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Improved reverse Monte Carlo 
analysis of optical property of Fe 
and Ni from reflection electron 
energy loss spectroscopy spectra
Z. Li 1, J. M. Gong 1, B. Da 2, J. Tóth 3, K. Tőkési 3*, R. G. Zeng 4 & Z. J. Ding 1,5*

The energy loss functions (ELFs) of Fe and Ni have been derived from measured reflection electron 
energy loss spectroscopy (REELS) spectra by a reverse Monte Carlo analysis in our previous work. In 
this work, we present further improvements of ELFs for these metals. For Fe, we have updated ELFs at 
primary electron energies of 2 keV and 3 keV in a wider photon energy region (0–180 eV) with a better 
accuracy, which is verified by sum rules. Regarding to Ni, we supplement the ELF at primary energy 
of 5 keV and we also improve the data accuracy at 3 keV. Applying these new and more accurate ELFs 
we present the optical constants and dielectric functions for the two metals. The improvements were 
highlighted by comparing our present results with the previous data.

Iron and nickel are the main elements of the earth’s core. The study of the optical properties of these two transi-
tion metals has a long period of history. Most optical data of solid substances and compounds included in Palik’s 
 database1,2 are obtained by optical methods with a light beam, such as, reflection spectroscopy, absorption spec-
troscopy and spectroscopic ellipsometry. Another technique differing from the optical methods is to use electron 
energy loss spectroscopy (EELS)3,4 in a transmission electron microscope. However, such a technique has some 
limitations for its strict experimental conditions including extremely high incident beam energy and a very thin 
and free-standing sample. These extreme conditions had resulted in that the attention is turned to the reflection 
mode of EELS, i.e. the reflection electron energy loss spectroscopy (REELS), with a surface electron spectrometer. 
Without the special requirements for the thickness of samples, the REELS experiments can be performed for 
a bulk solid. In addition, the incident electron beam energy is just about several hundreds or thousands of eV.

In order to analyze experimental REELS spectra, many theoretical approaches have been proposed in the 
past  years5–15 which emphasized the theoretical description of the inelastic scattering in the surface region by 
including both the bulk and surface contributions. The analytical models for the background removal in REELS 
spectrum analysis have some shortcomings although they are helpful to understand the signal formation mecha-
nism during the interaction between electrons and solid. On the one hand, there will be logical contradiction 
between input parameters and calculation results. Because the electron inelastic mean free path (IMFP) and 
the surface excitation parameter should be known in advance as input parameters, but in fact these parameters 
need to be determined by the ELF of the materials. What is more, the surface excitation of the sample is actu-
ally related to the depth, rather than the uniform scattering assumed by the  algorithm15. In addition, the ratio 
between the elastic and the inelastic scattering cross sections has a great influence on the derived ELF and the 
shape of the simulated REELS spectrum.

To solve these problems, Da et al. developed a reverse Monte Carlo (RMC) technique for deriving the effective 
ELF from measured REELS spectra at different electron  energies16,17. They successfully determined ELF, optical 
constants and dielectric function of  SiO2, where the extracted data were verified with the oscillator-strength 
(f-) and perfect-screening (ps-) sum  rules18. The RMC combines a well-established Monte Carlo simulation 
method for the electron interaction with solids and a Markov chain Monte Carlo (MCMC) iterative updating 
of a parameterized ELF. In the iterative process the parameterized ELF was employed to calculate the required 
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differential inverse IMFP (DIIMFP) for a Monte Carlo simulation of REELS spectrum. The simulated spectrum 
was then compared with experimentally measured spectrum for further optimization of ELF. Xu et al.19–21 later 
have improved the RMC method by employing a more exact physical model of electron inelastic scattering in 
the surface region. They considered a depth-dependent DIIMFP including both the bulk excitation and the 
inhomogeneous surface excitation for electron inelastic scattering in vacuum and inside the sample surface 
region by a semi-classical  approach22. This method has been successfully applied to obtain the absolute ELFs for 
some other  solids23–28 with our CTMC-RMC  code29.

