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Modeling interfacial tension 
of surfactant–hydrocarbon systems 
using robust tree‑based machine 
learning algorithms
Ali Rashidi‑Khaniabadi 1, Elham Rashidi‑Khaniabadi 2, Behnam Amiri‑Ramsheh 3, 
Mohammad‑Reza Mohammadi 3 & Abdolhossein Hemmati‑Sarapardeh 3,4*

Interfacial tension (IFT) between surfactants and hydrocarbon is one of the important parameters in 
petroleum engineering to have a successful enhanced oil recovery (EOR) operation. Measuring IFT in 
the laboratory is time‑consuming and costly. Since, the accurate estimation of IFT is of paramount 
significance, modeling with advanced intelligent techniques has been used as a proper alternative in 
recent years. In this study, the IFT values between surfactants and hydrocarbon were predicted using 
tree‑based machine learning algorithms. Decision tree (DT), extra trees (ET), and gradient boosted 
regression trees (GBRT) were used to predict this parameter. For this purpose, 390 experimental data 
collected from previous studies were used to implement intelligent models. Temperature, normal 
alkane molecular weight, surfactant concentration, hydrophilic–lipophilic balance (HLB), and phase 
inversion temperature (PIT) were selected as inputs of models and independent variables. Also, the 
IFT between the surfactant solution and normal alkanes was selected as the output of the models and 
the dependent variable. Moreover, the implemented models were evaluated using statistical analyses 
and applied graphical methods. The results showed that DT, ET, and GBRT could predict the data with 
average absolute relative error values of 4.12%, 3.52%, and 2.71%, respectively. The R‑squared of all 
implementation models is higher than 0.98, and for the best model, GBRT, it is 0.9939. Furthermore, 
sensitivity analysis using the Pearson approach was utilized to detect correlation coefficients of the 
input parameters. Based on this technique, the results of sensitivity analysis demonstrated that 
PIT, surfactant concentration, and HLB had the greatest effect on IFT, respectively. Finally, GBRT was 
statistically credited by the Leverage approach.

Interfacial tension (IFT) is a parameter of interest in petroleum and chemical science and  engineering1–3. It plays 
a vital role in multiphase flow, separation processes, formation and stability of emulsions, fluid transportation, 
and reservoir engineering processes like fluid contacts, fluid saturation distribution, recovery mechanisms, and 
enhanced oil recovery (EOR)  processes4–8.

Capillary pressure plays a critical role in oil recovery at all stages of production from oil reservoirs. The cap-
illary number (Nc) concept and equation are used to investigate the effect of capillary pressure on oil recovery 
from the reservoir. The general form of the capillary number is defined as  follows9, 10:

where θ is the contact angle, σ is the IFT between the wetting and non-wetting phase, μ is the viscosity of the 
displacing phase, and v is the Darcy velocity. The amount of oil saturation remaining in the porous medium has 
a strong correlation with the capillary  number9–15. Researchers concluded that increasing the capillary number 
increases oil  recovery16. Also, capillary number was considered as the primary variable in several modeling 
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and simulation studies related to IFT and wettability  alteration15, 17, 18. According to Eq. (1), decreasing the IFT 
increases the capillary number. EOR techniques produce residual oil by optimizing the amount of capillary 
 number18–21. Surfactants are amphiphilic molecules that are soluble in both organic solvents and  water22. The 
surfactant reduces the IFT between oil and water by adsorbing at the liquid–liquid  interface23, 24. It was found 
that an oil droplet on the meniscus could be attracted to the wall when surfactant is added to water, while bub-
bles always move towards the walls; IFT and gravity play significant roles in these  cases25, 26. Researchers have 
conducted numerous laboratory studies to investigate the ability of surfactants to reduce the IFT between aqueous 
solution and oil for use in EOR  techniques21, 27–29. The measurement of IFT of a water-hydrocarbon interface in 
the presence of surfactants is of great interest for surfactant flooding. Various parameters affect the IFT between 
the solution containing surfactant and hydrocarbons that must be considered. Experimental studies have shown 
that the  type28, 30 and the surfactant  concentration31, the temperature of the aqueous  solution32, and the hydro-
carbon  composition33, 34 can affect the IFT. Surfactants are divided into two general categories, which include 
ionic and nonionic surfactants. Ionic surfactants have a positive or negative electric charge, or both, classified 
into cationic, anionic, and amphoteric surfactants,  respectively35. However, nonionic surfactants do not have an 
electric charge. The interfacial behavior of surfactants can vary depending on their  structure2, 35, 36. Therefore, 
many researchers have investigated the role of surfactant structure in reducing the IFT between hydrocarbons 
and aqueous solutions.  Strey37 showed that with increasing temperature, the IFT behavior of the surfactant is 
curved and has a minimum point. It was found that before the minimum point of IFT, increasing the tempera-
ture which leads to an increase in the number of surfactant molecules at the interface between hydrocarbon and 
aqueous solution, reduces the IFT  value37. Also, increasing the surfactant concentration to the critical micelle 
concentration (CMC) reduces the  IFT35, 38.

