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Visual field prediction using a deep 
bidirectional gated recurrent unit 
network model
Hwayeong Kim 1,10, Jiwoong Lee 1,2,10, Sangwoo Moon 1, Sangil Kim 3, Taehyeong Kim 3, 
Sang Wook Jin 4, Jung Lim Kim 5, Jonghoon Shin 6, Seung Uk Lee 7, Geunsoo Jang 8, 
Yuanmeng Hu 3 & Jeong Rye Park 9*

Although deep learning architecture has been used to process sequential data, only a few studies 
have explored the usefulness of deep learning algorithms to detect glaucoma progression. Here, we 
proposed a bidirectional gated recurrent unit (Bi-GRU) algorithm to predict visual field loss. In total, 
5413 eyes from 3321 patients were included in the training set, whereas 1272 eyes from 1272 patients 
were included in the test set. Data from five consecutive visual field examinations were used as input; 
the sixth visual field examinations were compared with predictions by the Bi-GRU. The performance of 
Bi-GRU was compared with the performances of conventional linear regression (LR) and long short-
term memory (LSTM) algorithms. Overall prediction error was significantly lower for Bi-GRU than for 
LR and LSTM algorithms. In pointwise prediction, Bi-GRU showed the lowest prediction error among 
the three models in most test locations. Furthermore, Bi-GRU was the least affected model in terms 
of worsening reliability indices and glaucoma severity. Accurate prediction of visual field loss using the 
Bi-GRU algorithm may facilitate decision-making regarding the treatment of patients with glaucoma.

Glaucoma, a leading cause of blindness worldwide, is characterized by irreversible loss of retinal ganglion cells1,2. 
Structural changes in retinal ganglion cells and the optic nerve head cause progressive deterioration of the visual 
field2. The prediction of future visual field is essential to preserve visual function. However, visual field test results 
are susceptible to random errors and fluctuations, particularly in patients with glaucoma, which hinders accurate 
prediction of visual field changes3.

Over the past several years, machine learning algorithms have demonstrated good performance in the predic-
tion of glaucoma progression. Wang et al.4 classified and determined the progression of 16 archetypes of visual 
field defects. Murata et al.5 found superior prediction ability of variational Bayes linear regression, a type of 
machine learning algorithm, compared with pointwise linear regression (LR). Because of the recent development 
of artificial intelligence, deep learning algorithms have been used for various tasks with excellent performance. 
However, only a few studies have predicted the progression of visual field defects using deep learning algorithms. 
Wen et al.6 used a convolutional neural network to predict future visual fields, using a single visual field examina-
tion as input. Berchuck et al.7 used a variational autoencoder model to estimate the rate of visual field progression.

Recurrent neural network (RNN), an artificial network with recurrent connections, has been used for sequen-
tial time series with temporal dependence and for sequence modeling8. It can process current data, using previ-
ous data to make predictions, based on dependencies between sequential elements9,10. The two main variants of 
RNN, long short-term memory (LSTM)11 and gated recurrent unit (GRU)12, model long-term dependency into 
long sequences. In a previous study, we found that LSTM had superior abilities to predict future visual fields, 
compared with ordinary least-squares LR13. Dixit et al.14 found that LSTM networks can predict the longitudinal 
local and global trends in visual fields.
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GRU uses gating units more efficiently and at a similar rate, compared with typical LSTMs15–17. Several stud-
ies have revealed that GRU has excellent performance for sequential data analysis, compared with other RNN 
types12,15,18,19. Recently, a bidirectional RNN method has been developed via simultaneous training with posi-
tive and negative time directions, which provides a better understanding of context20. Lynn et al.15 compared 
several RNN-based models for human identification using electrocardiogram-based biometrics from sequential 
time-series data. The bidirectional network with LSTM and GRU models was more effective than conventional 
RNN models, and the bidirectional-gated recurrent unit (Bi-GRU) model exhibited performance superior to 
the bidirectional LSTM model. Because visual field examinations provide sequential data with extensive inter-
connections, Bi-GRU may achieve better prediction of visual field progression, compared with the previous 
LSTM-based RNN model.

To our knowledge, this is the first study to use Bi-GRU to predict visual field damage. In a previous study, we 
evaluated the performance of LSTM in predicting visual field defects. Because the present study used a larger 
dataset than our previous work, we developed a computationally efficient RNN-based Bi-GRU model. We com-
pared the performance of the Bi-GRU model with the performances of conventional LR and LSTM models.

