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Parallel and anti‑parallel helical 
surface states for topological 
semimetals
Tiantian Zhang 1,2,3* & Shuichi Murakami 1,2

Weyl points, carrying a Z‑type monopole charge C , have bulk‑surface correspondence (BSC) associated 
with helical surface states (HSSs). When | C | > 1 , multi‑HSSs can appear in a parallel manner. However, 
when a pair of Weyl points carrying C = ±1 meet, a Dirac point carrying C = 0 can be obtained and the 
BSC vanishes. Nonetheless, a recent study in Zhang et al. (Phys Rev Res 4:033170, 2022) shows that 
a new BSC can survive for Dirac points when the system has time‑reversal ( T)‑glide ( G ) symmetry ( �̃
=TG), i.e., anti‑parallel double/quad‑HSSs associated with a new Z

2
‑type monopole charge Q appear. 

In this paper, we systematically review and discuss both the parallel and anti‑parallel multi‑HSSs for 
Weyl and Dirac points, carrying two different kinds of monopole charges. Two material examples 
are offered to understand the whole configuration of multi‑HSSs. One carries the Z‑type monopole 
charge C , showing both local and global topology for three kinds of Weyl points, and it leads to parallel 
multi‑HSSs. The other carries the Z

2
‑type monopole charge Q , only showing the global topology for �̃

‑invariant Dirac points, and it is accompanied by anti‑parallel multi‑HSSs.

Topological semimetals are rich in categories due to the diversity of their topological  degeneracies1–13. Topological 
equivalence of two semimetals can be diagnosed by either the type or the value of their topological invariants, 
which are quantum numbers defined uniquely for different systems, and associated with different topological 
surface states due to bulk-surface correspondence (BSC). For example, topological invariant defined for nodal-
line/ring semimetals is the Berry phase associated with drumhead surface  states1,5,14–16, topological invariant 
defined for Weyl semimetals is the Z-type monopole charge C associated with helical surface  states17–26. If C>1, 
then there will be multiple helical surface states parallel to each other and they rotate in the same direction as 
the energy increases. We call them “parallel helical surface states”, such as double and quadruple parallel HSSs 
shown in Fig. 2a2–a3. If two Weyl points with C=±1 meet, Dirac points can be obtained, associated with two 
HSSs rotating in opposite directions, which we call “anti-parallel helical surface states”. Since the monopole charge 
C is zero for Dirac points, the BSC are also expected to vanish. However, a recent study gives a strict proof that 
a Z2-type monopole charge Q can be defined for Dirac points when time-reversal ( T)-glide ( G ) symmetry ( �̃
=TG) is  present27, and they are associated with anti-parallel HSSs like double/quad-helical surface states (DHSSs/
QHSSs)21,28–33. Among diverse topological semimetals, Weyl and Dirac semimetals draw the most attention, not 
only due to their exotic transport properties from the bulk bands, but also due to their topological surface states 
with fascinating helical shapes.

The simplest case is a Weyl point formed by two linear bands, carrying a unit monopole charge, as the one 
with C = +1 shown in Fig. 1a. The low-energy effective Hamiltonian can be written as H1(k) = k · σ , where σ 
represent three Pauli matrices. Furthermore, unconventional Weyl points carrying monopole charges of |C| > 1 
can be obtained if additional crystalline symmetries are preserved, such as the threefold degenerate Weyl point 
protected by the chiral cubic symmetry shown in Fig. 1b1. It carries monopole charges of C = +2, 0, −2 for each 
band and is also known as spin-1 Weyl point or double Weyl  point25,34–40. The low-energy effective Hamiltonian 
can be written as H2(k) = k · L , where L represent three spin-1 matrix representations of the rotation generators. 
In addition to the spin-1 Weyl point, chiral cubic symmetry can also give rise to a twofold Weyl point carrying 
monopole charge of C = +4, −4 for each band, as shown in Fig. 1b2, which is also called twofold quadruple Weyl 
 point26,41. The low-energy effective Hamiltonian can be written as H4(k) = kxkykz · σz + (k2x + ωk2y + ω2k2z ) · σx 
with ω = e−

