast, there 
is only one small jump or peak from optical transitions Xi for trivial insulators. Compared with weak magneti-
zation, strong magnetization tends to suppress the magnitude of Kerr and Faraday angles and ellipticity. The 
reduction of Kerr and Faraday angles and ellipticity is due to the enhancement of band gaps modified by strong 
magnetization. This leads to the suppression of optical Hall conductivities, thus the reduction of Kerr and Fara-
day rotations. This reduction under strong magnetization is different from the general view of magneto-optical 
effects due to strong magnetic field, where Landau levels are formed. Here the magnetization does not induce 
Landau levels, but just modifies the band structure. However, even for the reduced Kerr and Faraday angles and 
ellipticity, they are still within the experimental reach.

Discussions and conclusions
Numerical results are mainly based on the model parameters of HgTe quantum wells. t = 0.06 eV and M/t = 1 
are within experimental reach by tuning the quantum well thickness2,43. The strong magnetization regime requires 
that g/B > 4 , suggesting that g > 0.1 eV. This can be realized in Mn-doped HgTe quantum wells under strong 
magnetic field51, Cr-doped (BiSb)2Te3 thin film52 or monolayer MoTe2 on EuO substrate53. The photon energy 
ranges from 0.01 eV to 0.6 eV, corresponding to the terahertz and far infrared frequencies32–34,54. In the weak 

Figure 6.   (a) Kerr and (c) Faraday angles and (b) Kerr and (d) Faraday ellipticity as functions of photon 
energy ω (in units of t) for 2D SOTI. The arrows label the energies of optically-induced inner (outer) interband 
transitions Ti ( To ). The universal values of θK and θF in the low-energy limit are highlighted in red in (a) and (c). 
Parameters: t = 0.06 eV43, B/t = 0.25 , Λ/t = 1.0 , g/t = 0.4 , ǫr = 431,45, µr = 1 , �/τs = 0.05 , EF = 0.
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magnetization regime, the rotation angles are tens of mrad, which share the same order of magnitude with 
experimental results of Bi2Se3 on Al2O3 substrate32. In the strong magnetization regime, the rotation angles 
become a few mrad, in the same order of magnitude with experimental results of strained HgTe and Bi2Se3 on 
InP substrate33,34. Our studies can also be applied to other proposed 2D SOTI, such as graphdiyne26, Bi on EuO 
substrate27 and monolayer FeSe28.

To realize SOTI from magnetic doped TI, the existence of HΛ(k) term in Eq. (1) is essential. According to 
Table  1, HΛ(k) term breaks T̂  and Î  symmetries while preserving the Ĉ4T̂  and Ĉ4Î  symmetries. Physically, 
HΛ(k) term can be realized in two possible ways. One is to induce orbital currents that break time-reversal sym-
metry oppositely in the x and y direction. The other is to induce ( π , π , 0) noncollinear antiferromagnetic order 
in the system. Details of this issue are worthy further study.

Figure 7.   Band dispersions and density of states (DOS) of 2D second-order topological insulators (SOTI) with 
strong magnetization for parameters (a), (c) M/t = 4 and (b), (d) M/t = −6 . The optically-induced inner 
(outer) interband transitions Ti/o at Ŵ , Xi/o at X and Ri/o at the crossing points are depicted by double arrows. 
In the absence of magnetization, M/t = 4 and −6 correspond to SOTI and trivial insulator, respectively. In the 
presence of magnetization, the Chern number in each case is indicated. Parameters: t = 0.06 eV43, B/t = 1 , 
Λ/t = 0.5 , g/t = 5.

Figure 8.   Real and imaginary part of optical conductivities (a–b) σxx and (c–d) σxy (in units of e2/h ) as 
functions of photon energy ω (in units of t) for 2D SOTI with strong magnetization. The arrows label the 
energies of optically-induced inner (outer) interband transitions Ti/o , Xi/o and Ri/o . Parameters: t = 0.06 eV43, 
B/t = 1 , Λ/t = 0.5 , g/t = 5 , ǫr = 431,45, µr = 1 , �/τs = 0.05 , EF = 0.
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Note that in our setup (see Fig. 1), semi-infinite magnetic substrate is assumed for simplicity. For realistic 
samples, the role of substrate thickness should be taken into account. Following the previous work31, we know 
that the results are independent of the substrate properties when the substrate thickness is much smaller than 
the light wavelength in the low-frequency limit. By increasing the thickness, the magnitude of Kerr and Faraday 
angles is suppressed. Particularly, when the resonance conditions are satisfied, that is, the substrate thickness 
contains an integer number of half wavelengths, Kerr and Faraday angles show Fabry-Perot-type oscillations 
and again become independent of the substrate properties.

Since ellipticity is a dispersive effect and sensitive to the distortions of dielectric tensor, it may not be suitable 
to detect 2D SOTI. Ellipticity may serve as a supplementary to Kerr and Faraday angles, which together can be 
used to characterize the 2D SOTI phase. Additionally, the comparison between ellipticity and rotation angles 
can provide information of distortions or inhomogeneities of the system.

