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Design of phononic crystal using 
open resonators as harmful gases 
sensor
Zaky A. Zaky 1*, M. A. Mohaseb 2*, Ahmed S. Hendy 3 & Arafa H. Aly 1

This paper investigates the ability to use a finite one-dimensional phononic crystal composed of 
branched open resonators with a horizontal defect to detect the concentration of harmful gases such 
as  CO2. This research investigates the impact of periodic open resonators, defect duct at the center of 
the structure, and geometrical parameters such as cross-sections and length of the primary waveguide 
and resonators on the model’s performance. As far as we know, this research is unique in the sensing 
field. Furthermore, these simulations show that the investigated finite one-dimensional phononic 
crystal composed of branched open resonators with a horizontal defect is a promising sensor.

Massively producing pollutants in the air has threatened human health, the environment, and global biological 
ecosystems in recent  years1,2. So, detecting harmful gases to human health, such as  CO2,  NO2,  NH3, etc., piqued 
people’s interest in protecting humans and the  environment3–6. As a result, numerous optical studies have been 
done on detecting toxic gaseous using two-dimension nanostructured materials, such as porous  materials5,7 
and  graphene8,9. In addition, fluorescent, chemical, electrochemical, photonic crystal, and mass-sensitive are 
common gas  sensors10–13.

Phononic crystals (PnCs) are periodic artificial  materials14–16. PnCs have sparked considerable interest in vari-
ous biosensing and chemical applications. PnCs can confine acoustic or elastic waves by creating stop frequency 
bands or phononic bandgaps (PnBGs) to propagate through  them17,18. Acoustic properties of materials, such as 
viscosity, density, speed of sound, elastic moduli, etc., can be probed by propagating the acoustic wave  inside19. 
One-dimensional PnC (1D-PnC) sensors are resonant detectors. The main operating concept of 1D-PnC sensors 
is the multiple Bragg scattering of acoustic waves at each interface between two mediums with different acoustic 
impedance to produce a standing wave. The frequency of the PnBG depends on the traveling wave’s acoustic 
speed and the structure’s geometrical dimensions. Most 1D-PnC sensors are based on breaking the periodicity 
at the center of the structure, resulting in a resonant peak inside the PnBG. Adding this defect at the center of 
the structure confines a specific frequency called resonant frequency.

In traditional PnCs, continuity of flux and pressure are considered along the main direction of propagation. 
Recently, locally resonant elements have attracted attention in the field of periodic structures. However, lateral 
elements or resonators that depend on the change of pressure or flux stability in other paths can be added. These 
lateral elements can be closed or open ducts. In 2008, El Boudouti et al.20 proposed a structure of a slender tube 
with lateral ducts. The presence of lateral tubes causes the formation of stop bands in the transmittance spec-
trum. In 2020, Antraoui et al. designed a periodic structure composed of a main duct with open resonators. But 
utilizing these structures with lateral resonators in gas sensing applications is still lacking.

Recently, gas sensors using PnCs attracted attention due to their advantages. For example, gas sensors using 
PnCs do not require a recovery time. Besides, as PnC doesn’t contain any electronic component, gas sensors using 
PnCs can give good measurements in complex environments such as in an explosive  environment21. Furthermore, 
the low cost and ease of fabrication of PnC sensors are good  advantages22.

As far as we know, this research is unique in the gas sensing field. Using branched open resonators enhanced 
the sensor’s performance. Furthermore, these simulations show that the investigated finite one-dimensional 
phononic crystal composed of branched open resonators with a horizontal defect is a promising sensor. Fur-
thermore, the proposed PnC sensor with branched open resonators can be easily fabricated using low-cost 
conventional materials.
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Sensor configuration and equations
In Fig. 1, a schematic of the 1D-PnC composed of branched open resonators is proposed. The main guide has 
a cross-section S1 and a thickness d1. The branched open resonators have cross-section S2 and height d2. The 
proposed 1D-PnC comprises branched-open resonators sensor, and a defect guide sandwiched between two 
PnCs. The structure will be filled with gas samples containing different concentrations of  CO2. The plane wave 
theory can be used for stationary samples inside the sensor, and the effects of temperature gradients, higher-order 
modes, and viscosity effects are  neglected23.

The theoretical method used to study the response of the proposed periodic branched open resonators to the 
incident acoustic waves is called the transfer matrix method (TMM) as the  following23–30:
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The acoustic pressure at the end of the opened lateral chimney is approximately zero, and the acoustic admittance 
of the acoustic wave ( yR) is calculated as:

For the defect cell:

where Ad = cos

(

k dd
2

)

,Bd = jZdsin
(

k dd
2

)

,Cd =
j
Zd
sin

(

k dd
2

)

,Dd = Ad, and Zd = ρc
/

Sd
.