Materials and methods
This retrospective study was conducted in accordance with the tenets of the Declaration of Helsinki. Visual 
field data were collected from glaucoma clinics at Pusan National University Hospital, Kosin University Gospel 
Hospital, Dong-A University Hospital, Busan Paik Hospital, and Pusan National University Yangsan Hospital 
between June 2004 and January 2021. The study protocol was approved by the institutional review boards of 
Pusan National University Hospital (Approval No.: 2203-018-113), Kosin University Gospel Hospital (Approval 
No.: 2018-12-028), Dong-A University Hospital (Approval No.: 22-074), Busan Paik Hospital (Approval No.: 
2021-03-014-002), and Pusan National University Yangsan Hospital (Approval No.: 05-2018-172). The require-
ment for patient consent was waived by the institutional review boards because of the retrospective study design. 
Sex and diagnostic data were retrospectively collected from medical records.

Participants who completed a minimum of six consecutive visual field examinations were included in the 
training and test datasets. There was no patient overlap between the two datasets. Eyes with an interval of ≥ 3 years 
between the first and sixth visual field examinations were included. For example, in an eye with 13 consecutive 
visual field examinations, the first through sixth examinations were considered the first dataset, the seventh 
through twelfth examinations were considered the second dataset, and the thirteenth examination was excluded 
from the dataset. The first five examinations were used as input data to predict the sixth examination, and the 
seventh through eleventh examinations were used as input data to predict the twelfth examination (Fig. 1).

We obtained 6-cell data from 8323 visual fields of 6685 eyes and 4593 participants. Datasets from 7051 (85%) 
and 1,272 (15%) individuals were included in the training and test datasets, respectively. In total, 7051 records 
from the training dataset were randomly split into training and validation datasets at a ratio of 9:1. The valida-
tion dataset was used to determine the fitness of the neural network during training to prevent overfitting. All 
8323 datasets included six visual field examinations, and the mean follow-up duration for the six examinations 
was 4.39 ± 1.69 years. Table 1 presents the characteristics of each dataset.

Visual field examination.  Automated perimetry was conducted using a Humphrey Visual Field Analyzer 
750i (Carl Zeiss Meditec, Inc., Dublin, CA, USA) and the 24-2 or 30-2 Swedish interactive threshold algorithm. 
Among the 54 test points of the 24-2 test pattern, the two points of physiological scotoma were excluded; the 
remaining 52 test points were used. The 30-2 test pattern was converted to the 24-2 test pattern using the over-
lapped test points. Reliable visual field tests were defined as a false positive rate < 33%, false negative rate < 33%, 
and fixation loss < 33%.

Artificial neural network.  We used the LSTM and Bi-GRU neural network models. Python software (ver-
sion 3.8) with TensorFlow 2.3 (Google, Mountain View, CA, USA) was used to predict visual field loss. Supple-
mentary Fig. S1 illustrates the two model structures.

LSTM and Bi‑GRU​.  We built one-layer neural networks to learn the structural information of a specific dataset 
using preprocessed input. The LSTM cell-based neural networks were defined as follows:

(1)Forgetgate = sigmoid
(
Wf Xt +Whf ht−1 + bf

)

Figure 1.   Representative time displacement sequence of a patient who completed 13 visual field tests. Visual 
field test dates indicated in gray boxes were used for training, and dates in black boxes were used for prediction.
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where Wf ,Wi ,Wo, andWC represent the weights and bf , bi , bo, andbC represent the bias in the network, respec-
tively, of the three gates and a memory cell. ⨂ is the elementwise product between two vectors. The sigmoid is 
the activation function used in the network, written as follows:

The input and output gates regulate the flow of memory cell inputs and outputs throughout the network, 
while the forget gate is incorporated into the memory cell to transmit output information with high weights 
from the previous neuron to the next one. The information residing in the memory depends on the high activa-
tion results. If the input unit has high activation, information is stored in the memory cell. On the other hand, if 
the output unit has high activation, it passes the information to the next neuron. Input information with a high 
weight resides in the memory cell. Sigmoid and tanh are employed as the active functions for the gates. Here, h(t-
1) represents the prior hidden layer units that add the weights of the three gates in an elementwise manner. After 
processing Eq. (4), (C)t indicates the current memory cell unit. Equation (5) shows the elementwise multiplication 
of the prior hidden unit outputs and previous memory cell unit. Nonlinearity is introduced through the tanh and 
sigmoid activation functions as shown in Eqs. (1–5). Here, t − 1 and t are the previous and current time steps.

GRU is a simplified variant of LSTM that only has two gates: the update gate, which comprises the input 
and forget gates, and the reset gate. It has no additional memory cell to retain information and can only control 
information inside the unit.

The update gate in Eq. (6) determines the extent of information updating. In Eq. (7), the rest gate is similar 
to the update gate; if the gate is set to zero, GRU reads the input sequences and forgets the previously calculated 
state. Furthermore, h̃t exhibits functionality identical to the recurrent unit, and ℎt of the GRU at time t represents 
linear interpolation among the current h̃t and previous ht−1 activation states in Eqs. (8) and (9).

