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Analysis of Covid‑19 data using 
discrete Marshall–Olkinin Length 
Biased Exponential: Bayesian 
and frequentist approach
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Abdulaziz S. Alghamdi 5, Eslam Hussam 6 & Abdisalam Hassan Muse 7*

The paper presents a novel statistical approach for analyzing the daily coronavirus case and fatality 
statistics. The survival discretization method was used to generate a two-parameter discrete 
distribution. The resulting distribution is referred to as the "Discrete Marshall–Olkin Length Biased 
Exponential (DMOLBE) distribution". Because of the varied forms of its probability mass and failure 
rate functions, the DMOLBE distribution is adaptable. We calculated the mean and variance, 
skewness, kurtosis, dispersion index, hazard and survival functions, and second failure rate function 
for the suggested distribution. The DI index demonstrates that the proposed model can represent 
both over-dispersed and under-dispersed data sets. We estimated the parameters of the DMOLBE 
distribution. The behavior of ML estimates is checked via a comprehensive simulation study. The 
behavior of Bayesian estimates is checked by generating 10,000 iterations of Markov chain Monte 
Carlo techniques, plotting the trace, and checking the proposed distribution. From simulation studies, 
it was observed that the bias and mean square error decreased with an increase in sample size. To 
show the importance and flexibility of DMOLBE distribution using two data sets about deaths due 
to coronavirus in China and Pakistan are analyzed. The DMOLBE distribution provides a better fit 
than some important discrete models namely the discrete Burr-XII, discrete Bilal, discrete Burr-
Hatke, discrete Rayleigh distribution, and Poisson distributions. We conclude that the new proposed 
distribution works well in analyzing these data sets. The data sets used in the paper was collected from 
2020 year.

Abbreviations
MOLBE	� Marshall–Olkin Length Biased Exponential
DMOLBE	� Discrete Marshall–Olkin Length Biased Exponential
pmf	� Probability mass function
cdf	� Cumulative distribution function
hrf	� Hazard rate function
DI	� Dispersion Index
DBXII	� Discrete Burr XII distribution
DB	� Discrete Bilal distribution
DBHD	� Discrete Burr–Hatke distribution
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MLE	� Maximum likelihood estimation
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A new pandemic appeared at the beginning of 2019 till March 2020 called the COVID-19 (Feroze1). Because 
of the lockout, COVID-19 has the greatest impact on human life and the economy. Pakistan is the 12th most 
impacted country in the world as a result of COVID-19 (Khan et al.2).

Mathematical models for the analysis of infectious disease transmission are currently omnipresent. Such 
models’ play a significant role in assisting with quantifying conceivable irresistible aliment control. Several models 
are available for infectious disease concerning compartmental models, beginning from the classical SIR model 
to more complex proposals (Ndaïrou et al.3).

To model the count data sets there are several classical probability distributions such as Binomial, Pois-
son, Geometric, and Negative Binomial distributions but these models do not provide a better fit for the over-
dispersed nature of data sets. Hence one way to deal with such data sets is to discretize the continuous model 
dealing with the specific behavior to have a better fit. Discretization has attained much attention in the last few 
decades due to its applicability and better fitting for count data analysis.

In past several discrete distributions have been introduced and studied, such as discrete Weibull distribu-
tion discrete beta exponential distribution by Nekoukhou et al.4, two-parameter discrete Lindley distribution 
by Hussain et al.5, Discrete Marshall–Olkin inverse Toppe–Leone with application to COVID-19 data has been 
obtained by Almetwally et al.6. discrete weighted exponential distribution by Rasekhi et al.7 exponentiated dis-
crete Lindley distribution by El-Morshedy et al.6, discrete Burr Hutke distribution by El-Morshedy et al.8, discrete 
Marshall–Olkinin Weibull distribution by Opone et al.9), see Almetwally et al.10, discrete Marshall–Olkinin 
alpha power inverse Lomax distribution by Almetwally et al.11, discrete inverted Topp–Leone distribution by 
Eldeeb et al.12, discrete Ramos–Louzada distribution by Eldeeb et al.13, discrete type-II half logistic exponential 
distribution Ahsan-ul-Haq et al.14, discrete power-Ailamujia distribution by Alghamdi et al.15, Poisson XLind-
ley distribution Ahsan-ul-Haq et al.16, Poisson moment exponential distribution Ahsan-ul-Haq17 and discrete 
moment exponential distribution by Afify et al.18.