2π i
3  . Nevertheless, when a system preserves inversion symmetry, Weyl points do not appear while 
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Dirac points composed of a pair of Weyl points with C = +1 and −1 appear, as shown in Fig. 1c. The low-energy 
effective Hamiltonian for Dirac points can be written as HD(k) =

(k · σ 0

0 − k · σ

)

.
Analogous to topological (crystalline) insulators, in which all the topological surface states are composed of 

surface Dirac cones, the basic unit of the surface states for Weyl and Dirac semimetals can be regarded as the 
helical surface state (HSS), as shown in Fig. 2a1. Due to the integer nature of the monopole charge C , HSSs for 
Weyl points carrying a different monopole charge C will have different multiplicities, resulting in parallel surface 
states with a multi-helical  configuration21–26,34. Figure 2a2,a3 show the parallel DHSSs and parallel QHSSs for 

Figure 1.  Bulk bands for various Weyl points and Dirac points. (a) Linearly dispersive bands for a Weyl 
point carrying monopole charge C = +1. (b1,b2) Two different kinds of unconventional Weyl points carrying 
monopole charge of C = +2 and +4, respectively. The threefold degenerate Weyl point in (b1) is also known as 
spin-1 Weyl point or double Weyl point, while the twofold one in (b2) is also known as twofold quadruple Weyl 
point. (c) A Dirac point carrying a total monopole charge of C = 0, and it is composed of two Weyl points with C 
= ±1.

Figure 2.  Parallel and anti-parallel multi-helical surface states. (a1) Single helical surface states for a Weyl point 
carrying unit monopole charge of C = +1. (a2) Parallel double helical surface states for Weyl points carrying 
monopole charge of C = +2. (a3) Parallel quad-helical surface states for Weyl points carrying monopole charge 
C = +4. (b1) Surface states for a pair of Weyl points carrying monopole charge of C = ±1 , and it is formed by two 
helical surface states with different chirality merged together. (b2) Anti-parallel double helical surface states for 
a Dirac point carrying a nonzero Z2-type monopole charge Q , where the intersection of the surface states forms 
a �̃-invariant degenerate line along surface BZ boundary. (b3) Anti-parallel quad-helical surface states for Dirac 
points carrying nonzero Z2-type monopole charge Q , where the intersections of the surface states are on the �̃
-invariant lines protected by two �̃ symmetries formed by two glide symmetries.
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Weyl points carrying monopole charge of C = +2, +4, respectively. A pair of isolated Weyl points carrying oppo-
site monopole charge of C= ±1 will preserve a single surface state connecting those two Weyl points, merging 
into two anti-parallel HSSs with different chirality at the two Weyl points, as shown in Fig. 2b1.

However, when those two Weyl points carrying C = ±1 approach each other, a Dirac point will be obtained 
if there are additional crystalline symmetries (such as inversion and rotation symmetries), and the BSC will no 
longer necessarily exist due to C = 0. Nevertheless, a recent study shows that BSC associated with anti-parallel 
multi-HSSs can be obtained for Dirac points with a new Z2-type monopole charge Q , which is defined in terms 
of the time-reversal-glide symmetry �̃=TG27. The study also gives a strict proof that BSC associated with anti-
parallel double HSSs can be obtained for Q in both spinless and spinful systems with one �̃ , while anti-parallel 
quad-HSSs can be obtained only in spinless systems with two �̃ symmetries composed of two glide symmetries, 
as shown in Fig. 2b2,b3.

We note that parallel and anti-parallel quad-HSSs are the maximum number of helical surface states that a 
Weyl and Dirac semimetal can have in crystals. Though different studies on parallel and anti-parallel HSSs have 
been implemented separately in the past, there is no systematically theoretical and numerical research on them, 
in particular for the multi-HSSs ones. In this paper, we will review and discuss the parallel and anti-parallel HSSs 
associated with Weyl and Dirac points in phonon bands with two new material examples, respectively, and show 
their BSC associated with different monopole charges. One is boron with a chiral cubic crystal structure, in which 
three kinds of Weyl phonons carrying monopole charge of C = ±1 , ±2 and ±4 can be obtained, associated with 
single, parallel double and parallel quad-HSSs, respectively. The other one is silicon with centrosymmetric cubic 
crystal structure, in which two kinds of Dirac phonons carrying nonzero Z2 monopole charge Q can be obtained, 
associated with anti-parallel quad-HSSs.