(2)Inputgate = sigmoid(WiXt +Whiht−1 + bi)

(3)Outputgate = sigmoid(WoXt +Whoht−1 + bo)

(4)(C)t = (C)t−1 ⊗
(
Forgetgate

)
t
+

(
Inputgate

)
t
⊗ (tanh (WCXt +WhCht−1)+ bC)

(5)ht = Outputgate ⊗ tanh
(
(C)t−1

)

sigmoid(x) =
1

1+ e−x

(6)Updategate = sigmoid(WuXt +Whuht−1 + bu)

(7)Restgate = sigmoid(WrXt +Whrht−1 + br)

(8)h̃t = tanh
(
WXt +W

(
Restgate ⊗ ht−1

))

(9)ht =
(
1−

(
Updategate

)
t

)
⊗ ht−1 +

(
Updategate

)
t
⊗ ht

Table 1.   Demographic characteristics. MD mean deviation, SD standard deviation.

Demographic characteristics All data Training data Test data

Total number of eyes (patients) 6685 (4593) 5413 (3321) 1272 (1272)

Age (years), mean ± SD 53.96 ± 16.04 54.11 ± 15.88 53.13 ± 16.85

Initial visual field MD (dB), mean ± SD − 5.83 ± 6.21 − 5.77 ± 6.16 − 6.19 ± 6.44

Follow-up duration (years), mean ± SD 5.63 ± 2.75 5.87 ± 2.87 4.61 ± 1.84

Mean number of visual field tests 7.47 ± 3.08 7.82 ± 3.33 6.00 ± 0.00

MD ≥ − 6 dB 4415 3587 828
− 6 dB > MD ≥ − 12 dB 1217 981 236
− 12 dB > MD 1053 845 208

Data augmentation

Total number of datasets with 6 in a pair 8323 7051 1272

Follow-up duration (years), mean ± SD 4.39 ± 1.69 4.35 ± 1.66 4.61 ± 1.84

Prediction time interval (years), mean ± SD 0.94 ± 0.73 0.92 ± 0.71 1.00 ± 0.84

MD ≥ − 6 dB 5579 4751 828
− 6 dB > MD ≥ − 12 dB 1477 1241 236
− 12 dB < MD 1267 1059 208
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A Bi-GRU layer was formed by combining a forward GRU with a reverse-direction GRU. Both GRUs receive 
the same input but train in opposite directions, and their results are concatenated to produce the output. Deep 
hierarchical neural networks effectively capture specific functions and model dependencies of varying lengths21. 
Our experiments revealed that Bi-GRU outperformed other models on our datasets.

Proposed method and evaluation.  In our proposed method, the deep learning model comprises input data, 
a one-time series neural network layer used for sequential predictions, and a dense layer. The neural network 
structures for LSTM and Bi-GRU are shown in Fig. 2.

Figure 2.   Architectures of the (a) long short-term memory (LSTM) method and (b) bidirectional gated 
recurrent unit (Bi-GRU) method. The input layers of both models consisted of time displacement values in days, 
reliability data, and visual field data. Reliability data consisted of false-positive (FP) rate, false-negative (FN) rate, 
and fixation loss (FL) percentage. Visual field data consisted of 52 pattern deviation values (PDVs) and 52 total 
deviation values (TDVs) on the 24-2 visual field test (two points of physiological scotoma were excluded). The 
last cell contained a positive time displacement value and 107 zeros as input because all other values were set to 
zero. These unique inputs can specify the exact date the user wants to predict. LSTM = long short-term memory; 
Bi-GRU = bidirectional gated recurrent unit; TDV = total deviation value.
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The single-layer time-series neural network consists of six parallel and connected LSTM or Bi-GRU cells. 
The detailed structures of the LSTM and GRU cells are presented in Supplementary Fig. S1a, b, respectively.

Each of the first five cells uses 108 features as input, including 52 total deviation values (TDVs), 52 pattern 
deviation values (PDVs), reliability data (such as false-negative and false-positive rates, fixation loss percent-
age), and time displacement value. To improve the performance of the deep learning model, the input data were 
normalized to a reasonable range. The TDV, PDV, and time displacement values were divided into sets of 50, 
50, and 1000, respectively. Time displacement indicated the number of days from the most recent visual field 
examination. For example, if the most recent visual field examination has a time displacement of “0,” the visual 
field examination performed 1 month (− 31 days) prior to “0” has a time displacement of “ − 31.” A negative sign 
in the time displacement value indicates that the examination was performed in the past. With respect to the 6 
consecutive visual field input data elements, the last input data element used a unique format with positive time 
displacement (i.e., the point in the future that the user wishes to predict) and 107 zeros. Since the other data were 
set to 0, these unique inputs can specify the exact date which the user wishes to predict. A series of input data was 
arranged by reducing the time displacement value (i.e., from future to past) and then supplying this information 
to the neural network. Subsequently, the neural network layer was connected to the next single fully connected 
layer (dense layer) with 52 neurons. These neurons generated a final output of 52 TDVs, such that one neuron 
generated a single visual field test point.