Discrete extended odd Weibull exponential with the application of COVID-19 Mortality Numbers in the 
Kingdom of Saudi Arabia and Latvia has been introduced by Nagy et al.19. The pmf of the new model for a mixture 
representation of a geometric model has been obtained by El-Morshedy et al.20.

All these discrete probability models are introduced using the survival discretization approach. Let a random 
variable X be associated with a continuous probability distribution having survival function S(x) . The probability 
mass function (pmf) of a discrete random variable based on discretization is

The primary purpose of this study is to introduce a new flexible probability distribution for modelling across 
over-dispersed data sets. The mathematical properties of the new distribution, such as its simple closed-form 
expressions for the pmf, cdf, moments, and other characteristics, are obtained. The maximum likelihood approach 
is used to estimate the model parameters. To suggest a new alternative approach to model over dispersed data 
sets, the DMOLBE distribution applied to the number of deaths due to Covid-19 data sets. Consequently, the 
DMOLBE model’s primary goals are:

•	 The fact that this distribution provides the several hazard rate forms, such as declining, growing, or increas-
ing-constant, sets it apart from many other one- or two-parameter discrete distributions. Because of these 
hazard rates, the suggested model can be used to model a variety of data sets.

•	 It provides a variety of PMF shapes suitable for modelling symmetric, positively skewed, or negatively skewed 
data that may not be successfully modelled by other competitor models.

•	 The introduction of a number of statistical and reliability traits, such as moments, probability functions, 
reliability indices, hazard functions, reverse hazard rate, second rate of Failure, etc.

•	 In comparison to other discrete distribution models in the literature, analysis results from two practical 
applications revealed that the DMOLBE distribution matches the supplied data sets satisfactorily;

•	 In the presence of gathered data, maximum likelihood and Bayesian estimation methods are taken into 
consideration to estimate the specified parameters.

•	 The effectiveness of the acquired estimators is assessed using lengthy Monte Carlo simulations and a variety 
of accuracy metrics, including mean squared errors and absolute biases. It would seem plausible to suggest 
that approaches for parameter estimation are adequate and efficient.

The study is divided into the following sections: “Methodology” is based on the mathematical characteristics 
and derivation of the discrete Marshall–Olkinin Length Biased Exponential distribution. “Parameter estimation”  
presents maximum likelihood estimation via an extensive simulation study. “Bayesian estimation” discusses the 
results for all models. Finally, in “Results and discussion”, we bring the research to a close.

Methodology
In this section, we introduced a new discrete distribution, derived its statistical properties, estimate the model 
parameters using the maximum likelihood approach.

The DMOLBE distribution and its properties.  Let X be a random variable connected with the Ahsan-
ul-Haq et al.21 presented Marshall–Olkinin Length Biased Exponential distribution. The MOLBE distribution’s 
probability density function is:

(1)P(X = x) = S (x)− S (x + 1), x = 0, 1, 2, 3, . . .
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The associated survival function is

The DMOLBE distribution obtained using Eqs. (1) and (3), the pmf of the DMOLBE distribution is given

The cdf of DMOLBED is as follows

where γ is shape and β is scale parameter.
Figure 1 depicts the behavior of the probability mass function of the DMOLBE distribution, which varies 

with parameter values. The DMOLBE distribution is clearly declining, positively skewed, and symmetric, as 
seen above. It demonstrates the suggested distribution’s versatility in dealing with data of varying behaviour.

Survival and hazard function.  The survival function of DMOLBED is as follows

The hazard function (hrf) of DMOLBE is given as follows

Figure 2 shows the behavior of hazard function for different values of parameters which is increasing and 
decreasing which shows the flexibility of the model.