Results
Z‑type monopole charge C associated with Weyl points. The topological invariant for Weyl 
points, i.e., Z-type monopole charge C , can be defined by an integral of the Berry curvature in k-space, 
Cn = 1

2π

∫

S �n(k) · dS . Here, �n(k) = i�∇kunk | × |∇kunk� is the Berry curvature for nth band in terms of the 
wavefunction |unk� , and S is either a sphere enclosing the Weyl point or a 2D plane which lies between two Weyl 
nodes of opposite charges, as marked in Fig. 3a1,a2. The former definition of C on a closed sphere shows the local 
property of Weyl points, i.e., the monopole charge of C . The latter definition on a 2D plane tells the influence of 
C to the rest part of the BZ. Namely, when the 2D plane line between two Weyl points with opposite monopole 

Figure 3.  Z-type and Z2-type monopole charge and their bulk-surface correspondence associated with Weyl 
and Dirac points. (a1) shows a pair of Weyl points (red and green dots) carrying C = ±1 in the bulk BZ. Since 
the Z-type monopole charge C can be defined by the Berry curvature integrated either on the sphere enclosing 
the Weyl point or on the 2D plane away from the Weyl points, showing both the local and global topology of 
C . (a2) Fermi arc connecting two Weyl points carrying C = ±1 in the surface BZ. (a3) Overall configuration for 
the helical surface states connecting two Weyl points. (a4) Fermi arc does not necessarily exist when two Weyl 
points are projected onto the same point in the surface BZ. (b1) Bulk BZ for a system preserving G y . Two Dirac 
points marked by green and red dots are located on the kx = π plane (blue plane) satisfying �̃ 2y = −1 . (b2) 
Fermi arcs (purple curves) for Dirac points carrying nontrivial Z2 monopole charge Q on the G y-preserved 
surface BZ. (b3) Double-HSSs contributed by Dirac points with nontrivial Q , which is projected along M̄-X̄ 
(satisfying �̃ 2y = −1 ) on the surface BZ. The gray cone is the bulk Dirac bands. Blue and yellow sheets are the 
anti-parallel HSSs.
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charges, C becomes nonzero, giving rise to HSSs connecting two Weyl points, as shown in Fig. 3a2,a3. Mean-
while, when the 2D plane does not lie between the two Weyl points, C is zero, and no HSSs exist on the plane. 
An isoenergetic contour of the surface states is the Fermi arc connecting these two Weyl points, as marked by 
the purple solid line in Fig. 3a1,a2. If the Chern number C defined on the 2D plane is nonzero (such as the gray 
2D plane in Fig. 3a1), there will be the number of | C | Fermi arcs crossing the line, which is a projection of the 
2D plane onto the surface BZ (such as the dashed line in Fig. 3a2). However, the Fermi arc will disappear when 
those two Weyl points are projected onto the same momentum on the surface BZ or when they meet and become 
a Dirac point, showing the C = 0 nature of the Dirac points, as shown Fig. 3a4.

Z
2
‑type monopole charge Q associated with Dirac points. As we mentioned above, the Z2-type 

monopole charge Q can be defined in terms of �̃=TG symmetry for Dirac points. Unlike the Z-type monopole 
charge C characterizing Weyl points, this new monopole charge Q cannot be defined as a local quantity and it is 
associated with anti-parallel HSSs.

Figure 3b1 shows the bulk BZ for a system with time-reversal symmetry T  and single glide symmetry 
Gy = {My|

1
2
00} , which leads to �̃2

y = ( T G y)2 = e−ikx . Thus, �̃2
y = −1 for the kx = π plane marked by the blue 

rectangle. We note that two T-related Dirac points carrying nontrivial Q are usually located on high-symmetry 
lines for systems that only have one G , and at non-TRIM high-symmetry points for systems preserving two G 
with mutually perpendicular mirror planes. In the single glide symmetry case, two Dirac points located on the 
blue plane shown in Fig. 3b1 will be projected onto M̄ − X̄ on the glide-preserving surface BZ shown in Fig. 3b2.