Bloch’s theorem is used to plot the dispersion relation of the elementary cell of the 1D-PnC composed of 
branched open  resonators23:

where K is the Bloch vector,d = d1 + d2 , M = S2
S1

 , k is the wave vector. The transmission and transmittance of 
the 1D-PnC composed of branched open resonators are calculated as the following:

Results and discussions
As an initial condition, the geometrical parameters of the main guide and open resonators of the proposed sen-
sors will be N = 10, d1 = 0.6 m, d2 = 0.15 m, dd = 0.3 m, S1 = 1  m2, S2 = 0.75  m2, and Sd = S1  m2. Table 1 shows the 
acoustic properties of an air sample at different concentrations of  CO2. The gradient of the density of the sample 
from low to high and acoustic speed from high to low with the increase of the  CO2 concentration ensures that 
both density and acoustic speed can be considered an indicator of the concentration of  CO2.

The transmittance (red spectra) and dispersion relation (blue spectra) curves versus frequency of the pro-
posed 1D-PnC composed of branched open resonators without defect are plotted and coincided using TMM and 
Bloch’s theorem in Fig. 2A. In the frequency range of concern, two PhBGs extend from 1429.2 to 1478.1 Hz and 
from 1950.6 to 2000.6 Hz. The proposed 1D-PnC sensor composed of branched open resonators has the ability 
to make the PnBG due to the periodic change in the impedance and admittance of propagated acoustic waves 
inside the structure. By adding a horizontal defect tube sandwiched between two identical 1D-PnCs, a specific 
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Figure 1.  Schematic of the 1D-PnC composed of branched open resonators.
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frequency of the incident acoustic wave is localized, making a defect peak inside the PnBG. This peak is very 
sensitive to any change in the mechanical properties of the medium inside the tubes. Considering an additional 
defect tube with dd = 0.3 m at the middle of the design and the other geometrical parameters having the same 
initial values, a resonant peak appears at the center of each PnBG, as clear in Fig. 2B.

Any change in the density or acoustic speed of the gas sample due to the change in the  CO2 concentra-
tion will result in a transmittance spectrum and cause a wavelength shift to the resonant peaks and PnBGs, as 
clear in Fig. 3. The defect peak is redshifted to lower frequencies by increasing the concentration of  CO2 from 
1975.95 Hz (at 0% of  CO2) to 1872.83 Hz (at 20% of  CO2), 1772.02 Hz (at 40% of  CO2), 1672.36 Hz (at 60% of 
 CO2), 1612.45 Hz (at 80% of  CO2), and 1575.00 Hz (at 100% of  CO2).

The sensitivity, figure of merit (FoM), quality factor (Q), and detection limit (LoD) of the harmful gas’s sensor 
are used to examine the efficacy of the sensor and can be defined as follows,

Table 1.  Acoustic properties of an air sample at different concentrations of  CO2
31.

CO2 concentration (%) Density ( ρ ) (Kg/m3) Acoustic speed ( c  ) (m/s)

0 1.2047 343

20 1.33162 325.1

40 1.45854 307.6

60 1.58546 290.3

80 1.71238 279.9

100 1.8393 273.4

Figure 2.  (A) The dispersion relation (blue line), the transmittance of the 1D-PnC composed of branched open 
resonators without defect cell (red line) using air sample (exceed in  CO2 = 0%), and (B) the transmittance with a 
defect (blue spectrum) using air sample with different  CO2 concentrations.
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where �fR is the value of the resonant frequency shift with changing the acoustic speed by ( �c ), and FWHM 
is the peak bandwidth. Sensitivity is the change in the position of the defect peak relative to the acoustic speed 
relative to the pure air sample as a reference. Q denotes the resonator’s energy loss and is expressed as the ratio 
of the frequency of the defect peak to the FWHM. The sensor’s ability to discover the alteration in the resonance 
frequency is represented by FoM32. LoD denotes the slightest change in the sample that can be detected.

Figure 4A–C shows the S, FWHM, T, FoM, Q, and LoD versus the thickness of dd. Figure 4A clears the sensi-
tivity and FWHM versus the incident frequency for the proposed 1D-PnC sensor composed of branched open 
resonators with a defect cell at different dd values to select the best value that gives the highest performance. 
The sensitivity is measured for the proposed sensor at different thicknesses of dd of 0.1 m, 0.2 m, 0.3 m, 0.4 m, 
0.5 m, and 0.6 m. In Fig. 4A, the sensitivity is slightly reduced from 5.82 Hz  m−1 s to 5.79 Hz  m−1 s, 5.76 Hz  m−1 s, 
5.73 Hz  m−1 s, 5.71 Hz  m−1 s, and 5.69 Hz  m−1 s with the increase of dd.