The second rate of failure.  The second rate of failure of DMOLBE is defined as

Reverse hazard rate.  The reverse Hazard rate of DMOLBE is defined as:
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Recurrence formula. 

Probability generating function and moments.  Let X be a discrete random variable, then the prob-
ability generating function of the DMOLBE distribution is given as follows:
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Figure 1.   The pmf plots of DMOLBE distribution.
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Differentiating Gx(Z) with respect to Z and setting Z = 1 , we can obtain the factorial moments as

(11)Gx(z) =
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Figure 2.   The discrete hrf plots of DMOLBE distribution.
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The factorial moments can be used to compute moments about the origin.

Now variance is

 and the coefficients of skewness (CS) and kurtosis (CK) may be computed as follows
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By Table 1 and Figs. 3, 4, and 5 show different measures of moment with different values of parameters.
The corresponding Dispersion Index (DI) is defined as

The DI indicates whether a distribution is suitable to model over or under-dispersed data sets. If DI > 1 , the 
certain distribution is showing over-dispersed behavior. It is observed that the DMOLBE distribution shows 
over-dispersion when γ = 0.5 and different values of parameter β . Conversely, the DMOLBE distribution shows 
under-dispersion when β = 0.5 and different values of γ .

Parameter estimation
Suppose x = (x1, x2, x3, . . . , xn) be a random sample of size n from DMOLBE distribution with probability mass 
function defined as

Then the log-likelihood function is given by:

CK =
µ′
4−4µ′

3µ+ 6µ′
2µ

2 − 3µ4

(
σ 2

)2 .

DI =
Variance of DMOLBED

Mean of DMOLBED

P(x) =

γ

[{(
1+ x

β

)
e
−

(
x
β

)}
−

{(
1+ x+1

β

)
e
−

(
x+1
β

)}]

{
1− (1− γ )

(
1+ x

β

)
e
−

(
x
β

)}{
1− (1− γ )

(
1+ x+1

β

)
e
−

(
x+1
β

)} .

Table 1.   Different measures of moment with different values of parameters.