The best way to measure the IFT between surfactant and hydrocarbon is performing laboratory methods. 
Laboratory methods for measuring IFT are the weight of drop  method39, 40 pendant  drop41–43, spinning  drop44–46, 
etc. Time-consuming is one of the limitations and challenges of laboratory methods. Considering the price of 
the chemicals used to perform the IFT test and the cost of the tests, this method is costly. Therefore, developing a 
model for predicting the IFT between surfactants and hydrocarbons can be very attractive and practical. Previous 
studies have described the effect of surfactants on the interfacial boundary of two fluids with the surface equation 
of  state47, 48. The surface equation of state is a relationship between the surface concentration of surfactant and 
surface  pressure48. The difference between the IFT without surfactant and after a surfactant to the solution is 
equal to the surface  pressure48. Also, the concentration of surfactant molecules on the surface is defined by surface 
 adsorption49. Different approaches to obtaining state equations were discussed in the literature. The Szyszkowski 
 equation50, the Frumkin  equation51, and the Langmuir  model52 are three examples of semi-empirical equations 
for the surface equation of state. The Langmuir model was used to describe the adsorption of nonionic surfactants 
at the interface between hydrocarbons and aqueous solution. This model cannot predict the effect of a surfactant 
mixture solution on IFT. It is also not suitable for describing the interfacial behavior of surfactants in the pres-
ence of inorganic  ions53. Mulqueen and Blankschtein (2002)54 developed a different molecular-thermodynamic 
approach to predict surfactant adsorption at the oil/water and air/water interfaces. They evaluated the validity 
of this model only on a limited number of laboratory data, and it was valid only for decane/water  interface54. 
Bahramian and Zarbakhsh (2015)48 performed studies to estimate the IFT of ionic surfactants. In their proposed 
model, they considered the size of the surfactant molecule and the CMC value of a surfactant in the aqueous 
solution as independent variables. In this method, a laboratory test set is required to obtain the  CMC48. In a 
recent study, Nikseresht et al. (2019)55 used the Butler equation to estimate the IFT between ionic surfactants 
and normal alkanes as the oil phase. This model is based on the surface state equation. For each case, two fitting 
parameters need to be set. In other words, the set model is not suitable for other conditions. They also examined 
Bahramian and Zarbakhsh’s48 equation for various surfactants and concluded that it could not be satisfactorily 
used to predict IFT in the presence of  C10TAB and  C12TAB55. In summary, thermodynamic models for estimating 
IFT have the following limitations: (1) they require laboratory testing to calculate the input parameters. (2) Each 
model fitted to a surfactant does not apply to other cases and conditions. (3) these models were evaluated for 
limited experimental data. (4) All parameters affecting IFT were not considered in these models. On the other 
hand, machine learning methods can model and solve complex numerical problems in  industry56–58. Predicting 
the IFT between two immiscible fluids using intelligent methods has been considered by many  researchers59–62. 
In previous studies, the ability of intelligent methods to estimate the IFT between hydrocarbons and the aqueous 
solution was  evaluated63–67. It was found that intelligent methods are appropriate for this purpose. As the literature 
review shows, the IFT studies in recent years are mostly focused on the aqueous phase and hydrocarbons, and 
the role of surfactants is less considered. To the best of the authors’ knowledge, no reliable and comprehensive 
model has been presented for this case. Therefore, there is a window to develop a reliable model for predicting 
the IFT of surfactants and hydrocarbon systems.

This study aims to develop accurate and reliable models to estimate the IFT between ionic surfactants and 
normal alkanes. Decision tree (DT), extra trees (ET), and gradient boosted regression trees (GBRT) models 
are implemented for this purpose. Temperature, normal alkane molecular weight, surfactant concentration, 
hydrophilic–lipophilic balance (HLB), and phase inversion temperature (PIT) are selected as inputs and inde-
pendent variables. Also, the IFT between the surfactant solution and normal alkanes is selected as the output 
and the dependent variable. Sample data are collected from the literature to train and evaluate the models. The 
trial-and-error method is used to optimize the implemented models. In the present study, the implemented 
models are evaluated using statistical analysis and applied graphical methods. Furthermore, sensitivity analysis 
is performed on how changes in the model’s inputs impact the IFT values. Finally, the leverage method is car-
ried out to ensure the credibility of the gathered IFT databank and the accuracy and dependability of the best 
model for estimating the IFT between ionic surfactants and normal alkanes. Hence, the main contributions of 
this research are as follows:
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• Collecting an extensive database of IFT of surfactant–hydrocarbon systems including important parameters 
such as HLB and  PITx, which have a significant impact on the better characterization of surfactants.