Statistical analyses.  The root mean square error (RMSE) and mean absolute error (MAE) of the TDV 
were used as accuracy metrics. The RMSE was calculated for each eye using the following equation:

The MAE was calculated for each test point in the visual field of all eyes using the following equation:

The RMSE and MAE of the LR, LSTM, and Bi-GRU models were calculated using the above formulas. 
Repeated measures one-way analysis of variance was performed to compare accuracy metrics among LR, LSTM, 
and Bi-GRU models. P < 0.05 (single comparison) and p < 0.017 (multiple comparisons) were considered indica-
tive of statistical significance. Parametric and nonparametric tests (Spearman’s correlation and simple LR analy-
ses) were performed to compare variables. These tests were used to investigate prediction error trends according 
to various factors, including false positive rate, false negative rate, fixation loss percentage, and visual field mean 
deviation (MD).

Results
Table 2 shows the demographic characteristics of the test dataset. The most common diagnosis was primary 
open-angle glaucoma (47.68%). The mean prediction time (time interval between prediction and final visual 
field examination) was 1.00 ± 0.84 years (Table 1). The mean RMSE and pointwise mean absolute error (PMAE) 
are shown in Table 3. Figure 3 presents representative examples of the PMAE in the visual field test.

Bi-GRU exhibited better prediction performance, compared with LR and LSTM. The RMSEs of Bi-GRU, 
LR, and LSTM were 3.71 ± 2.42, 4.81 ± 3.89, and 4.06 ± 2.61 dB, respectively. There were statistically significant 

RMSE =

√√√√
52∑

n=1

(
true TDVn − predicted TDVn

)2

52

n = nth test point of visual field exam

MAEn =

number of eyes∑

i=1

∣∣true TDVi,n − predicted TDVi,n

∣∣
number of eyes

n = nth test point of visual field exam

i = ith eye

TDVi,n = total deviation value of ith eye, nth test point

Table 2.   Demographic characteristics of the test dataset.

Number of eyes

Total 1271

Sex, male (%) 599 (47.13)

Diagnosis

 Glaucoma suspect 360

 Primary open-angle glaucoma 606

 Pseudoexfoliative glaucoma 23

 Primary angle-closure glaucoma 76

 Secondary glaucoma 90

 Others 111
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differences in prediction errors among the three models (F = 42.94, p < 0.001). The RMSE was significantly lower 
for Bi-GRU than for the other two models (both p < 0.001).

The number of eyes binned according to RMSE prediction error is shown in Fig. 4. More than 50% of eyes 
had Bi-GRU prediction errors of ≤ 2 dB (530 eyes, 41.67%) and 2–3 dB (175 eyes, 13.76%). The corresponding LR 
prediction errors were ≤ 2 dB (329 eyes, 25.86%) and 2–3 dB (254 eyes, 19.97%), and the corresponding LSTM 
prediction errors were ≤ 2 dB (505 eyes, 39.70%) and 2–3 dB (165 eyes, 12.97%).

Figure 5 shows the PMAE in the visual field. With respect to the 52 TDV points, Bi-GRU exhibited the lowest 
prediction error among the three models. Bi-GRU showed significantly better performance at 29 (red dots) and 
49 (blue dots) points compared with LR and LSTM, respectively.

Table 3.   Comparison of mean prediction error (RMSE and PMAE) among LR, LSTM, and Bi-GRU models. 
RMSE root mean square error, SD standard deviation, PMAE pointwise mean absolute error, LR linear 
regression, LSTM long short-term memory, Bi-GRU​ bidirectional gated recurrent unit. *Significance level 
ɑ = 0.05. † Significance level ɑ = 0.017.

LR LSTM Bi-GRU​ p value*

p value†

LR vs. Bi-GRU​ LSTM vs. Bi-GRU​ LR vs. LSTM

Prediction error, mean ± SD

RMSE (dB) 4.81 ± 3.89 4.06 ± 2.61 3.71 ± 2.42 < 0.001 < 0.001 < 0.001 < 0.001

PMAE (dB) 3.52 ± 0.56 3.10 ± 0.39 2.80 ± 0.36 < 0.001 < 0.001 < 0.001 < 0.001

Figure 3.   Representative examples of visual field prediction according to mean deviation (MD) of the first 
visual field examination. Five consecutive input visual field examinations are shown in chronological order from 
left to right, followed by the sixth examination (regarded as the true value). Columns 7–9 indicate the prediction 
results of LR, LSTM, and Bi-GRU models, respectively. LR = linear regression; LSTM = long short-term memory; 
Bi-GRU = bidirectional gated recurrent unit.
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Figure 4.   Number of eyes binned according to prediction error (RMSE, root mean squared error).