β γ µ µ′

2
µ2 µ′

3
µ′

4
CS CK

0.4 0.4 0.46 0.54 0.3284 0.7 1.02 0.7942 2.6265

0.4 0.8 0.72 1 0.4816 1.68 3.4 0.7974 3.7328

0.4 1.4 0.88 1.24 0.4656 2.08 4.12 0.5330 3.5097

0.4 2 1 1.48 0.48 2.56 5.08 0.3608 3.1250

0.4 4 1.28 2.2 0.5616 4.4 9.88 0.3476 2.9354

0.8 0.4 1.06 1.98 0.8564 4.66 13.02 0.9408 3.8485

0.8 0.8 1.46 3.38 1.2484 9.98 34.82 1.0036 3.9361

0.8 1.4 1.82 4.94 1.6276 17.06 69.98 1.0329 4.1700

0.8 2 2.04 5.72 1.5584 19.68 78.92 0.8496 3.7884

0.8 4 2.54 8.5 2.0484 34.22 159.22 0.7586 3.7434

1.4 0.4 1.94 6.38 2.6164 28.94 162.14 1.5149 5.7179

1.4 0.8 2.56 10 3.4464 51.04 312.88 1.2182 4.5966

1.4 1.4 3.18 14.5 4.3876 83.22 561.46 1.0016 3.9426

1.4 2 3.58 17.54 4.7236 105.7 735.86 0.8850 3.5072

1.4 4 4.42 25.22 5.6836 169.42 1284.02 0.5686 3.0929

2 0.4 2.78 12.9 5.1716 82.7 646.98 1.5376 5.4719

2 0.8 3.68 20.68 7.1376 152.48 1351.24 1.2505 4.6498

2 1.4 4.46 28.3 8.4084 225.38 2109.34 0.9909 3.9480

2 2 5.08 35.64 9.8336 307.6 3081.48 0.8639 3.6358

2 4 6.4 52.48 11.52 508.48 5559.52 0.6433 3.0650

4 0.4 5.52 50.36 19.8896 635.4 9822.92 1.5539 5.5989

4 0.8 7.3 80.98 27.69 1189.78 21,106.42 1.3338 4.8751

4 1.4 9.08 117.4 34.9536 1912.16 36,477.64 1.0230 3.8559

4 2 10.26 143.86 38.5924 2494.98 50,398.9 0.9471 3.7760

4 4 12.72 208.32 46.5216 4045.92 89,269.92 0.6699 3.2863
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Figure 3.   Plots of mean, variance, skewness and kurtosis of DMOLBED (γ = 0.5)

Figure 4.   Plots of mean, variance, skewness and kurtosis of DMOLBED (β = 0.5)
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Now partially differentiate w.r.t γ and β, respectively.

Since it is difficult to find a closed-form solution for the set of nonlinear Eqs. (13, 14) with unknown gamma 
and beta values, the above-described nonlinear system may be numerically solved using an iterative method like 
Newton–Raphson by ‘maxLik’ package in R software.

Bayesian estimation
Since random and parameter uncertainty are expressed by a prior joint distribution that was generated before 
the data was obtained on the failure, the Bayesian approach deals with parameters. The flexibility of the Bayesian 
technique to incorporate previous knowledge into research makes it particularly useful in the study of reliability, 
as the lack of data is one of the major problems with reliability analysis. The γ and β parameters of DMOLBED 
take prior gamma distributions, where γ and β are non-negative values. The α and b parameters as independent 
joint prior density functions can be expressed as follows:

The estimates and their variances were equated with the inverse of the Fisher information matrix of alpha 
and beta to produce the ML estimator for γ and β , which was contributed by Dey et al.23. This procedure  was 
used to extract the hyper-parameters of the informative priors. The joint posterior density function of γ and β 
are derived from likelihood function of DMOLBED and joint prior density:
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Figure 5.   Plots of dispersion index of DMOLBED.
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Most Bayesian inference processes have been created using symmetric loss functions. The squared-error loss 
function is a popular symmetric loss function. The Bayes estimators of γ and β , say γ̃  and β̃  based on squared 
error loss function is given by

See Almetwally et al.22 employed the MCMC technique to solve the above equations.
Two of the most prevalent MCMC methodologies are the Metropolis–Hastings (MH) and Gibbs sampling 

methods. We employ the MH inside the Gibbs sampling stages:

and

Results and discussion
In this section, the results from the Monte Carlo simulation and real-life application are discussed in detail. All 
numerical calculations performed using R language software.

Simulation study. 

1.	 The following simulation research is carried out to examine the behaviour of Bayesian and maximum likeli-
hood estimates of the DMOLBE distribution. The simulation research is conducted using the below proce-
dures.

2.	 Generate N = 10, 000 samples of size n = 50, 100, 150, 200, and 300 from DMOLBD.
3.	 Estimate the parameters γ̂  and β̂  from each generated sample.
4.	 Compute the absolute biases (AB) and mean square errors (MSE) using the following equations.

For MLE:

For Bayesian

The simulation results are reported in Tables 2 and 3. Following conclusions are obtained from the results.

The following points were concluded from the simulation results

1.	 The estimated bias always decreases and approaches zero when n → ∞ for all combinations of parameters.
2.	 The estimated MSE decrease with an increase in sample size.
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3.	 Bayesian estimation is better than MLE.

Applications.  This section is based on the advantage of the newly proposed DMOLBE distribution over 
some commonly used distributions. The performance of the DMOLBED is compared with competitive distribu-
tions. The competitive distributions are discrete Burr XII distribution (DBXII), discrete Bilal distribution (DB), 
discrete Burr–Hatke distribution (DBH), discrete exponentiated Rayleigh distribution (DER), discrete length 
biased exponential distribution (DLBE), discrete Pareto distribution (DPr), and discrete Poisson distribution 
(DP). The probability mass functions of these distributions are;

Discrete Burr XII distribution

Discrete exponentiated Rayleigh distribution

Discrete Pareto distribution

Discrete length Biased exponentiated distribution

Discrete bilal distribution

P(X = x) = β ln(1+xγ ) − β ln(1+(1+x)γ )

P(X = x) = β ln(1+xγ ) − β ln(1+(1+x)γ )

P(X = x) = exp
(
−βlog(1+ x)

)
− exp

(
−βlog(2+ x)
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e
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)
e
−

(
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Table 2.   Simulation results of DMOLBE distribution for different parameter values by MLE estimation.