• Development of accurate models with low error using robust tree-based machine learning algorithms.
• Performing sensitivity analysis to detect the relative effect of temperature, normal alkane molecular weight, 

surfactant concentration, HLB, and  PITx on the IFT of surfactant–hydrocarbon systems.
• Implementation of leverage method to identify suspicious and outlier data related to IFT of surfactant–hydro-

carbon systems reported in the literature.

Data gathering
In order to develop the models, 390 sample data were collected from previous  studies68–76. The sample dataset 
contains temperature, normal alkane molecular weight, surfactant concentration, HLB, and  PITx. In this paper, 
five different surfactants were used, and their specifications were presented in Table 1. Also, n-hexane, n-heptane, 
n-octane, n-nonane, n-decane, n-undecane, n-dodecane, n-tetradecane, and n-heptadecane were used as normal 
alkanes. HLB and  PITx were used to represent the type of surfactants. The HLB value determines the hydrophilic-
ity and lipophilic of a  surfactant77, 78. Researchers have developed various methods for calculating the amount 
of the  HLB79, 80. In this study, the method introduced by Davies (1957)80 was used to calculate the HLB. Davis 
method calculates the value of the HLB based on the group number as follows:

The hydrophilic group numbers and the lipophilic group numbers are obtained from tables provided by Davies 
(1957)80. The values of the HLB for the surfactants used in this study are presented in Table 1. Another param-
eter used to characterize the surfactant is the PIT. This parameter depends on the structure of the  surfactant76. 
For better visualization, the structures of surfactants utilized in this work are depicted in Fig. 1. The amount of 
the  PITx of the five surfactants used in this study are presented in Table 1. Moreover, the statistical parameters 
of the databank used in this work are represented in Table 2. The collected data were divided into training and 

(2)HLB Davies = 7+� (hydrophilic group numbers)− �(lipophilic group numbers)

Table 1.  Characteristics of surfactants used in this study.

Surfactant Chemical formula dPIT/dx HLB

Decyl trimethyl ammonium bromide C10TAB C10H21N(CH3)3Br 338 21

Dodecyl trimethyl ammonium bromide C12TAB C12H25N(CH3)3Br 486 19

Myristyl trimethyl ammonium bromide C14TAB C14H29N(CH3)3Br 453 18

Hexadecyl trimethyl ammonium bromide C16TAB C16H33N(CH3)3Br 426 17

Sodium dodecyl sulfate SDS C12H25NaSO4 499 40

Figure 1.  Structures of surfactants used in this study. 
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testing categories for model development. In all modeling techniques, 80% of the sample dataset was used to 
train algorithms, and the remaining 20% was used to evaluate the models’ performance. At this stage, the data 
were randomly divided.

Model development
Decision tree. The DT is used for regression and classification  issues81. A simple structure of the DT is 
depicted in Fig. 2. A regression DT can predict numerical responses corresponding to independent variables. 
These types of algorithms are used in complex datasets. Decision trees are intuitive and  interpretable82, 83. In 
decision tree regression (DTR), it constantly divides the initial input space into smaller subsets and incremen-
tally makes the final DT with decision and leaf nodes. ID3, C4.5, C5, and Classification and Regression tree 
(CART) are standard DT algorithms. C4.5 is an improved version based on ID3 and has the following advan-
tages: (1) it can work with incomplete data, (2) it can use the pruning technique to prevent over-fitting, and (3) 
accepting discrete and continuous features. The CART is very similar to the C4.5. The difference between the two 
algorithms is that the CART does not calculate the rules and can also solve regression  problems84. In this study, 
the optimized version of the CART algorithm was used.

Dividing nodes in the training process of the network is one of the most critical parts of implementing a DT 
algorithm. In CART, it uses a Gini coefficient to divide the  nodes85. The DT implemented in that study consists 
of four  stages85. In the first stage, the DT grows using the division of nodes. After dividing the training data into 
two parts, with the same logic, it divides these subsets again and so on. The DT greedily searches for an optimal 
division. This algorithm repeats the data segmentation in each step and does not check whether it leads to less 
impurity in the next steps. Each node is assigned to a predicted target based on the target’s distribution in the 
sample data in nodes. This process continues until it cannot find a partition that reduces the impurity. Also, when 
the tree reaches its maximum state, the DT’s growth process will stop. It is necessary to optimize the maximum 
depth value for this algorithm. In the second stage, after the tree’s maximum growth, the process of building 
the tree stops. At this stage, the DT may not accurately predict the target value based on the test data. The third 
step involves pruning and simplifying the tree, which makes it better to predict. In the fourth step, the best tree 
is selected from the pruned trees.