At first, the Z2-type monopole charge is defined in terms of wavefunctions (WFs) on a sphere enclosing the 
Dirac point, which is analogous to the local definition of C . Nonetheless, Ref.27 points out that this definition of 
Q is not gauge invariant, because it is in fact only defined in terms of the WFs on the circle lying on the kx = π 
plane enclosing the Dirac point. Namely, information on the WFs on this circle is not sufficient to uniquely 
determine the value of the Z2 invariant Q , and these still exists a gauge transformation which changes Q by unity. 
To make Q well-defined, a rectangle R (marked by purple lines in Fig. 3b1) that traverses the half of the kx = π 
plane should be used, and the Dirac point should be the only gapless point inside of the rectangle. By this new 
definition, Q is equal to the difference of �̃-polarization P�̃ along two blue lines shown in Fig. 3b1:

where P�̃(ky) =
1
2π

(γ+
L − γ−

L ) , γL is the Berry phase along one of the blue lines, and “±” are the positive/negative 
glide sectors for the Bloch WFs. This quantity Q is well-defined only when the system is gapped along the blue 
lines. Thus, although Q is a monopole charge for the Dirac point, we cannot define it on a sphere enclosing the 
Dirac point, because �̃ 2y = −1 holds only on the kx = π plane due to the definition in Eq. (1). Instead, Q can 
be only defined by a global way along the blue lines, and it can be nontrivial when the system is TG-invariant. 
Furthermore, when we slightly break the time-reversal symmetry, this Z2 invariant Q reduce to the Z2 invariant 
characterizing the glide-symmetric topological crystalline insulators studied in Refs.30,42–44. By using this fact, 
we can show that a nontrivial value of Q is associated with anti-parallel DHSSs on the Gy-preserving surface, in 
both spinless and spinful systems, as shown in Figs. 3b2,b3.

Now, let us consider a spinless system with T and two G with mutually perpendicular mirror planes, such as 
Gx = {Mx|0

1
2
0} and Gy = {My|

1
2
00} for space group #110. #110 is a body-centered lattice, it will have a similar 

bulk BZ as the ones shown in Figs. 4b and 5b. Since two glide symmetries will give rise to �̃ 2x = −1 at ky = π 
plane and �̃ 2y = −1 at kx = π plane, T-related Dirac points carrying nontrivial Q will appear at non-TRIM 
high-symmetry points, e.g. P and P′ in the bulk BZ. Furthermore, due to the additional C2z symmetry resulting 
from two G with mutually perpendicular mirror planes in spinless systems, Q can be further simplified in terms 
of C2z  eigenvalues43,44:

where ζi is the eigenvalue of C2z for the ith occupied band. Ŵ and X are two C2z-invariant high-symmetry momenta 
on the kz = 0 plane in the space group #110, which can be replaced by other high-symmetry momenta listed in 
Table 1 for other space groups preserving two glide symmetries. This formula (Eq. (2)) clearly shows the global 
nature of the Z2-type monopole charge Q . The BSC between the monopole charge and the DHSS/QHSS is thus 
established.

Parallel multi‑HSSs for Weyl phonons in boron. Next we give some material examples where phonon 
spectra show the multi-HSSs. We begin with the parallel multi-HSSs. To obtain the unconventional Weyl points car-
rying monopole charges of C = ±2 and ±4 with H2(k) = k · L and H4(k) = kxkykz · σz + (k2x + ωk2y + ω2k2z ) · σx , 
as shown in Fig. 1b1,b2, chiral cubic symmetry, time-reversal symmetry and SU(2) symmetry are necessary. 
From these conditions, we find that boron with space group #214 is a good candidate for these unconventional 
Weyl points in phonon band structure, and associated parallel multi-HSSs.

Boron with space group #214 ( I4132 ) belongs to the chiral cubic system, as shown in Fig. 4a, where three 
kinds of Weyl points can be obtained in its phonon spectra. Due to the body-centered lattice nature of boron, 
both high-symmetry momenta H and Ŵ will have two kinds of unconventional Weyl points protected by the chiral 
cubic symmetry, i.e., threefold double Weyl points ( C= ±2 ) marked by the green dots and twofold quadruple 
Weyl points ( C= ±4 ) marked by the red dot, as shown in Fig. 4b,c. The solid and dashed circles outside of the 
dot represent the positive and negative sign of the monopole charge, respectively. Degeneracies at the high-
symmetry momentum P are all twofold ones, as marked by the purple dots, and they all correspond to single 

(1)Q = P�̃(ky = π)− P�̃(ky = 0) (mod 2),

(2)(−1)Q =
∏

i

ζi(Ŵ)

ζi(X)
,
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Weyl points carrying monopole charges of C= ±1 . Since the number of parallel HSSs corresponds to the value 
of the monopole charge | C |, single, double and quad-HSSs can be obtained in the phonon spectra of boron, as 
shown in Fig. 2a1–a3, which can be further demonstrated by the calculation of surface modes.