Parameters n AE

(
β̂
)

AE
(
γ̂
)

AB

(
β̂
)

AB
(
γ̂
)

MSE

(
β̂
)

MSE
(
γ̂
)

0.5,0.5

50 0.4035 2.1178 -0.0965 1.6178 0.0222 3.6584

100 0.3958 1.9832 -0.1042 1.4832 0.0155 3.3779

150 0.3943 1.8475 -0.1057 1.3475 0.0142 1.4960

200 0.5027 0.5978 0.0027 0.0978 0.0108 0.1274

300 0.5016 0.5607 0.0016 0.0607 0.0069 0.0603

0.5,1.5

50 0.5194 3.6631 0.0194 2.1631 0.0083 5.6600

100 0.5471 1.7873 0.0471 0.2873 0.0046 0.9434

150 0.5408 1.6825 0.0408 0.1825 0.0014 0.5342

200 0.5234 1.6273 0.0234 0.1273 0.0039 0.3414

300 0.5119 1.5919 0.0119 0.0919 0.0017 0.2190

1,0.5

50 0.7457 3.4974 -0.2543 2.9974 0.1194 7.0916

100 0.7381 2.8347 -0.2619 2.3347 0.0888 2.2086

150 1.0104 0.5652 0.0104 0.0652 0.0426 0.0679

200 1.0056 0.5513 0.0056 0.0513 0.0316 0.0476

300 1.0036 0.5336 0.0036 0.0336 0.0202 0.0289

1,1.5

50 0.8720 2.4160 -0.1280 0.9160 0.0492 2.5653

100 0.9997 1.7286 0.0003 0.2286 0.0267 0.6721

150 0.9992 1.6427 0.0008 0.1427 0.0173 0.3692

200 1.0015 1.6025 0.0015 0.1025 0.0131 0.2638

300 1.0016 1.5650 0.0016 0.0650 0.0089 0.1604

1.5,0.5

50 2.2243 2.0547 0.7243 1.5547 5.2812 4.9220

100 1.2134 1.7385 -0.2866 1.2385 0.1613 2.3661

150 1.1985 1.6787 -0.3015 1.1787 0.1385 1.8851

200 1.2070 1.5835 -0.2930 1.0835 0.1167 1.4551

300 1.2128 1.5233 -0.2872 1.0233 0.1048 1.2637

1.5,1.5

50 1.3774 2.7501 -0.1226 1.2501 0.1121 2.1164

100 1.4993 1.7133 0.0007 0.2133 0.0595 0.5899

150 1.4989 1.6466 0.0011 0.1466 0.0386 0.3683

200 1.5006 1.6016 0.0006 0.1016 0.0284 0.2470

300 1.4995 1.5683 0.0005 0.0683 0.0186 0.1541
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Discrete Burr–Hatke distribution

Discrete Poisson distribution

The model parameters of considered models are estimated using the maximum likelihood method. The 
performance of all fitted distributions is compared utilizing some criteria, Akaike information criterion (AIC), 
Bayesian information criterion (BIC), and Kolmogorov–Smirnov (K–S) test with its corresponding p values. All 
the computations are carried out in R software.