Magneto-optical Kerr and Faraday effects have also been studied in topological insulators30 and Floquet 
topological insulators55 . By contrast, we are concentrated on the SOTI with proximity magnetization, rather 
than introducing the Landau levels55. Rashba spin-orbit interaction may further be introduced at the interface 
as a result of inversion symmetry breaking. This may modify the spin and pseudospin structures of electronic 
bands, inducing additional channels for optical interband transitions. The presence of impurity scattering affects 
the relaxation time τs in Eq. (3), which gives rise to a broadening of peaks and jumps for Kerr and Faraday 
angles and ellipticity31. For surface states of topological insulators Bi2Se3 and Bi2Te356,57, hexagonal warping 
term is present. This term may modify the interband transitions, Fermi velocity and density of states, leading to 
a quasilinear shape of Re[σxx] with a concave upward bent58,59. Our discussion focuses on the zero-temperature 
limit, and the increasing temperature tends to suppress the magnitude of peaks and jumps of Kerr and Faraday 
rotations33. However, as long as the temperature is not high enough, the main features should still be observable.

To conclude, we have studied the magneto-optical Kerr and Faraday effects in two-dimensional second-
order topological insulators. By symmetry analysis, we find that to observe the Kerr and Faraday effects in such 
systems, Zeeman term must be orbital dependent, rather than orbital independent. The magnetization induces 
new crossings in conduction and valence bands only in the SOTI phase. In the regime of weak magnetization, 
these crossings lead to giant peaks of Re[σxx] , Im[σxy] and giant jumps of Im[σxx] , Re[σxy] . As a result, Kerr and 
Faraday angles (ellipticity) θK and θF ( γK and γF ) show giant jumps (peaks) only in the SOTI phase. In the regime 
of strong magnetization, nearly flat bands are formed at X point for SOTI. These give rise to two successive giant 
peaks of Re[σxx] , Im[σxy] and giant jumps of Im[σxx] , Re[σxy] . In this sense, Kerr and Faraday angles (ellipticity) 
θK and θF ( γK and γF ) show giant jumps (peaks) only in the SOTI phase. These phenomena may potentially be 
used to distinguish the SOTI from trivial insulators. Note that our proposal may not be applicable to the regime 
close to the topological phase boundary, such as M = 0 , which may be driven into Chern insulating phase under 
magnetization.

Method
We consider a light propagating along −z direction from the vacuum into a 2D material (at z = 0 ) deposited on 
a magnetic substrate (see Fig. 1). In the vacuum ( z > 0 ), the electric field of incident light reads

(9)E(i)(z, t) = E(i)x x̂ei(−
ω
c z−ωt),

Figure 9.   (a) Kerr and (c) Faraday angles and (b) Kerr and (d) Faraday ellipticity as functions of photon energy 
ω (in units of t) for 2D SOTI with strong magnetization. The arrows label the energies of optically-induced inner 
(outer) interband transitions Ti/o , Xi/o and Ri/o . Parameters: t = 0.06 eV43, B/t = 1 , Λ/t = 0.5 , g/t = 5 , ǫr = 4
31,45, µr = 1 , �/τs = 0.05 , EF = 0.
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where ω and c refer to the energy and speed of light in the vaccum, respectively. For the reflected light, the 
electric field reads

In the magnetic substrate ( z < 0 ), the electric field of transmitted light reads

where the refractive index nr =
√
ǫrµr  . ǫr and µr are the dielectric constant and magnetic permeability, respec-

tively. According to the Faraday’s law ∇ × E = −∂B/∂t , the magnetic field of light follows

Based on the Maxwell’s equations, the boundary conditions at z = 0 are given by

where the current density in the 2D material satisfies the relations jα =
∑

β=x,y σαβEβ .  ǫ0 and µ0 are vacuum 
permittivity and permeability, respectively. By substituting the forms of electric and magnetic field into above 
equations, we can obtain the relations of coefficients from Eqs. (9)–(11).

Now we introduce a scattering matrix between incoming and outgoing electric fields by

where

and similarly for R′ , T ′ . The detailed form of R, T can be determined by using the boundary conditions (13). As 
a result, we find that

where D = ( 1
Z0

+ 1
Z0

√

ǫr
µr

+ σxx)
2 + σ 2

xy and Z0 = cµ0 =
√
µ0/ǫ0 = 376.7� is the impedance of vacuum. In 

the derivation, we have used the relations σxx(ω) = σyy(ω) and σxy(ω) = −σyx(ω) , which are appropriate for 
our system. According to the definition of Kerr and Faraday angle from Eq. (4), we need

where σ± = σxx ± iσxy . This reproduces the results in Eq. (5).

Data availability
On reasonable request, the corresponding author will provide all relevant data in this paper.

(10)E(r)(z, t) =
(

E(r)x x̂ + E(r)y ŷ
)

ei(
ω
c z−ωt).

(11)E(t)(z, t) =
(

E(t)x x̂ + E(t)y ŷ
)

ei(−
ω
c nr z−ωt),

(12)

B(i)(z, t) = −1

c
E(i)x ŷei(−

ω
c z−ωt),

B(r)(z, t) = 1

c

(
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ei(
ω
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ei(−
ω
c nr z−ωt).

(13)
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]
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