Xu et al. have studied the optical properties of  Fe19 and  Ni20 by employing the RMC method. Their sum rules 
results were obviously improved when compared with previous results. In this work, we further improve the 
values of ELFs by the RMC method, and then improve the optical constants and dielectric function according 
to the new ELFs. For Fe, we have considered a wider energy loss range (0–180 eV) in our simulation of REELS 
rather than the 0–100 eV range in Xu’s  work19. We show that our present ELFs are more accurate at the primary 
electron energies of 2 and 3 keV than the previous ones. Regarding to Ni, we improve the accuracy of the ELF 
at 3 keV primary energy, in which the goodness of f-sum rule of ELF increased by nearly 50%. Moreover, we 
supplement the values of ELF at higher primary energy of 5 keV, for which even better sum rule values were 
obtained than 3 keV primary energy. In addition, our present dielectric function of Ni in infrared region (below 
1.6 eV) is more reasonable than Xu et al.20 for their real part of dielectric function conflicts with the prediction 
of Drude dielectric function model in the low frequency region.

Experiment
Optical properties are inherent bulk properties independent of primary electron energy. However, we usually 
perform more than one measurement for the investigated material to verify the obtained ELF. In this work, 
the REELS spectra of Fe sample were recorded at primary electron energies of 2 and 3 keV, and those of the Ni 
sample were recorded at primary electron energies of 3 and 5 keV by a home-built electron spectrometer ESA-31 
developed in  ATOMKI30. During the experiments we used the fixed retardation ratio mode with a relative energy 
resolution of 5 ×  10–3. The angle of incident primary electron beam and analyzed electrons are 50° and 0° with 
respect to the surface normal, respectively. The other experimental details have been described  previously19,20. 
The same experimental conditions and process were performed except that the recorded REELS spectra in this 
work were presented in the energy loss range of 0–180 eV for both Fe and Ni rather than 0–100 eV for  Fe19 and 
0–200 eV for  Ni20.

Theory
Reverse Monte Carlo method. The Monte Carlo modeling of electron-solid interactions for a REELS 
spectrum is the basis of the RMC method, which uses Mott’s cross  section31 for electron elastic scattering and 
the dielectric function theory for inelastic scattering.

The relativistic expression of the differential elastic cross section, i.e., the Mott’s cross section, is expressed 
by the following formula,

where θ is the scattering angle, and the scattering amplitudes calculated by the partial wave expansion  method24 
can be described as:

where K is the relativistic wave vector of electron, Pl(cos θ) and P1l (cos θ) are the Legendre and the first-order 
associated Legendre functions, δ+l  and δ−l  are spin-up and spin-down phase shifts of the l  th partial wave, respec-
tively. The Thomas–Fermi–Dirac atomic  potential32 is employed in the numerical calculation of the phase shifts.

The dielectric function formalism is the most commonly used theoretical method to describe the electron 
inelastic scattering process. Owing to the surface boundary at the interface between bulk material and vacuum, 
in the process of simulating REELS by Monte Carlo method, not only the bulk excitation mode but also the sur-
face excitation mode should be considered. A quantum mechanical calculation of electron inelastic scattering 
cross section near the surface  region9,10 has enabled the successful theoretical simulation of REELS spectrum for 
a metal with the known optical  ELF11,12. However, considering the computation cost a semi-classical model is 
applied in this work for the electron inelastic scattering process. The depth-dependent DIIMFP, which can fully 
describe the surface excitation for an electron penetrating the surface from solid/vacuum side into the vacuum/
solid side, is derived  as22:
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and

The atomic unit is used in the above discussion, that is to say, the electron rest mass, electron 
charge and reduced Planck constant are all set to 1 ( me = e = � = 1 ). In Eqs. (3) and (4), E = v2

/

2 , 
ω̃ = ω − qv sinθ cosφ sinα , q|| = q sin θ , v⊥ = v cosα , where α is the angle between incident electron and 
surface normal, φ is spherical coordinate integral variable. �(−z) and �(z) in the end of each item are step 
functions about depth z . The upper and lower limits of q in the integrals are q± =
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 , is the bulk dielectric function of 
the material. �q is the momentum transfer and �ω is the energy loss of electrons that corresponds to the photon 
energy in an optical measurement. It is worth to mention that in both quantum and semi-classical approaches 
there is a quantitative difference in the intensity of surface excitations depending on the surface crossing direc-
tion. Experimentally it has been found that the difference becomes more obvious when an electron moves in a 
direction closer to the surface  parallel33.