Data Set I (death due to coronavirus in China).  The first data set is the number of deaths due to coronavirus in 
China from 23 January to 28 March. The data sets used in the paper was collected from 2020 year. The data set 
is reported in https://​www.​world​omete​rs.​info/​coron​avirus/​count​ry/​china/. The data are: 8, 16, 15, 24, 26, 26, 38, 
43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97, 108, 97, 146, 121, 143, 142, 105, 98, 136, 114, 118, 109, 97, 150, 71, 52, 29, 
44, 47, 35, 42, 31, 38, 31, 30, 28, 27, 22, 17, 22, 11, 7, 13, 10, 14, 13, 11, 8, 3, 7, 6, 9, 7, 4, 6, 5, 3 and 5. The MLEs 
with their corresponding standard errors and goodness-of-fit measures are presented in Table 4.

Table 4 presents the results for estimated parameters using different models for the first data set which shows 
that DMOLBE distribution better fits the data set as compared to other competitive models as AIC and BIC are 
smaller for the proposed model. Table 5 discussed comparing between MLE and Bayesian estimation by SE for 
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β3x − 3

(
β2 − 1

)
β2x

P(X = x) =
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1

x + 1
−
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Table 3.   Simulation results of DMOLBE distribution for different parameter values by Bayesian estimation.

Parameters n AE

(
β̂
)

AE
(
γ̂
)

AB

(
β̂
)

AB
(
γ̂
)

MSE

(
β̂
)

MSE
(
γ̂
)

0.5, 0.5

50 0.6380 0.5998 0.1380 0.0998 0.0193 0.0174

100 0.6277 0.6028 0.1277 0.1028 0.0148 0.0150

150 0.6050 0.5615 0.1050 0.0615 0.0120 0.0058

200 0.5244 0.5099 0.0244 0.0099 0.0008 0.0003

300 0.5161 0.5074 0.0161 0.0074 0.0004 0.0002

0.5, 1.5

50 0.6037 1.5364 0.1037 0.0364 0.0071 0.0093

100 0.6221 1.5321 0.1221 0.0321 0.0046 0.0076

150 0.6002 1.5248 0.1002 0.0248 0.0011 0.0030

200 0.5259 1.5035 0.0259 0.0035 0.0008 0.0003

300 0.5180 1.5029 0.0180 0.0029 0.0004 0.0001

1, 0.5

50 1.0636 0.6018 0.0636 0.1018 0.0047 0.0168

100 1.0584 0.6001 0.0584 0.1001 0.0046 0.0143

150 1.0500 0.5610 0.0500 0.0610 0.0039 0.0056

200 1.0103 0.5092 0.0103 0.0092 0.0003 0.0003

300 1.0063 0.5066 0.0063 0.0066 0.0001 0.0001

1, 1.5

50 1.0757 1.5312 0.0757 0.0312 0.0075 0.0086

100 1.0658 1.5338 0.0658 0.0338 0.0061 0.0068

150 1.0489 1.5206 0.0489 0.0206 0.0038 0.0030

200 1.0081 1.5031 0.0081 0.0031 0.0003 0.0003

300 1.0051 1.5019 0.0051 0.0019 0.0001 0.0001

1.5, 0.5

50 1.5431 0.5819 0.0431 0.0819 0.0053 0.0133

100 1.5394 0.5828 0.0394 0.0828 0.0042 0.0111

150 1.5323 0.5452 0.0323 0.0452 0.0029 0.0037

200 1.5058 0.5060 0.0058 0.0060 0.0003 0.0003

300 1.5036 0.5048 0.0036 0.0048 0.0001 0.0001

1.5, 1.5

50 1.5430 1.5213 0.0430 0.0213 0.0043 0.0078

100 1.5392 1.5264 0.0392 0.0264 0.0040 0.0058

150 1.5257 1.5160 0.0257 0.0160 0.0023 0.0028

200 1.5043 1.5019 0.0043 0.0019 0.0003 0.0003

300 1.5022 1.5008 0.0022 0.0008 0.0001 0.0001

https://www.worldometers.info/coronavirus/country/china/
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the death due to coronavirus in China. By results in Table 5, we conclude that the Bayesian estimation is best 
estimation method for the death due to coronavirus in China. Figure 6 shows the cdf of different distributions 
of the first data set and Fig. 7 presents the P–P plots for all the competitive models, both figure supports the 
results obtained in Table 4. Figure 8 show that estimates of DMOLBED parameters for the death due to coro-
navirus in China data is existence and has the maximum log-likelihood value. Figure 9 plot MCMC plot results 

Table 4.   Parameter estimation and goodness-of-fir measures for first data.