Figure 5.   Pointwise mean absolute error (PMAE) of predicted total deviation value (TDV). Bi-GRU had 
the lowest prediction error (PMAE) for all 52 points. Darker colors indicate higher error. Red dots indicate 
significant differences between LR and Bi-GRU; blue dots indicate significant differences between LSTM and 
Bi-GRU (paired t-test). LR = linear regression; LSTM = long short-term memory; Bi-GRU = bidirectional gated 
recurrent unit.

Table 4.   Comparisons of mean prediction error (RMSE) among LR, LSTM, and Bi-GRU models in six 
Garway-Heath sectors and peripheral and central zones on the 24–2 visual field test. RMSE root mean square 
error, SD standard deviation, LR linear regression, LSTM long short-term memory, Bi-GRU​ bidirectional gated 
recurrent unit. *Significance level ɑ = 0.05. † Significance level ɑ = 0.017.

Prediction error (RMSE, dB),
mean ± SD

p value*

p value†

LR LSTM Bi-GRU​ Bi-GRU vs. LSTM Bi-GRU vs. LR LR vs. LSTM

Superotemporal 3.84 ± 4.08 3.29 ± 2.86 3.02 ± 2.55 < 0.001  < 0.001  < 0.001  < 0.001

Superonasal 4.55 ± 4.18 3.71 ± 2.76 3.41 ± 2.56 < 0.001  < 0.001  < 0.001  < 0.001

Temporal 3.93 ± 4.52 3.79 ± 3.52 3.28 ± 2.91 < 0.001  < 0.001  < 0.001 0.210

Nasal 4.37 ± 4.67 3.75 ± 3.35 3.42 ± 3.09 < 0.001  < 0.001  < 0.001  < 0.001

Inferotemporal 4.48 ± 4.19 3.78 ± 3.04 3.43 ± 2.85 < 0.001  < 0.001  < 0.001  < 0.001

Inferonasal 5.23 ± 4.75 4.20 ± 3.23 3.97 ± 3.26 < 0.001  < 0.001  < 0.001  < 0.001

Peripheral 4.90 ± 3.94 4.04 ± 2.60 3.73 ± 2.48 < 0.001  < 0.001  < 0.001  < 0.001

Central 4.08 ± 4.18 3.76 ± 3.15 3.33 ± 2.68  < 0.001  < 0.001 0.001  < 0.001
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Table 4 shows the mean prediction error (RMSE) according to sectors of the visual field examination (Fig. 6). 
The 24-2 visual field was divided into the six sectors proposed by Garway-Heath et al.,22 based on optic nerve 
head anatomy (superotemporal, superonasal, temporal, nasal, inferotemporal, and inferonasal) [Fig. 6b] and 
two sectors (central and peripheral) [Fig. 6c]. The prediction errors of Bi-GRU were significantly lower than the 
errors of LR and LSTM for all sectors (p ≤ 0.001).

The mean RMSE values binned according to various factors are listed in Table 5 and Fig. 7. The predic-
tion error was significantly lower for Bi-GRU than for the other two models in terms of the false-positive rate, 

Figure 6.   Division of the optic nerve head (a) and visual field (b, c). (b) The visual field was divided into 
six sectors proposed by Garway-Heath et al.22 (c) The visual field was divided into the central and peripheral 
zones. ST = superotemporal; SN = superonasal; T = temporal; N = nasal; IT = inferotemporal; IN = inferonasal; 
P = peripheral; C = central.

Table 5.   Mean prediction error (RMSE) binned according to reliability indices and visual field mean 
deviation. RMSE root mean square error, SD standard deviation, LR linear regression, LSTM long short-term 
memory, Bi-GRU​ bidirectional gated recurrent unit, FPR false positive rate, FNR false negative ratio, FLP 
fixation loss percentage, MD mean deviation. *Significance level ɑ = 0.05. † Significance level ɑ = 0.017.

Prediction error (RMSE, dB), mean ± SD

Number of eyes p value*

p value†

LR LSTM Bi-GRU​ Bi-GRU vs. LSTM Bi-GRU vs. LR LR vs. LSTM

Prediction error vs. false positive rate (FPR, %)

 FPR ≤ 2.5 4.90 ± 4.32 4.06 ± 2.65 3.71 ± 2.44 797  < 0.001  < 0.001  < 0.001  < 0.001

 2.5 < FPR ≤ 5.0 4.74 ± 3.25 4.18 ± 2.69 3.80 ± 2.53 258  < 0.001  < 0.001  < 0.001  < 0.001

 5.0 < FPR ≤ 7.5 4.32 ± 2.52 3.82 ± 2.38 3.52 ± 2.18 72  < 0.001  < 0.001  < 0.001 0.007

 7.5 < FPR ≤ 10.0 3.90 ± 2.28 3.73 ± 2.13 3.35 ± 1.94 57  < 0.001  < 0.001 0.001 0.321

 FPR > 10 5.15 ± 3.19 4.19 ± 2.53 3.84 ± 2.33 88  < 0.001  < 0.001  < 0.001  < 0.001

Prediction error vs. false negative rate (FNR, %)