Table 2.  Statistical parameters of the databank.

HLB dPIT/dx (°C) Conc ×  105 (mol/l) T (K) Mw (g/mol) IFT (mN/m)

Mean 20.86 347.87 303.35 300.01 125.05 36.64

SD 14.45 200.32 714.44 7.68 40.80 14.39

Min 0 0 0 283.15 86.178 4.98

Skewness −0.04 −1.02 4.89 2.07 1.03 −0.68

Kurtosis −1.09 −0.71 28.44 5.81 0.45 −0.87

Max 40 499 6896.76 333.15 240.47 53.54

Status Input Input Input Input Input Output

Figure 2.  A simple structure of the DT.
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The DT continuously divides the data into smaller sections during the same process to homogenize the data 
in the partition. The splitting rules may be set to optimize a criterion related to the target’s predictive value, or 
the rules may be set to minimize local node impurity or dependent variables over the training set.

Identifying the number of training data points for the DT is a significant issue because it will cause over-fit 
if the sample data is low. Adding any level to the tree may lead to an increase in the number of samples required 
to learn the DT. The size of the tree should be controlled to prevent  overfitting86. The main parameters for DT 
optimization include tree depth, minimum sample division, and minimum sample leaf. Ensemble methods can 
prevent over-fitting in the DT  algorithm87, 88.

Extra trees. The ET creates a stronger model by combining several decision trees. The ET is one of the 
ensemble methods. In the ET method, the node is divided completely randomly by selecting the cutting points. 
Each DT grows independently, and all learning samples are used to grow the trees. The predicted target values 
are then added up for the final prediction. Finally, it predicts the final answer using the mathematical mean of 
the predicted values obtained from each base  model89. The ET algorithm builds an ensemble model based on 
the explicit randomization of cutting points and feature combinations using averaging. Also, using all learning 
data to build base models can minimize the bias of the final  model90. The tree growth method’s complexity in 
the ET algorithm, assuming the trees are balanced, is similar to other tree growth  methods89. This algorithm has 
three parameters including Nmin, which denotes the minimum sample size to divide a node, K shows the number 
of randomly selected attributes in each node, and M illustrates the number of trees used as the base model. It is 
necessary to optimize these parameters to develop a more robust model based on additional trees. Each of these 
parameters has a different effect. The value of parameter Nmin affects the average noise output of the model. The 
larger the value of Nmin, the smaller the trees are made. As a result, the variance decreases, and the bias increases. 
The minimum size of sample data for node splitting should be optimized according to the model’s amount of 
output noise. Obviously, in regression problems, high noise levels lead to overfitting. Geurts et al.89 suggested 
that a higher value for parameter Nmin should be used to build a stronger model when the data has more noise. 
In other words, to optimize ET in high noise conditions, it is necessary to increase the value of Nmin. The number 
of selected attributes can also determine the strength of the attribute selection process. The maximum value that 
can be considered for K is the number of input features of the model. The low value of parameter K increases 
the randomness of the trees. It also makes the structure of the trees less dependent on the target value of the 
learning samples. Therefore, if we set the K to 1, the divisions are selected completely independent of the target 
variable. Also, if the value of this parameter is equal to the number of features in the learning data, the features 
are not explicitly selected randomly, and the randomization effect is applied only by selecting the cut  points89. A 
schematic structure of the ET algorithm is illustrated in Fig. 3.

Gradient boosted regression trees (GBRT). Boosting is another method of an ensemble that combines 
several weak learners to create a stronger model for target  prediction85. This method is used to solve regression 
and classification problems. The weak learners are trained one after the other, each focusing on correcting the 
previous  step91. In this study, the GBRT was used, in which the DT is defined as the basic learner.

In a modeling issue, one has a system consisting of a set of random “explanatory” variables or “input” x = {× 1; 
…; xn} and random “response” variables or “output” y. The goal is to create a function F*(x) that relate y to x.

the expected value of some specified loss function �
(

y, F(x)
)

 is minimized. Here, h(x; am) is a simple function 
of x defined as a basic learner. The expansion coefficients {βm}

m
0

 and the parameters {am}
m
0

 are jointly fit to the 
training data in a forward “stage-wise” manner.

Equation (5) can be solved in two steps for a given cost function by the Gradient Boosting  method92, 93. First, 
the function h(x; a) is fit by least squares:

(3)F∗(x) = argF(x)
minEy, x�

(

y, F(x)
)

(4)F(x) =

M
∑

m=0

βmh(x; am)

(5)(βm,am) = argminβ ,a

N
∑

i−1

�
(
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)

(6)Fm(x) = Fm−1(x)+βmh(x; am)

(7)am = argmina,ρ

N
∑

i=1

[

ỹim − ρh(xi; a)
]2

(8)ỹim = −

[
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(

yi, F(xi)
)

∂F(xi)

]

F(x)=Fm−1(x)
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In the next step, according to h(x; a m ) , the optimal value of β Μ is determined. GBRT specializes in this 
strategy to the case where the weak learner h(x; a) is an L terminal node regression tree. At each iteration m, a 
regression tree is divided the x space into L-disjoint regions {R lm } l

l = 1
.

the solution to Eq. (8) reduces to a simple “location” estimate based on the criterion �.