Model

Maximum likelihood estimates (SE) Model comparison criteria’s

β̂ SE γ̂ SE -logL AIC BIC KS (p value)

DMOLBE 39.012 10.339 0.2783 0.1625 327.18 658.35 662.73 0.1285 (0.2255)

DBXII 0.9788 0.0389 6.3999 17.562 374.49 752.99 757.38 0.3607 (0.0000)

DER 34.054 169.93 0.5246 5.2344 347.23 698.45 702.83 0.2932 (0.0000)

DPr 0.2863 0.0352 – – 379.07 760.14 762.33 0.3816 (0.0000)

DLBE 25.122 2.1866 330.52 663.03 665.22 0.1718 (0.0407)

DB 0.9834 12.114 – – 330.07 662.14 664.33 0.1655 (0.0538)

DBH 0.9998 0.0019 – – 461.02 924.04 926.23 0.8119 (0.0000)

Poisson 49.737 0.8681 – – 1409.8 2821.6 2823.7 0.4975 (0.0000)

Table 5.   MLE and Bayesian estimation of DMOLBED parameters for the death due to coronavirus in China.

MLE Bayesian

Estimates SE Estimates SE

β 39.0118 10.3395 40.9089 9.4192

γ 0.2783 0.1625 0.3036 0.1324

Figure 6.   The estimated CDFs for the death due to coronavirus in China.



14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12243  | https://doi.org/10.1038/s41598-023-39183-6

www.nature.com/scientificreports/

of parameter estimates of DMOLBED for the death due to coronavirus in China data to confirm the estimates 
have convergence and the posterior has normal distribution as proposed distribution.

Data Set II (daily death due to coronavirus in Pakistan).  The second data set is the daily deaths due to corona-
virus in Pakistan from 18 March to 30 June. The data sets used in the paper was collected from 2020 year. The 
data is reported in https://​www.​world​omete​rs.​info/​coron​avirus/​count​ry/​Pakis​tan. The data are: 1, 6, 6, 4, 4, 4, 1, 
20, 5, 2, 3, 15, 17, 7, 8, 25, 8, 25, 11, 25, 16, 16, 12, 11, 20, 31, 42, 32, 23, 17, 19, 38, 50, 21, 14, 37, 23, 47, 31, 24, 9, 
64, 39, 30, 36, 46, 32, 50, 34, 32, 34, 30, 28, 35, 57, 78, 88, 60, 78, 67, 82, 68, 97, 67, 65, 105, 83, 101, 107, 88, 178, 
110, 136, 118, 136, 153, 119, 89, 105, 60, 148, 59, 73, 83, 49, 137 and 91.

Table 6 presents the results for estimated parameters using different models of the second data set which shows 
that DMOLBE distribution better fits the data set as compared to other competitive models as AIC and BIC are 
smaller for the proposed model. Table 7 discussed comparing between MLE and Bayesian estimation by SE. By 
results in Table 7, we conclude that the Bayesian estimation is best estimation method. Figure 10 shows the cdf 
of different distributions of the second data set and Fig. 11 presents the P–P plots for all the competitive models, 
both figure supports the results obtained in Table 6. Figure 12 show that estimates of DMOLBED parameters 
for Coronavirus in Pakistan data is existence and has the maximum log-likelihood value. Figure 13 plot MCMC 

Figure 7.   The P–P plots for the death due to coronavirus in China.

Figure 8.   Existence for the log-likelihood for the death due to coronavirus in China.

https://www.worldometers.info/coronavirus/country/Pakistan
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plot results of parameter estimates of DMOLBED for Coronavirus in Pakistan data to confirm the estimates have 
convergence and the posterior has normal distribution as proposed distribution.