 FNR ≤ 2.5 4.23 ± 3.88 3.58 ± 2.49 3.22 ± 2.21 766  < 0.001  < 0.001  < 0.001  < 0.001

 2.5 < FNR ≤ 5.0 4.16 ± 2.92 3.32 ± 1.79 3.10 ± 1.59 155  < 0.001  < 0.001  < 0.001  < 0.001

 5.0 < FNR ≤ 7.5 5.62 ± 3.02 5.05 ± 2.31 4.57 ± 2.06 109  < 0.001  < 0.001  < 0.001 0.007

 7.5 < FNR ≤ 10.0 5.65 ± 2.91 4.52 ± 2.05 4.20 ± 1.89 91  < 0.001  < 0.001  < 0.001  < 0.001

 FNR > 10 7.32 ± 4.67 6.26 ± 3.03 5.94 ± 3.08 151  < 0.001  < 0.001  < 0.001  < 0.001

Prediction error vs. fixation loss percentage (FLP, %)

 FLP ≤ 2.5 4.91 ± 4.88 4.03 ± 2.74 3.66 ± 2.52 518  < 0.001  < 0.001  < 0.001  < 0.001

 2.5 < FLP ≤ 5.0 6.54 ± 2.99 5.99 ± 2.20 5.17 ± 2.06 13 0.042 0.002 0.025 0.422

 5.0 < FLP ≤ 7.5 4.59 ± 2.87 4.08 ± 2.61 3.71 ± 2.38 175  < 0.001  < 0.001  < 0.001 0.001

 7.5 < FLP ≤ 10.0 3.95 ± 3.44 3.05 ± 2.19 2.86 ± 2.10 131  < 0.001  < 0.001  < 0.001  < 0.001

 FLP > 10 4.98 ± 2.93 4.34 ± 2.50 3.98 ± 2.34 435  < 0.001  < 0.001  < 0.001  < 0.001

Prediction error vs. average visual field mean deviation (MD, dB)

 MD <  − 12 7.30 ± 4.56 6.98 ± 2.49 6.20 ± 2.69 230  < 0.001  < 0.001  < 0.001 0.173

 − 12 ≤ MD <  − 9 6.88 ± 2.86 6.57 ± 2.04 5.85 ± 2.10 80  < 0.001  < 0.001  < 0.001 0.229

 − 9 ≤ MD <  − 6 5.99 ± 2.44 5.43 ± 1.90 5.02 ± 1.80 142  < 0.001  < 0.001  < 0.001 0.002

 − 6 ≤ MD <  − 3 4.68 ± 3.97 3.70 ± 1.94 3.44 ± 1.72 278  < 0.001  < 0.001  < 0.001  < 0.001

 − 3 ≤ MD 3.20 ± 3.12 2.28 ± 1.28 2.14 ± 1.17 542  < 0.001  < 0.001  < 0.001  < 0.001
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false-negative rate, and fixation loss percentage (p ≤ 0.025). As the visual field MD increased, the RMSE predic-
tion errors of all three models decreased.

The correlation coefficients and LR analyses between the prediction error and various factors are presented 
in Table 6 and Fig. 8. For all models, RMSE was positively correlated with the false-negative rate and fixation loss 
percentage, whereas it was negatively correlated with visual field MD (all p ≤ 0.029) (Fig. 8).

Discussion
To the best of our knowledge, this study is the first to utilize the Bi-GRU architecture for predicting visual field 
loss. We compared the prediction of visual field loss using the Bi-GRU, LR, and LSTM models. The Bi-GRU model 
demonstrated the highest predictive accuracy among the three models. The overall prediction errors (RMSEs) 
of the LR, LSTM, and Bi-GRU models were 4.81 ± 3.89, 4.06 ± 2.61, and 3.71 ± 2.42 dB, respectively. The RMSE 
significantly differed between Bi-GRU and the other models (p < 0.001).

In the six sectors of the visual fields according to optic nerve head anatomy, as well as the central and 
peripheral visual field areas, Bi-GRU exhibited superior performance compared with the other two models (all 
p < 0.001).

Figure 7.   Average prediction error (RMSE) binned according to various factors. RMSE vs. (a) false 
positive rate, (b) false negative rate, (c) fixation loss percentage, and (d) visual field mean deviation (MD). 
Bi-GRU showed the lowest prediction error. LR = linear regression; LSTM = long short-term memory; 
Bi-GRU = bidirectional gated recurrent unit; RMSE = root mean squared error.
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The predictive performance was negatively correlated with the false-negative rate and fixation loss percentage 
in all three models; however, Bi-GRU was least affected by reliability indices. A decrease in MD was associated 
with lower prediction performance in all three models. The RMSE was lowest for Bi-GRU among the three 
models; Bi-GRU performed better even in patients with advanced glaucoma.