Figure 4d1 shows surface mode calculation at 31.5 THz along the (001) surface. Along the calculation of the 
(001) surface, both the threefold double Weyl phonon at H and the twofold quadruple Weyl phonon at Ŵ will 
be projected onto Ŵ̄ and the conventional Weyl points at P and P′ will be projected onto M̄ , as shown in Fig. 4b. 
Thus, the total monopole charge at Ŵ̄ and M̄ will be C = +2 and −2 on the (001) surface, respectively, resulting 
in two non-contractible surface arcs coming out from the surface BZ center Ŵ̄ and connecting to the surface BZ 
corner M̄ . Since C2 and T symmetries are the only two symmetries left on the (001) surface, two surface arcs 
appear in a C2 - and T-related way.

Since the threefold double Weyl phonon and twofold quadruple Weyl phonon overlap along [001] direction, 
the parallel quad-HSS nature of the twofold quadruple Weyl phonon with four surface arcs will also be covered 
up. In order to capture the whole helical configuration of the twofold quadruple Weyl point with C = +4, we 
also calculate the surface arcs with the same frequency but along (11̄ 0) surface, as shown in Fig. 4d2. On the 
( 11̄0 ) surface, the twofold quadruple Weyl point at Ŵ will be projected onto Ŵ̄ , while the threefold double Weyl 
point at H will be projected onto a different momentum M̄ , and the conventional Weyl points at P and P′ will 
be projected along Ŵ̄ − Z̄ directions. Such non-overlapping projections along [11̄0] direction will not only show 
the parallel quad-HSSs of the twofold quadruple Weyl node at Ŵ̄ , but also show the parallel double HSSs of the 
threefold double Weyl node at M̄ and the single HSSs from P and P′ . Four surface arcs will also display in a C2 - 
and T-related way due to these symmetries on the ( 11̄0 ) surface.

To have an intuitive picture of the parallel HSSs, we also calculate the surface arcs along the (001) surface, 
with different energies around 19.5 THz, as shown in Fig. 4e1–e3. Along [001] direction, the threefold double 
Weyl point around 19.5 THz at Ŵ is projected onto Ŵ̄ with C = +2 and two conventional Weyl points at P and P′ 
will be projected onto M̄ with C = −2 . Thus, double HSSs with two surface arcs connect from Ŵ̄ to M̄ , forming 

Table 1.  Spinless systems with two G with mutually perpendicular mirror planes, where Dirac points 
associated with QHSSs can be obtained. Four columns represent the space group number, two glide 
symmetries which define the Z2 monopole charge Q together with T , the momentum where Dirac points are 
located and the momenta used for Eq. (2).

Space group Two glide mirrors Location Momenta used for Eq. (2)

#73 {Mx |
1

2
,
1

2
, 0 }; { My |

1

2
, 0, 0} W Ŵ , T

#110 {Mx |
1

2
,
1

2
, 0 }; { My |

1

2
,
1

2
, 0} P Ŵ , X

#142 {Mx |
1

2
,
1

2
, 0 }; { My |

1

2
, 0, 0} P Ŵ , X
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1

2
,
1

2
, 0 }; { My |

1

2
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3

4
, 0 }; { My |
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, 0} W Ŵ , X

#230 {Mx |
1

2
,
1

2
, 0 }; { My |

1

2
, 0, 0} P Ŵ , N

N PH

0

10

20

30

Fr
eq

ue
nc

y 
(T

H
z)(b)

(a) (c)