Sharp defect peaks with 100% intensity at resonant frequencies of 1996.94 Hz, 1986.81 Hz, 1975.95 Hz, 
1966.27 Hz, 1958.48 Hz, and 1952.73 Hz for air sample and frequencies of 1591.73 Hz, 1583.67 Hz, 1575.00 Hz, 
1567.29 Hz, 1561.08 Hz, and 1556.49 Hz for  CO2 sample at thicknesses of 0.1 m, 0.2 m, 0.3 m, 0.4 m, 0.5 m, and 
0.6 m, respectively. The right axis of Fig. 4A clears the variations in the FWHM of the resonant peak with dd. At 
dd = 0.3 m, the FWHM has the lowest value of 0.14 Hz. As a result of the behavior of FWHM, the FoM, and Q 
have the highest values at the same thickness, according to Eqs. (8) and (9). On the other hand, the LoD has a 
minor performance at dd = 0.3 m. dd = 0.3 m will be the optimum value. This thickness achieved high performance 
because the resonant peak is located at the center of the PnBG.

The reliability of the 1D-PnC sensor composed of branched open resonators is investigated by studying the 
impact of the cross-section of Sd on S, FWHM, T, FoM, Q, and LoD at different concentrations of  CO2, as shown 
in Fig. 5A–C. The defect peak and PnBG exhibit a redshift to lower frequencies as the cross-section of Sd gradu-
ally increases. The S decreases from 5.77 to 5.74 Hz  m−1 s as the cross-section of Sd increases from 0.9 to 1.4  m2. 
However, the FWHM gradually increases with the cross-section of  Sd. Besides, the T of the resonant peak records 
the highest intensity of (100%). Hence, the FoM and Q gradually decrease, and LoD gradually increases. Depend-
ing on the results in Fig. 5A–C, the cross-section of Sd = 1  m2 will be used in the following studies.

As d1 increases from 0.59 m to 0.60 m, 0.61 m, and 0.63 m, the peak of the air sample is redshifted from 
2001.36 Hz to 1975.95 Hz, 1950.14 Hz, and 1897.80 Hz, and the peak of the  CO2 sample is redshifted from 
1595.26 Hz to 1575.00 Hz, 1554.42 Hz, and 1512.70 Hz. In Fig. 6A, the sensitivity decreases linearly with increas-
ing d1. On the other hand, FWHM gradually increases with increasing d1. The transmittance records intensity 
above 99.9% for thickness  d1 higher than 0.59 m, as clear in Fig. 6B,C. Besides, FoM and Q gradually decrease, 
and LoD gradually increases with increasing d1. Therefore, a thickness of 0.59 m will be optimum.

Figure 7A clears the sensitivity and FWHM versus the incident frequency for the proposed 1D-PnC sensor 
composed of branched open resonators with a defect cell at different values of d2 to select the best value that gives 
the highest performance. The sensitivity is measured for the proposed sensor at different thicknesses of d2 of 
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Figure 3.  The transmittance of the 1D-PnC sensor composed of branched open resonators with a defect cell 
using different concentrations of  CO2.
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0.148 m, 0.149 m, 0.15 m, and 0.152 m. In Fig. 7A, the sensitivity is increased from 4.30 Hz  m−1 s to 5.84 Hz  m−1 s 
with the increase of d2 from 0.148 m to 0.149 m. Then, sensitivity slightly decreases to 5.83 Hz  m−1 s with the 
increase of d2 to 0.150 m. After that, sensitivity is significantly reduced to 4.29 Hz  m−1 s with the increase of d2 to 
0.152 m. At d2 = 0.150 m, the FWHM has the lowest value of 0.068 Hz. The T of the resonant peak changes from 
99.24% to 93.26%, 94.15%, and 99.76% by changing the thickness of d2 from 0.148 m to 0.149 m, 0.15 m, and 
0.152 m. As a result of the behavior of FWHM and sensitivity, the FoM and Q have the highest values at the same 
thickness, according to Eqs. (8) and (9) and Fig. 7B,C. On the other hand, the LoD has the smallest performance 
at d2 = 0.150 m. d2 = 0.150 m will be the optimum value.