Several studies have used artificial intelligence to detect glaucoma and its progression. Asaoka et al.23 built 
a deep feed-forward neural network to detect preperimetric glaucoma. The area under the receiver operating 
characteristic curve (AUROC) of the model was 92.6%, indicating better performance than other machine learn-
ing methods (e.g., random forest, gradient boosting, support vector machine, and neural network). Although 
that study was the first to use deep learning for the evaluation of preperimetric glaucoma, only a small quantity 
of data from preperimetric visual fields of patients with glaucoma (53 eyes) were analyzed. Elze et al.24 classified 
visual fields into 16 archetypes and found that the archetypes were closely correlated with the clinical features 
of glaucoma25. However, these studies classified visual fields, rather than predicting visual field changes. Yousefi 
et al.26 compared various machine learning algorithms in terms of detecting glaucoma progression, using the 
retinal nerve fiber layer on optical coherence tomography and the MD and pattern standard deviation on visual 
field examination as input. The random forest classifier showed the best performance, with an AUROC of 0.88. 
Wang et al.4 assessed the predictive ability for visual field changes using archetypes; they found that the mean hit 
and correct rejection rates were 0.77 and 0.77, suggesting that the predictive ability of the archetype approach 
was higher than the abilities of other methods, such as MD slope, advanced glaucoma intervention study scor-
ing, collaborative initial glaucoma treatment study scoring, and the permutation of pointwise linear regression. 
However, unlike our study, previous studies did not predict visual field changes.

Dixit et al.14 found that the progression of visual field changes using a deep learning algorithm based on LSTM 
architecture could be predicted with an accuracy of 91–93%. The AUROC was 0.89–0.93 when using multiple 
visual field examinations and baseline clinical data as input. Additionally, the use of clinical data to supplement 
the visual field data led to improved model performance. Murata et al.5 found that variational Bayes linear regres-
sion more accurately predicted the progression of visual field changes in patients with glaucoma, compared with 
conventional least-squares LR. Wen et al.6 used Cascade-Net, a type of convolutional neural network architec-
ture, to predict future Humphrey visual field findings using only a single visual field input. The models showed 
excellent predictive abilities; the overall PMAE and RMSE were 2.47 and 3.47 dB, respectively. The PMAE and 
RMSE of the Bi-GRU model were slightly higher than the PMAE and RMSE of the Cascade-Net model. However, 
this model may not reflect true progression because the authors used single visual field examination as input. 
Berchuck et al.7 used a generalized variational autoencoder algorithm to estimate progression rates and predict 
future visual fields. The overall MAE was 1.89–2.33 dB, comparable with the MAE of our model. Park et al.13 
used an RNN to predict the sixth visual field examination; they found that the RMSE was 4.31 ± 2.4 dB, indicat-
ing that RNN predicted future visual field better than LR.

In a previous study, we used the LSTM model to analyze time-sequential input consisting of visual field 
examinations13. In the present study, we built a deep learning architecture based on a Bi-GRU network. Both 
GRU and LSTM are variants of RNN, a state-of-the-art deep learning architecture that processes sequential data 
for sequence recognition and prediction27. Cho et al.16 presented a GRU architecture that allowed each recurrent 
unit to adaptively capture dependencies of different time scales. Both GRU and LSTM have recurrent units in 
sequence modeling. However, GRU has gating units that modulate the flow of information inside the unit without 

Table 6.   Correlation coefficients and linear regression analyses between prediction error and reliability, 
and between prediction error and visual field mean deviation. LR linear regression, LSTM long short-term 
memory, Bi-GRU​ bidirectional gated recurrent unit.

Correlation coefficients Linear regression analysis

Spearman’s rho p value Slope Intercept R
2 p value

Prediction error vs false positive rate

 LR − 0.025 0.367 − 0.042 4.911 0.001 0.329

 LSTM − 0.053 0.060 − 0.051 4.186 0.002 0.078

 Bi-GRU​ − 0.042 0.135 − 0.038 3.806 0.002 0.151

Prediction error vs false negative rate

 LR 0.574 < 0.001 0.444 3.172 0.153 < 0.001

 LSTM 0.543 < 0.001 0.369 2.702 0.235 < 0.001

 Bi-GRU​ 0.558 < 0.001 0.352 2.417 0.249 < 0.001

Prediction error vs fixation loss percentage

 LR 0.083 0.003 0.011 4.727  < 0.001 0.626

 LSTM 0.061 0.029 0.024 3.881 0.002 0.101

 Bi-GRU​ 0.076 0.006 0.029 3.495 0.004 0.032

Prediction error vs average visual field mean deviation

 LR − 0.671 < 0.001 − 0.227 3.403 0.128 < 0.001

 LSTM − 0.773 < 0.001 − 0.263 2.434 0.382 < 0.001

 Bi-GRU​ − 0.755 < 0.001 − 0.218 2.363 0.307 < 0.001
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separate memory cells8,12,16. Chung et al.12 reported that GRU was comparable with LSTM for polyphonic music 
modeling and speech signal modeling. Khandelwal et al.17 found that GRU outperformed LSTM in terms of 
shorter computation time and lower word error rate for automatic speech recognition.