It will be updated separately in each corresponding area.

The learning rate is controlled by the “shrinkage” parameter 0 < v ≤ 1 . The small values of this parameter 
(v ≤ 0.1) lead to a much better generalization error. Friedman (1999)92 presented specific algorithms based on 
this template for several loss criteria, including least-absolute deviation, least squares, Huber, and for classifica-
tion, K class multinomial negative log-likelihood. It should be noted that hyper-parameters should be considered 
to optimize the implemented model. These parameters such as the number of base estimators, subsample, loss 
function, maximum depth, the minimum number of leaf nodes, the maximum number of features, and the 
minimum number of sample split samples, define the structure of the network. A simple architecture of the 
GBRT algorithm is depicted in Fig. 4.

Results and discussion
Description of the models’ development. In the present work, three different data-driven techniques, 
including DT, ET, and GBRT were developed to establish accurate models for the estimation of the IFT between 
ionic surfactants and normal alkanes. As mentioned, in order to create a more robust and faster model, the 
specific hyperparameters of each algorithm must be adjusted and optimized. As mentioned earlier, the trial-and-

(9)h

(

x; {Rlm}
L
1

)

=

L
∑

l-1

ȳlm1(x ∈ Rlm)

(10)yim = meanxi ∈Rim

(

ỹim
)

(11)ylm = argminy
∑

xi∈Rlm

�
(

yi,Fm−1(xi)+ y
)

(12)Fm(x) = Fm−1(x)+ ν.ylm1(x ∈ Rlm)

Random selection Random selection 

Dataset 

Random selection

DT 1: Weak learner DT 2: Weak learner DT M: Weak learner

Take the average value of each predicted value as the final predicted value 

Prediction 2

Final result

Figure 3.  Schematic structure of the ET.
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error method was employed to optimize the implemented models. The value of the maximum depth parameter 
of the DT strongly affects the speed and accuracy of the model. The depth of the tree should be carefully adjusted 
so as not to cause over-fitting and under-fitting. As reported in Table 3, the best value for this parameter is 7. The 
proposed control parameters for implementing the DT algorithm based on the sample data used in this study 
are reported in Table 3. In this study, two ensemble algorithms based on the DT were used. Ensemble methods 
were used to increase the stability and accuracy of the DT model. Ensemble models can also prevent over-fitting 
and create a robust and stable model based on the base  estimator94. Due to the nature of ensemble models, the 
number of estimators is the most important parameter for optimization. To build an accurate model based 
on the GBRT algorithm, loss function, learning rate, number of estimators, subsample, maximum depth, and 

Ensemble prediction 

Data Weighted data Weighted data

DT 1: Weak learner DT 2: Weak learner DT M: Weak learner

Prediction 2

Figure 4.  A simple architecture of the GBRT.

Table 3.  Internal parameters of the developed models.

Model Parameter Value

GBRT

learning rate 0.12

loss Huber

n_estimators 60

sub_sample 0.17

criterion Friedman mse

min_sample_split 2

min_sample_leaf 1

max_depth 9

alpha 0.97

DT

criterion Friedman mse

min_sample_split 2

min_sample_leaf 1

max_depth 7

ccp_alpha 0.0075

splitter Best

max_features None

ET

criterion Friedman mse

min_sample_split 2

min_sample_leaf 1

max_depth 12

n_estimators 70

Bootstrap True
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alpha must be considered and adjusted. The adjusted parameters for the models implemented in this study were 
reported in Table 3.

Statistical evaluation. In this study, statistical criteria were used to evaluate the accuracy and ability of the 
developed models in predicting IFT. For this purpose, statistical parameters including determination coefficient 
 (R2), average percent relative error (APRE, %), root mean square error (RMSE), standard deviation (SD), and 
average absolute percent relative error (AAPRE, %), were used. The formulas of these statistical parameters are 
listed as  follows95:

If the value of  R2 is high and the values of AAPRE, APRE, RMSE, and SD are low, the model predicts the IFT 
with higher accuracy. The maximum value of  R2 is one, and the lowest value of the AAPRE value is zero. Statistical 
parameters for evaluating the models implemented in this study at different development stages are presented 
in Table 4. According to the RMSE values presented in Table 4, the accuracy of the models implemented in this 
study is as follows:

Graphical error analysis. In this section, graphical error analysis shows the models’ validity and accuracy. 
Therefore, four graphs, including bar-plot, cross-plot, relative error distribution, and cumulative frequency dia-
gram were investigated. Figure 5 is a cross-plot of DT, ET, and GBRT models. This diagram plots the predicted 
values in the training and testing phases versus the experimental values. In this type of diagram, if the train and 
test points are close to the unit slope line (X = Y), it indicates that the model can predict with high accuracy. As 
Fig. 5 shows, some of the test points of the DT and ET models are above or below the X = Y line, which indicates 

(13)R2
= 1−

∑n
i=1

(

IFTexpi
− IFTpredi

)2

∑n
i=1

(

IFTexpi
− IFT

)2
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1

n

n
∑
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(

IFTexpi
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√

√

√

1

n

n
∑

1

(

IFTexpi
− IFTpredi

)2
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∑
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⌈

IFTexpi
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√

√

√

√

1

n

n
∑

i=1

(

IFTexpi
− IFTpredi

IFTexpi

)2

GBRT > ET > DT; for both training and testing phases.

Table 4.  Statistical assessment of the developed models.

GBRT model ET model DT model

Train

SD 0.041 0.065 0.058

RMSE 0.96 1.223 1.416

APRE −0.29 −1.32 −0.33

AAPRE 2.47 3.17 3.53

R2 0.9957 0.9945 0.9906

Test

SD 0.053 0.074 0.100

RMSE 1.628 1.769 2.268

APRE −1.14 −1.28 −1.43

AAPRE 3.63 4.89 6.46

R2 0.9852 0.9827 0.9713

Total

SD 0.044 0.067 0.069

RMSE 1.126 1.278 1.623

APRE −0.46 −1.32 −0.55

AAPRE 2.71 3.52 4.12

R2 0.9939 0.9925 0.9873
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the lower accuracy of these models. Figure 5 shows that the points of the GBRT model are scattered around 
the unit slope line. This model estimates the IFT close to the experimental values. It can be seen that the GBRT 
model estimates the IFT with higher accuracy than the DT and ET models.

Furthermore, the relative error diagram is a practical tool to show the deviation of the value predicted by the 
model from the experimental value. Absolute error is the difference between the predicted and experimental 
values. The relative error is equal to the absolute error divided by the experimental value. The relative error is 
calculated as follows:

In Fig. 6, the zero line indicates that the model predicts without error. Therefore, if the training and test points 
are close to the zero line, it indicates that a robust model has been developed. Figure 6 shows that from a value of 
20 mN/m onwards, the relative error of all models implemented in this study is low. The points in the negative 
range of Fig. 6 with respect to the relative error Eq. (18) show that the model is overestimated. As explained in 
the model section, ensemble methods increase accuracy and improve  overfitting87, 96. According to the results 
presented in Figs. 6 and 7, the models implemented in this study, including ET and GBRT, have reduced variance 
and controlled overfitting, as seen in the test phase. 

Next, Fig. 8 illustrates the cumulative frequency plot, which displays the proportion of predicted data that are 
less than or equal to a particular error value. This graph displays absolute relative errors (%) that are calculated 
using the next equation for different proportions of predicted data by models.

(18)Relative Error =
IFTexp − IFTpred

IFTexp
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The closer a model gets to the vertical axis, the more data it can predict with lower error and consequently 
considered a more precise model. As Fig. 8 shows, the GBRT model estimates 70% of the IFT values with just 
less than 3.2% error. This is while the ET and DT models have predicted this proportion of the data with an error 
of 3.6% and 4.2%, respectively. In addition, about 90% of the data, estimated by the GBRT model, has an error 
lower than 6.2%, while it is 8.2% and 10.8% for ET and DT models, respectively. As a result, the superiority of 
the GBRT model over the ET and DT models can be recognized again.

Based on the presented results in this section, the GBRT model is proposed to estimate the IFT between the 
surfactant solution and the normal alkane with high accuracy. A part of IFT values predicted by GBRT model in 
the test phase is reported in Table 5, and no significant difference is observed in the prediction of experimental 
data by this model. The results of Fig. 7 show that the AAPRE and RMSE of the GBRT model in the test phase 
were 3.63% and 1.628, respectively, which indicates the high reliability of this model in predicting the IFT of 
surfactant–hydrocarbon systems.