Figure 8A–C shows the variations in S, FWHM, T, FoM, Q, and LoD with cross-sections  S2. The defect peak 
and PnBG exhibit a redshift to lower frequencies as the cross-section of  S2 gradually increases. The S gradually 
decreases from 5.84 to 5.83 Hz  m−1 s as the cross-section of Sd increases from 0.71 to 0.85  m2. Also, the FWHM 

Figure 4.  (A) S and FWHM, (B) transmittance and FoM, and (C) Q and LoD versus the thickness of dd.
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gradually decreases with the increase of the cross-section of S2 for all selected values of cross-sections except at 
0.79  m2 and 85  m2. At these values (0.79  m2 and 85  m2), the FWHM records a small increase. The T of the reso-
nant peak changes from 94.97% to 97.18%, 94.15%, 95.07%, 77.00%, 94.46%, 90.5%, and 66.48% by changing 
the cross-section of S2 from 0.71  m2 to 0.73  m2, 0.75  m2, 0.77  m2, 0.79  m2, 0.81  m2, 0.83  m2, and 0.85  m2. FoM 
changes from 64.68  m−1 s to 75.45  m−1 s, 85.42  m−1 s, 97.58  m−1 s, 89.94  m−1 s, 130.54  m−1 s, 140.90  m−1 s, and 
109.83  m−1 s by changing the cross-section of S2 from 0.71  m2 to 0.73  m2, 0.75  m2, 0.77  m2, 0.79  m2, 0.81  m2, 
0.83  m2 and 0.85  m2. Besides, Q changes from 22,183.31 to 25,879.92, 29,298.19, 33,472.38, 30,849.29, 44,775.59, 
48,326.07, and 37,670.87 by changing the cross-section of S2 from 0.71  m2 to 0.73  m2, 0.75  m2, 0.77  m2, 0.79 
 m2, 0.81  m2, 0.83  m2, and 0.85  m2. On the other hand, LoD changes from 8 ×  10–4 m  s−1 to 7 ×  10–4 6 ×  10–4 m  s−1, 
5 ×  10–4 m  s−1, 6 ×  10–4 m  s−1, 4 ×  10–4 m  s−1, 4 ×  10–4 m  s−1 and 5 ×  10–4 m  s−1 by changing the cross-section of S2 

Figure 5.  (A) S and FWHM, (B) transmittance and FoM, and (C) Q and LoD versus the cross-section of Sd.
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from 0.71  m2 to 0.73  m2, 0.75  m2, 0.77  m2, 0.79  m2, 0.81  m2, 0.83  m2 and 0.85  m2. As a result, 0.83  m2 will be the 
optimum cross-section.

At selected conditions, the defect peak is redshifted to lower frequencies by increasing the concentration of 
 CO2 from 1999.02 Hz (at 0% of  CO2) to 1894.7 Hz (at 20% of  CO2), 1792.71 Hz (at 40% of  CO2), 1691.89 Hz (at 
60% of  CO2), 1631.27 Hz (at 80% of  CO2), and 1593.39 Hz (at 100% of  CO2), as clear in Fig. 9A. This redshift of 
the PnBG and resonant peak to lower frequencies is due to the direct proportionality between the acoustic speed 
of the sample and the resonant frequency according to the standing wave equation:

(11)2d =
nc

f
,

Figure 6.  (A) S and FWHM, (B) transmittance and FoM, and (C) Q and LoD versus the thickness of d1.
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where d and n are the thickness and an integer, respectively. In Fig. 9B, the acoustic speed and resonant frequency 
versus the concentration of  CO2 are plotted. An empirical equation between the resonant frequency ( fR ) and the 
concentration of  CO2 ( CCO2 ) was established using the quadric fitting as the following relation:

(12)fR = 0.02222C2
CO2 − 6.392CCO2 + 2005,

(

R2 = 0.9975
)

.

Figure 7.  (A) S and FWHM, (B) transmittance and FoM, and (C) Q and LoD versus the thickness of d2.
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By fitting the simulated data, by knowing the resonant frequency, the  CO2 concentration can be predicted 
according to the following equation:

(13)CCO2 = −1.7656× 10−6f 3R + 0.009803f 2R − 18.299fR + 11511

Figure 8.  (A) S and FWHM, (B) transmittance and FoM, and (C) Q and LoD versus the cross-section of S2.
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Conclusion
This study proposed a branched open resonator sensor with a defect guide sandwiched between two PnCs. The 
structural properties and geometrical parameters of the 1D-PnC sensor composed of branched open resona-
tors were thoroughly optimized. The above simulation studies indicate that the suggested 1D-PnC composed of 
branched open resonators can effectively detect the concentration of  CO2 with a sensitivity of 5.8 Hz  m−1 s, FoM of 
140  m−1.s, Q of 5 ×  104, and LoD of 4 ×  10–4. Using branched open resonators enhanced the sensor’s performance, 
according to Table 2. As a result, the suggested design could be useful in different sensing and filtering devices.
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