Conventional RNN only considers the previous context of training data. To overcome the limitations of a 
conventional RNN, Shuster et al.20 proposed a bidirectional RNN that considers both past and future input 
sequences to estimate the output vector. Several studies have shown that Bi-GRU outperforms LSTM15,17,18. 
Bi-GRU achieved the highest classification accuracy among deep neural network-based models for human 
identification based on electrocardiogram biometrics15.

In the present study, Bi-GRU exhibited better predictive performance than LR and LSTM for the entire visual 
field, as well as the central area; this area is important because the preservation of central visual function has 
a strong effect on quality of life in patients with glaucoma28,29. Bi-GRU was least affected by reliability indices. 
The false-negative rate and fixation loss affected visual field prediction in all models. However, there was poor 
correlation between fixation loss and visual field prediction, indicating a small effect of fixation loss. Previous 
studies showed that false-negative rates, but not fixation loss, were associated with visual field assessment13,30,31. 

Figure 8.   Linear regression analysis between prediction error (RMSE) and various factors. RMSE vs. (a) 
false positive rate, (b) false negative rate, (c) fixation loss percentage, and (d) visual field mean deviation 
(MD). LR = linear regression; LSTM = long short-term memory; Bi-GRU = bidirectional gated recurrent unit; 
RMSE = root mean squared error.
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Moreover, previous studies revealed that false-negative rates were the most common cause of unreliable visual 
field classification32,33.

Our study had several limitations. First, the study results cannot be fully generalized to patients with different 
degrees of glaucoma severity. The study included a greater number of patients with early glaucoma (MD >  − 6 dB) 
in the training and test datasets, compared with patients who had advanced glaucoma. Although this difference 
may have affected the performance of Bi-GRU model learning, it reflects the distribution of glaucoma severity 
observed in clinical practice.

Second, we did not include clinical data for training, in contrast to the work by Dixit et al.14 Future studies 
should improve deep learning architecture by adding clinical characteristics to the input data.

Third, we trained and tested the model using five consecutive visual field data elements as input. Glaucoma 
specialists recommend that at least five serial visual field examinations are used to detect glaucoma progres-
sion. The Glaucoma Progression Analysis included in the Humphrey Visual Field Analyzer requires at least five 
reliable visual field examinations and a follow-up period of 2 years34. Previous studies also used five visual field 
data elements as input to predict visual field progression in glaucoma35,36. Additionally, sequential pointwise 
LR was performed with at least four visual field examinations because regression analysis is unlikely to detect 
a trend when fewer data are available37. We predicted the sixth visual field examination using the previous five 
examinations to compare the predictive performances of Bi-GRU and LR models. Glaucoma requires lifelong 
periodic visual field examinations38,39. Thus, five consecutive visual field examinations over 3 years are not an 
excessively frequent number, and the prediction of subsequent examinations based on the initial five examina-
tions may enhance patient convenience.

On further analysis, we predicted future visual field based on four consecutive visual field data elements 
using the Bi-GRU model. The mean prediction errors were 3.84 ± 2.48 and 2.91 ± 1.96 dB for RMSE and PMAE, 
respectively. Although there were statistically significant differences in prediction errors (both p < 0.001) between 
the models using five and four visual field data elements, the difference was not clinically significant.

Fourth, the model could only predict the sixth visual field examinations. Future studies should collect addi-
tional patient data with a greater number of visual field examinations and evaluate the performance of our 
model in terms of predicting the seventh through tenth visual field examinations, using the first five visual field 
examinations as input. However, our model can forcast visual fields at future time points. For example, the model 
can predict the visual fields at 4, 8, and 12 months after the fifth visual field examination.

In summary, a deep learning architecture using the Bi-GRU model, a variant of RNN, predicts future visual 
field examinations significantly better than the pointwise LR and LSTM models. The Bi-GRU model is less 
affected by the reliability indices of visual field input data. This model may facilitate decision-making by accu-
rately predicting future visual field examinations in clinical practice, particularly for patients who experience 
difficulty with repeated examinations.

Data availability
The data generated or analyzed during this study are available from the corresponding author (J.R.P.) upon 
reasonable request.
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