The RMC method combines the Monte Carlo simulation of electron scattering with a MCMC calculation of 
the parameterized optical ELF, Im
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4 as the plasmon disper-
sion relation, where ωq and ωp are the extended and original energy loss, respectively, and EF is the Fermi energy. 
The purpose of RMC procedure is to find the best ELF with the minimum difference between the simulated and 
experimental REELS according to the simulated annealing  method35, which is a global optimization searching 
technique. Use a trial ELF composed by superimposing N Drude–Lindhard oscillators as input, then the Monte 
Carlo simulation is performed to produce a simulated REELS spectrum, Isim(�E) , where �E represents electron 
energy loss. Then an effective potential energy for the nth iteration, which represents the deviation between the 
simulated and experimental energy spectra as calculated by the weighted least square method, is defined as,

where Iexpn (�Ej) is the normalized experimental REELS spectrum with elastic peak area, and σ(�Ej) is a weight-
ing factor to emphasizes the importance of the energy loss zone. In other words, the RMC method is an optimiza-
tion of ELF by minimizing χ2

n in a simulated annealing process. The final ELF will be obtained when χ2
n converges.

The normalization procedure does not affect the obtained absolute ELF value; this is because the absolute 
ELF value affects the inelastic scattering cross section and, hence, the ratio of elastic scattering to inelastic scat-
tering events. Once the experimental spectrum is known, the intensity of elastic peak (either measured in area or 
height) to inelastic peak then informs such ratio of scattering cross section between elastic scattering to inelastic 
scattering. This ELF obtained can reveal some optical properties or the electronic basic transition properties of 
the materials that people are interested in.
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Analysis of optical property. In the RMC procedure, the ELF to be solved can be described by a sum of N 
Drude–Lindhard terms containing 3N oscillator parameters:

where Ai , ωpi , γi are the oscillator strength, energy and the width of the ith oscillator, respectively. The optical 
dielectric function ε(ω) refers to the long wavelength limit, q → 0 . After obtaining the optimal ELF by the RMC 
method, the derivation of the real part, Re

{
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 , can be determined by an analytical Kramers–Kronig 
relation. Then the two parts of the dielectric function are:

And the refractive index n and extinction coefficient k can therefore be derived as:

Sum rules. The reliability of the calculated ELF, optical constants and dielectric function extracted from 
REELS spectra can be checked by the various sum rules described below.
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dc‑conductivity sum rule. As for the real part of the dielectric function ε1 , it can be tested by the dc-conductivity 
sum  rule25,

whose theoretical value for metal is Rε1(∞) = −2π2σ0 , where σ0 is the dc-conductivity.

Results and discussion
The RMC method was applied to obtain the ELF of the samples from the measured REELS spectra. We found 
that the present ELFs of Fe and Ni show higher accuracy than the previous  data1,19,20,36. The details of the reasons 
please see below. Figures 1a and 2a shows that excellent agreements between the simulated and the experimental 
REELS spectra were found for all the two primary energies and for the two elements. All REELS spectra are 
normalized with the area of the corresponding elastic peak which are shown in the inset of Figs. 1a and 2a. The 
ELFs obtained from the spectra are shown in Figs. 1b and 2b.

The surface contribution in DIIMFP actually consists three items as described in Eqs. (3) and (4): the incom-
ing contribution in vacuum, the outgoing contribution in vacuum, and the contribution in the material. We have 
performed a calculation to discriminate the contributions to surface excitation from the three trajectory parts 
in order to show the accumulated effect of depth on surface excitation, taking Fe and Ni as examples and the 
primary electron energy of 3 keV, which are shown in Fig. 3. The bulk contribution and total surface contribu-
tion are provided in Figs. 1a and 2a.