Sensitivity analysis. In this study, the sensitivity analysis was performed to determine the extent and type 
of relationship between the independent variables presented in Table 2 and the amount of the IFT (output). 
Different methods of sensitivity analysis are introduced for regression  models97, 98. In this section, the Pearson 
coefficient was used to calculate the relevancy  factor99:

(19)Absolute Relative Error (%) =
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where n and k represent the number of data points and the type of input variable. The symbols yi, 
−

y , x k.i, and 
xk denote the target, the average of the target value, the input value, and the kth input value average. Figure 9 
shows the absolute values of sensitivity analysis results of the proposed GBRT model. In this data set, PITx, the 
surfactant concentration, and HLB had the greatest effect on IFT, respectively. At concentrations lower than the 
CMC of surfactants, the IFT decreases with increasing surfactant  concentration100. Therefore, the surfactant 
concentration was expected to  have large effect on IFT along with the type of surfactants. The molecular weight 
of alkanes has the lowest value of the Pearson coefficient compared to other input parameters.

(20)RF =
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i=1 (xk − xk. i)
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Figure 7.  Statistical evaluation of the developed models.
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Trend analysis. In this section, the ability of the proposed GBRT model to predict IFT behavior in different 
conditions was investigated. Figure 10 shows the predicted values of IFT by the GBRT model and the experi-
mental  data68, 69,72. In this figure, the IFT of anionic (SDS) and cationic  (C10TAB) surfactants with n-hexane as 
hydrocarbon phase was plotted. The temperature of the surfactant solution was considered constant (298.2 K), 
and IFT data was plotted as a function of surfactant concentration. Based on the results presented in Fig. 10, it 
can be seen that the GBRT model accurately predicts the IFT of the surfactants and n-hexane systems. The IFT 
between the surfactant solution and the hydrocarbon depends on the surfactant  concentration101–103. At concen-
trations lower than the CMC, by increasing the surfactant concentration, the IFT value will  reduce38. Surfactant 
molecules are adsorbed on the liquid–liquid interface and reduce  IFT104. Therefore, increasing the adsorbed 
surfactant molecules at the interfacial boundary further reduces the IFT.

In the next step, Fig. 11 shows the IFT between  C10TAB and  C12TAB in n-octane and n-nonane hydrocar-
bon  phases69 along with the prediction of the GBRT model. For this analysis, the temperature was considered 
a constant value of 298.2 K. As can be seen, the heavier the hydrocarbon phase, the greater the IFT of sur-
factant–hydrocarbon. Again, the GBRT model renders great predictions for the IFT of the surfactants and 
hydrocarbons considered in this figure.

Another parameter affecting the IFT of the surfactant that was considered in this study is temperature. The 
IFT values were predicted for different concentrations of SDS corresponding to a temperature range. Using the 
GBRT model, a comparison of the predicted trend of IFT changes in the temperature range with experimental 
 data70 is shown in Fig. 12. The predicted trend is similar to the experimental data and also shows good agree-
ment with the real trend of IFT variation. As mentioned earlier, the IFT decreases with increasing temperature. It 
also shows that the proposed GBRT model predicts the interfacial behavior of the surfactant well under defined 
conditions.

Outlier detection using Leverage approach. The Leverage  approach105–107 is a reliable technique to 
discover outliers that may exist in a databank due to a variety of circumstances, including experimental errors. 
These points are located at an improper distance from the majority of data. Therefore, catching the inappropri-
ate data noted above is critical for preventing model inaccuracy and unreliability. According to the Leverage 
method, the values of the standardized residuals (R) as well as a matrix named the Hat matrix, which is made 
up of the exploratory and predicted values obtained from the model, are needed to conduct this analysis. The 
leverage or Hat indexes (H) are determined using the following  formula108–110:

Here, X represents the matrix of explanatory variables, and T represents the transpose matrix operator. 
Moreover, the critical Leverage (H*) is calculated according to the following  formula111:

In this work, the databank includes four inputs and 390 data points, leading to H* = 0.0461. On the other 
hand, considering MSE as the mean square of error, ej as the error value of the jth data, and Hj as the jth Leverage 
value, R values can be determined as  follows90, 112:
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If the most of the data points are positioned in the ranges of −3 ≤ R ≤ 3 and 0 ≤ Hj ≤ H*, both the experimental 
data and the model’s estimations will be statistically trustworthy and  precise113. William’s plot shows R values 
versus H values to identify outliers. Figure 13 displays the outcomes of the leverage approach utilizing the GBRT 
model’s results. In this case, only 6 points are recognized as suspected data, which are located outside of the model 
application scope. Also, it was found just 8 points as outliers. This confirms that the experimental database of IFT 
between surfactants and hydrocarbon is highly reliable, and the GBRT model is statistically dependable and valid.

Conclusions
The aim of this study was to develop accurate and reliable models to estimate the IFT of ionic surfactants and 
normal alkanes. In this study, three intelligent computer-aided algorithms namely DT, ET, and GBRT models 
were implemented for this purpose. A databank containing 390 experimental IFT data points presented in the 
literature was used to develop these models. The models considered the following parameters as input: tempera-
ture, normal alkane molecular weight, surfactant concentration, HLB, and PIT. Based on this work, the following 
conclusions are drawn:

Table 5.  The IFT data predicted by GBRT models in the test phase.