N

(d1) on (001) surface
       @ 31.5 THz

(d2) on (110) surface
        @ 31.5 THz

(e1) @19 THz (e2) @ 19.5 THz (e3) @ 20 THz

–

Figure 4.  Weyl phonons in boron with I4132 crystal structure. (a) Crystal structure for boron with space group 
I4132 . (b) Bulk, (001) and (11̄ 0) surface Brillouin zone for boron. (c) Phonon spectra of boron, where Weyl 
points with monopole charge C = +1, +2 and +4 ( −1 , −2 and −4 ) are marked by the purple, green and red dots 
with solid (dashed) circle outside. (d1),(d2) Surface arcs at 31.5 THz on the (001) and (11̄ 0) surface, respectively, 
and three Weyl points at Ŵ , H and P carrying different monopole charge C will projected onto different momenta 
in the surface BZ. (e1)–(e3) Surface arcs with three different energies around 19.5 THz on the (001) surface, and 
they rotate around Ŵ̄ and M̄ as the energy increases.
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a non-contractible surface arc crossing the whole surface BZ. As the energy increases, the double HSSs rotate 
in the same sense, and this sense of rotation is opposite between Ŵ̄ and M̄ , showing the parallel helical nature of 
the surface states and different monopole charges of the Weyl points located at Ŵ̄ and M̄.

We note that Weyl points associated with parallel helical surface states can be also obtained in the spinless 
electronic band structure of boron, such as the double Weyl point marked by the yellow dots in Fig. 6a.

Figure 5.  Dirac phonon in silicon with space group Ia3̄ . (a) Crystal structure, (b) bulk BZ and (001) surface BZ 
and (c) phonon bands for Si with space group Ia3̄ . P1P3 and P2P2 marked by colored dots in (c) are both Dirac 
points but with different irreps. (d,e) are the calculated surface states and arcs for two Dirac points located at P 
and P′ with irreps of P1P3 . (f,g) are the calculated surface states and arcs for two Dirac points located at P and P′ 
with irreps of P2P2.

Figure 6.  Electronic band structures for boron and silicon. (a) Electronic band structure for boron without 
spin-orbit coupling. (b) Electronic band structure for silicon without spin-orbit coupling. The yellow dots are (a) 
double Weyl point and (b) Dirac points associated with nonzero Q.
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Anti‑parallel double HSSs for Dirac points. Next, we consider a material example for the anti-parallel 
multi-HSSs. In the Dirac semimetal case, where the fourfold degenerate bulk bands are composed of two Weyl 
points carrying opposite monopole charges of C= ±1 , a pair of anti-parallel HSSs are expected to appear. How-
ever, HSSs expected from the BSC for the monopole charge C will vanish due to the total monopole charge C
= 0 for Dirac points. Due to the lack of topological protection, anti-parallel HSSs for Dirac points will hybridize 
with each other at the intersections under perturbations, resulting in a surface Dirac  cone45,46 without helical 
nature. Nevertheless, a new BSC associated with Z2 monopole charge Q can be defined for Dirac points when the 
system preserves time-reversal-glide symmetry �̃=TG . In contrast to the Z-type monopole charge C, which can 
be defined both locally and globally, the Z2-type monopole charge Q can be only defined in a global way, i.e., it 
only has a global nature of  topology21,27. With the protection of Q , gap opening for the anti-parallel HSSs can be 
avoided, resulting in anti-parallel double/quad-HSSs, as we discussed in Fig. 3.

Anti-parallel double HSSs consist of two HSSs overlapping on the surface BZ, as shown in Fig. 2b2, and at 
their crossing they are expected to become gapped when perturbations are  introduced45–54. However, with the 
protection of �̃ 2 = −1 , a nonzero Z2 monopole charge Q for the Dirac points can be  defined21,27, and a BSC 
associated with anti-parallel double HSSs can be obtained for both spinless and spinful systems with a single 
glide mirror symmetry. The intersections of the anti-parallel double HSSs are protected by the anti-unitary opera-
tor with �̃ 2 = −1 , which forms a degenerate line along the BZ boundary, as shown in Fig. 2b2. We note that a 
Dirac point carrying a nontrivial monopole charge Q can be transformed into a pair of Weyl points or a nodal 
ring under any �̃-preserved perturbations. Such a pair of Weyl points, which are known as Weyl dipoles, and 
the Z2 nodal ring also hold anti-parallel double HSSs, due to the global definition of the monopole charge Q27.