Figure 4a shows the comparison of the ELFs for the two primary energies. They agree with each other quite 
well. Figure 4b shows the averaged ELFs over two energies compared with Xu’s  results19,20, with Werner’s  results15 
and with other data by optical  methods1,2,36. Here we focus on the comparison with the previous REELS-RMC 
 results19,20.

Iron. As is shown in Fig. 4a, the final ELFs obtained from experimental REELS spectra at the primary energies 
of 2 keV and 3 keV are almost the same in the energy loss range of 0–180 eV. The difference is mainly existed 
at the first peak around 25 eV. And the averaged ELF of Fe in Fig. 4b is generally close to that of Xu et al. (the 
dotted line)19. In the low energy loss region (< 15 eV), the present and Xu’s RMC results agree well with Palik’s 
data. In the energy loss region below 25 eV, our RMC results are in agreement with Werner’s data obtained from 
a deconvolution of REELS spectra. We can also see from Fig. 4b that the RMC results are closer to Werner’s den-
sity functional theory (DFT) calculation data in the energy loss region about 25–50 eV. Meanwhile in the high 
energy loss region, ELFs determined from RMC method are closer to Henke’s data but have a sharper  M2,3-edge 
around 55–60 eV. According to Eqs. (9, 10, 11, 12), the calculated f- and ps-sum rules data will converge at the 
high energy losses. These sum rules are used to check the accuracy of the ELF, the extinction coefficient and the 
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Figure 1.  (a) The final simulated REELS spectra (red lines) and measured spectra (black lines) of Fe at 2 keV 
and 3 keV. Contributions from bulk and surface excitations from simulation are shown by the blue and green 
lines, respectively. The inset shows the elastic peak for convolution of the spectrum. (b) The corresponding ELFs 
of each energy obtained from the simulated REELS spectra.
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imaginary part of the dielectric function (see Fig. 5). The sum rules with their relative errors are listed in Table 1 
in comparison with the results of Xu et al.19.

The improvements of ELF derived from the experimental REELS spectra of Fe as compared with Xu et al.19 
are highlighted from two aspects. Firstly, the ELF was derived in a wider energy loss range (0–180 eV rather 
than 0–100 eV) as is shown in Fig. 4b. Secondly, more accurate sum rules at each primary electron energy are 
obtained than previous Xu’s  ELFs19. Particularly, the f-sum rule check for the averaged ELF is 26.005 with relative 
error of 0.02%, which is very satisfactory.

Applying Eqs. (7) and (8), the optical constants, i.e., the refractive index n and the extinction coefficient k, 
and the complex dielectric function were calculated from the averaged ELF and shown in Fig. 6.

Similar to Xu’s  work19, as is shown in Fig. 6a, our present data of refractive index and extinction coefficient are 
in good agreement with the experimental data in the high energy loss region, and our present data also smoothly 
join the extinction coefficient of Palik’s data in the absent range of 26–50 eV. Furthermore, we supplement the 
calculation results of the complex dielectric function in Fig. 6b, which also reasonably agree with Palik’s and 
Henke’s data. In addition, we also used Eqs. (13) and (15) to calculate the inertial sum rule and dc-conductivity 
sum rule: the result of ξn is − 0.2179 and the relative error of Rε1(ω) is − 60.76%. The accuracy is limited by the 
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Figure 2.  (a) The final simulated REELS spectra (red lines) and measured spectra (black lines) of Ni at 3 keV 
and 5 keV. Contributions from bulk and surface excitations from simulation are shown by the blue and green 
lines, respectively. The inset shows the elastic peak for convolution of the spectrum. (b) The corresponding ELFs 
of each energy obtained from the simulated REELS spectra.
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Figure 3.  The simulated contributions to the surface component in REELS spectrum from electron trajectory 
parts for incoming to surface in vacuum (green lines), outgoing from surface in vacuum (red lines) and in solid 
(blue lines) in (a) Fe and (b) Ni for 3 keV primary electron beam and at 54° incident angle.
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absent information at the very low loss energies below 1 eV in the REELS spectra, which was blurred by the 
measured elastic peak broadening.