Conclusion
The DMOLBE distribution, a novel two-parameter discrete probability distribution that may be utilised in 
place of well-known distributions, is introduced in this study. Its mathematical characteristics are provided in 
some cases. The maximum likelihood and Bayesian estimation methods are used to estimate the distribution’s 
parameters. The MCMC method is applied by the MH algorithm to produce the Bayesian estimation method. 
To evaluate the performance of unidentified parameters based on AB and MSE, simulation research is con-
ducted. MLE and Bayesian estimate methods for the performance parameter of the DMOLBE distribution were 
compared through simulation. We came to the conclusion that the Bayesian estimation approach is superior for 

Figure 9.   MCMC plots of convergence for parameter estimates of DMOLBED for the death due to coronavirus 
in China.

Table 6.   Parameter estimation and goodness-of-fir measures for second data.

Model

Maximum likelihood estimates (S.E.) Model comparison criteria’s

β̂ SE γ̂ SE -logL AIC BIC KS (p value)

DMOLBE 34.971 7.7459 0.4029 0.2006 431.99 867.99 872.93 0.0922 (0.4499)

DBXII 0.9816 0.0227 15.499 19.249 497.12 998.24 1003.2 0.3500 (0.0000)

DER 33.716 228.83 0.5293 7.1851 452.54 909.09 914.02 0.2473 (0.0000)

DPr 0.2834 0.03038 – – 503.61 1009.2 1011.6 0.3556 (0.0000)

DLBE 25.279 1.9165 – – 434.11 870.22 872.68 0.1046 (0.2973)

DB 0.9836 0.1266 – – 434.69 871.39 877.86 0.0996 (0.3531)

DBH 0.9997 0.0016 – – 613.80 1229.6 1232.1 0.7876 (0.0000)

DP 50.057 1713.0 – – 1713.0 3428.1 3430.5 0.4579 (0.0000)

Table 7.   MLE and Bayesian estimation of DMOLBED parameters for Coronavirus in Pakistan data.

MLE Bayesian

Estimates SE Estimates SE

Theta 34.9636 7.7266 36.9621 6.6547

Lambda 0.4029 0.2002 0.4042 0.1517
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estimating DMOLBE distribution parameter. The flexibility of the model is proved by using two real data sets 
and is compared with different existing models and the proposed model perform better among other models. 
Further the estimation of the proposed model can be performed using transforms. We will make future work as 
extension for this study, we will make a regression analysis to predict the future mortality rates in many countries 
under considerations.

Figure 10.   The estimated CDFs for the death due to coronavirus in Pakistan.

Figure 11.   The P–P plots for the death due to coronavirus in Pakistan.
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Future work
Future work in statistical analysis for COVID-19 data holds great potential in advancing our understanding 
of the pandemic and informing evidence-based decision-making. One key area of focus is the integration of 
more comprehensive and diverse datasets, including demographic, socioeconomic, and healthcare variables, to 
explore the multifaceted aspects of COVID-19’s impact on different populations. Advanced machine learning 
techniques can be applied to identify complex relationships and risk factors associated with the spread, sever-
ity, and outcomes of the virus. Furthermore, predictive modeling can be enhanced by incorporating real-time 
data streams and dynamic factors to provide more accurate and timely forecasts, aiding in proactive planning 
and resource allocation. Longitudinal studies analyzing the long-term effects of the pandemic and assessing the 
efficacy of interventions over time will provide valuable insights into the sustainability of public health measures. 
Additionally, ethical considerations and privacy-preserving methodologies should be integrated into future 
analyses to ensure data security and protect individuals’ rights. Overall, future work in statistical analysis for 
COVID-19 data will continue to play a pivotal role in guiding public health policies, bolstering preparedness for 
future outbreaks, and ultimately safeguarding global health.

Data availability
All data exists in the paper with all its references.

Received: 2 April 2023; Accepted: 20 July 2023

Figure 12.   Existence for the log-likelihood of DMOLBED parameters for Coronavirus in Pakistan data.

Figure 13.   MCMC plots of convergence for parameter estimates of DMOLBED parameters for Coronavirus in 
Pakistan data.
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