Number HLB dPIT/dx (°C)
Surfactant 
concentration ×  105 (mol/l) T (K) Mw (g/mol) IFT (mN/m) GBRT Relative error (%)

1 0 0 0 305.65 149.29 51.26 51.05222 0.41

2 40 499 286.472 298.15 128.2 24.2583 25.39824 −4.70

3 0 0 0 310.65 170.33 51.43 51.51684 −0.17

4 40 499 837.628 298.15 240.471 10.9684 11.62199 −5.96

5 0 0 0 305.65 86.18 49.7 49.50517 0.39

6 21 338 0.100012 298.15 100.21 50.2605 49.15622 2.20

7 19 486 69.96725 298.15 114.23 24.5995 27.15528 −10.39

8 19 486 713.515 298.15 198.39 18.3707 17.41083 5.23

9 21 338 306.963 298.15 170.33 36.6211 37.08537 −1.27

10 19 486 0.010001 298.15 128.2 49.6681 52.18449 −5.07

11 19 486 9.878343 298.15 100.21 40.4008 38.8913 3.74

12 18 453 0.013639 295.15 86.18 47.2076 50.27795 −6.50

13 40 499 34.9646 293.2 86.18 39.6676 39.73671 −0.17

14 19 486 0.078221 298.15 100.21 50.7415 47.95615 5.49

15 19 486 1.91964 298.15 142.29 41.5223 42.11541 −1.43

16 19 486 98.41191 298.15 128.2 27.249 28.22018 −3.56

17 21 338 10.50997 298.15 170.33 46.6652 44.09608 5.51

18 21 338 3.009322 298.15 128.2 44.3392 50.7895 −14.55

19 40 499 8 293.2 86.178 46.4 46.08001 0.69

20 21 338 6729.21 298.15 142.29 10.0208 12.15356 −21.28

21 19 486 74.11994 298.15 170.33 31.9658 29.92372 6.39

22 40 499 14 303.2 86.178 43.3 43.61458 −0.73

23 21 338 31.75242 298.15 170.33 41.8647 42.63048 −1.83

24 0 0 0 313.15 100.21 49.38 49.48231 −0.21

25 19 486 0.971186 298.15 114.23 47.7117 44.35099 7.04

26 21 338 102.32 298.15 86.18 36.0927 38.4876 −6.64

27 40 499 0 288.2 86.178 51.4 51.62253 −0.43

28 40 499 672.085 298.15 142.29 11.9565 12.68166 −6.07

29 0 0 0 310.65 114.23 50.09 49.88087 0.42

30 40 499 793.492 298.15 86.18 6.51163 6.071484 6.76

31 18 453 42.27935 295.15 86.18 18.3688 19.35079 −5.35

32 0 0 0 328.15 128.2 49.09 49.23298 −0.29

33 40 499 679.088 298.15 114.23 10.7708 10.98328 −1.97

34 21 338 1030.93 298.15 170.33 27.0355 29.14769 −7.81

35 40 499 96.628 298.15 86.18 27.4419 28.60547 −4.24

36 21 338 298.274 298.15 128.2 35.342 35.62043 −0.79

37 21 338 9.56027 298.15 142.29 47.9878 45.3272 5.54

38 40 499 169.492 298.15 114.23 29.8419 29.91685 −0.25

39 0 0 0 298.15 156.31 52.25 52.14065 0.21

40 40 499 83.55376 298.15 114.23 37.1542 36.40291 2.02
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1. The ensemble methods implemented in this study, GBRT and ET, were able to reduce the variance of the DT 
model.

2. Among all the models developed in this study, the GBRT was the best model for predicting the IFT between 
the surfactant and normal alkanes.

3. Statistical evaluation in the test phase showed that the AAPRE% and RMSE of the GBRT model are 3.63% 
and 1.628, respectively.

4. The trend analysis demonstrated that the predictions of the GBRT model follow the expected variations in 
terms of the independent variables.

5. The cumulative error distribution of the GBRT model was very satisfactory, with approximately 90% of the 
predicted data having a relative error of less than 6.2%.

6. According to the results of the sensitivity analysis, the effect of input parameters on the IFT is as follows: PIT 
> surfactant concentration > HLB > temperature >  molecular weight of normal alkane.

7. The Leverage method demonstrated that the majority of the data points (almost 96.5%) are valid and both 
the IFT databank and the GBRT model seem to be highly trustworthy.

As a suggestion for future studies, it can be mentioned that the simultaneous involvement of the aqueous 
phase containing surfactant, the organic hydrocarbon phase and the solid phase including reservoir rock or its 
minerals can correlate the governing equations in the area of surface wetting.
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