Nickel. In the case of Ni, the two ELFs obtained by the present RMC method in Fig. 4a were averaged and 
displayed in Fig. 4b in comparison with Xu’s  results20, with Werner’s  data15, with Palik’s  data1, and with Henke’s 
experimental  data36. In Palik’s database there is only a small amount of data, merely four data points, in the 
energy loss range of 30–50 eV. In the whole energy loss range shown, the present ELF is close to Xu’s  ELF20 except 
the intermediate energy loss region around 20–30 eV where our present ELF has lower values and it is also 
weaker than that of Werner’s two datasets. Moreover, below 10 eV the five datasets, i.e. the present, Xu et al.20, 
Werner et al.15 and  Palik1, are almost the same. In the high energy loss region above 50 eV, Werner’s ELFs have 
sharper peak at  M2,3-edge than other datasets around 70 eV. The present and Xu’s ELF are close to Henke’s data 
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Figure 4.  (a) Comparison of the ELFs for the two primary energies of Fe and Ni; (b) Comparison of ELFs 
deduced by the present RMC method (red lines) with the cutout data from Xu’s results (dotted lines)19,20, 
Werner’s REELS data (green lines)15, Werner’s DFT calculated data (blue lines)15, Palik’s compiled data (black 
circles)1,2 and Henke’s experiments data (black triangles)36 for Fe (Palik’s compiled data lack 1.5–5 eV and 
26–50 eV energy loss regions) and Ni.
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Figure 5.  The ps- and f-sum rule checks for ELFs, the extinction coefficient, and the imaginary part of the 
dielectric function of Fe at the 2 keV (blue dashed lines) and 3 keV (red lines) primary energies whose theorical 
values are marked with red arrows and numbers on the right axes, and the calculated results were marked in the 
legend as well. (a) The ps-sum rule calculated by Eq. (12); (b) the f-sum rule calculated by Eq. (9); (c) the f-sum 
rule calculated by Eq. (10); (d) the f-sum rule calculated by Eq. (11).
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Table 1.  List of f-sum and ps-sum rules for Fe at 2 keV and 3 keV primary energies as compared with Xu 
et al.19. a The theoretical nominal value for f-sum rule of ELF is the atomic number of iron, i.e. 26. b The 
theoretical nominal value for ps-sum rule is unit.

Zeff|ELF
a Relative error (%) Peff|ELF

b Relative error (%)

2 keV

 Present 26.030 0.12 1.0420 4.20

 Xu et al 25.80 − 0.76 1.045 4.5

3 keV

 Present 25.980 − 0.08 1.0333 3.33

 Xu et al 26.24 0.92 1.051 5.1

Averaging

 Present 26.005 0.02 1.0377 3.77

Figure 6.  Comparison of (a) the refractive index n and the extinction coefficient k and (b) the real and 
imaginary parts of the complex dielectric function of Fe obtained from the present RMC method (red lines) 
with Palik’s (black circles)2 and Henke’s data (blue triangles)36.
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Figure 7.  The ps- and f-sum rule checks for ELFs, the extinction coefficient, and the imaginary part of the 
dielectric function of Ni at the 3 keV (blue dashed lines) and 5 keV (red lines) primary energies whose theorical 
values are marked with red arrows and numbers on the right axes, and the calculated results were marked in the 
legend as well. (a) The ps-sum rule calculated by Eq. (12); (b) the f-sum rule calculated by Eq. (9); (c) the f-sum 
rule calculated by Eq. (10); (d) the f-sum rule calculated by Eq. (11).
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but the first two datasets have sharper  M2,3-edge. The f- and ps-sum rules were calculated to check the accuracy 
of the ELF, the extinction coefficient and the imaginary part of the dielectric function (see Fig. 7) at primary 
energies of 3 keV and 5 keV and compared with the Xu et al.20 and with the Palik’s results. The results with the 
relative errors in comparison with the results of Xu et al.20 are given in Table 2.

One can see in Fig. 7a that our present RMC results perform much better than the Palik’s data for the ps-sum 
rule as the convergence values of RMC is closer to the theoretical value. From the results listed in Table 2, we can 
see that our present ELFs have been improved mainly in two aspects as compared with Xu’s  results20. At 3 keV, 
our new ELF has better accuracy especially for Zeff|ELF , for which the relative error has been reduced by half. In 
addition, we derived the ELF from experimental REELS at primary electron energy of 5 keV that not included 
in Xu’s  work20. The result of the higher primary energy presents much more accurate ps-sum rule. Moreover, 
the new averaged ELFs of 3 keV and 5 keV have very small relative errors of − 0.09% and 0.21% for Zeff|ELF and 
Peff|ELF , respectively.

Figure 8a shows the calculated optical constants of Ni by using the present averaged ELF in the photon energy 
range between 0 and 180 eV in comparison with Palik’s1 and Henke’s  data36. In the higher energy loss region 
above the  M2,3-edge, the three datasets finally converge. The difference is mainly found in the low energy loss 
region which can be predicted from Fig. 7a,b. The real and imaginary parts of dielectric function derived from the 
averaged ELF are compared with Palik’s1 and Henke’s  data36 in Fig. 8b. As is shown in Fig. 8b, dielectric function 
from the present RMC method shows the same trend as others. Especially, in Xu’s  work20 it was mentioned that 
the behavior of the RMC data in infrared region (below 1.6 eV) is not true for it conflicts with the prediction of 
Drude dielectric function model in the low frequency region, where ε1(ω) should approach to negative infinity. 
In our present result, however, we get reasonable results in the infrared region shown by the shadow area in the 
inset of Fig. 8b, which has been improved in contrast to the results of Xu et al.20. Moreover, the inertial sum rule 
and the relative error of dc-conductivity sum rule have been calculated as − 0.1387 and − 94.12%, respectively, 
whose error source is the same as Fe.

Conclusions
The RMC method provides a global optimization technique with a MCMC method to obtain inherent opti-
cal properties of metals, which combines the Mott’s cross section for elastic scattering and depth-dependent 
DIIMFP within a semi-classical framework for inelastic scattering. In this work, the improved ELFs compared 
with  Xu19,20 of Fe and Ni have been derived from the measured REELS spectra with the RMC analysis. In the 

Table 2.  List of f-sum and ps-sum rules for Ni at 3 keV and 5 keV primary energies as compared with Xu 
et al.20. a The theoretical nominal value for f-sum rule of ELF is the atomic number of nickel, i.e. 28. b The 
theoretical nominal value for ps-sum rule is unit.

Zeff|ELF
a Relative error (%) Peff|ELF

b Relative error (%)

3 keV

 Present 27.560 − 1.57 1.0051 0.51

 Xu et al 27.14 − 3.1 1.006 0.6

5 keV

 Present 28.389 1.39 0.9991 − 0.09

Averaging

 Present 27.974 − 0.09 1.0021 0.21

Figure 8.  Comparison of (a) the refractive index n and the extinction coefficient k and (b) the real and 
imaginary parts of the complex dielectric function of Ni obtained from the present RMC method (red lines) 
with Palik’s (black circles)1 and Henke’s data (blue triangles)36.
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case of Fe, we have updated the values of ELFs as well as improved their accuracy justified with f- and ps-sum 
rules in a wider energy loss range of 0–180 eV at the primary electron energies of 2 keV and 3 keV. In the case 
of Ni, we not only improved the accuracy of ELF, whose relative errors of sum rules were reduced at primary 
energy of 3 keV in contrast to  Xu20, but also supplemented the ELF at higher energy of 5 keV. Based on the new 
ELFs, the optical constants and dielectric function of Fe and Ni were calculated. Our results of f- and ps-sum 
rules are much closer to the nominal theoretical values than any other previous data. Due to the high accuracy 
of the present data (included in supplementary material) the use of our data is highly recommended for further 
applications in materials science.
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