Anti‑parallel quad‑HSSs for Dirac points. As discussed above, anti-parallel double HSSs appear due 
to BSC of a nonzero monopole charge Q , but they can be also treated as two HSSs from two Weyl points with 
opposite chirality. If two Dirac points, i.e., two pairs of Weyl points carrying a monopole charge of C = ±1 , are 
projected onto the same momentum in the surface BZ, there will be two pairs of anti-parallel HSSs crossing each 
other at least four times in the band gap around the projected Dirac points, as shown in Fig. 2b3. Thus, if there 
are two �̃ symmetries in a system formed by two G with mutually perpendicular mirror planes, anti-parallel 
quad-HSSs can be obtained. In the anti-parallel quad-HSSs, the two �̃ symmetries protect the intersections of 
those two pairs of anti-crossing HSSs from opening a gap along the �̃-invariant lines in the surface BZ.

However, in spinful systems with two glide symmetries, due to the presence of other additional bulk degen-
eracies at time-reversal-invariant momenta (TRIM) located on the blue lines in Fig. 3b1, the definition (1) of Q 
for the Dirac point is ill-defined. Therefore, the BSC for Q with anti-parallel quad-HSSs can be obtained only in 
spinless systems with two glide symmetries; in such systems, two T-related Dirac points with nontrivial Q are at 
the high-symmetry momenta, which are not TRIM. Thus, a face/body-centered lattice with two G with mutually 
perpendicular mirror planes are the necessary conditions to obtain Dirac points associated with anti-parallel 
quad-HSSs. In the next section, we will use silicon in a body-centered cubic structure as an example to show the 
anti-parallel quad-HSSs associated in its phonon spectra.

Anti‑parallel multi‑HSSs for Dirac phonons in silicon. In order to have an intuitive comprehension 
on the anti-parallel quad-HSSs, we propose an experimentally synthesized material candidate, i.e., silicon with 
#206 (Ia3̄ ) having two kinds of Dirac phonons in its phonon band structure, to show their topological proper-
ties. Figure 5a,b are the crystal structure and BZ for Si with #20655, which is an experimentally synthesized phase 
for silicon, with two glide mirrors Gx = {Mx|0

1
2
0} and Gy = {My|

1
2
00} with their mirror planes perpendicular 

with each other. The body-centered structure of Si gives rise to two non-TRIM high-symmetry points P and P′ 
related by T . All the phonon bands at P and P′ are fourfold degenerate, with either of the two kinds of irreducible 
representations (irreps), i.e., P2P2 and P1P3 shown in Fig. 5c. Both of them are Dirac points carrying a nonzero 
monopole charge Q.

To obtain the anti-parallel quad-HSSs for both of the Dirac points with different irreps, surface state calcula-
tions with different energy windows are implemented along the (001) surface. There are two �̃ symmetries on 
the (001) surface BZ with �̃ 2x = ( TG x)2 = −1 and �̃ 2y = ( TG y)2 = −1 along the BZ boundaries M̄ − X̄ and M̄ − Ȳ  , 
and Dirac points at P and P′ will be projected onto the corner point M̄ , as shown in Fig. 5b. Surface state calcu-
lations around the Dirac points with irreps P1P3 (marked in Fig. 5c) are shown in Figs. 5d,e, where the former 
one follows the k-path marked by dashed lines in the latter one, and the latter one with the iso-energy counter 
marked by the black dashed line in the former one. Due to �̃ 2 = −1 along the surface BZ boundaries of the 
(001) surface, surface states will be doubly degenerate, showing Kramers’-like degeneracy feature, as shown in 
Fig. 5d, where the surface states are doubly degenerate at Ȳ  , X̄ , X̄ ′ , Ȳ ′ and along Ȳ − M̄ . Along the iso-energy 
contour at 7.91 THz shown in Fig. 5e, four anti-parallel quad-HSSs cross with each other along X̄ − M̄ − X̄ ′ , 
and the intersection is protected by �̃ x from opening a gap. Thus, though the surface state calculation along the 
k-path enclosing the projected Dirac points, which crosses the surface BZ boundaries, the global topology of Q 
is revealed as the anti-parallel quad-HSSs along the k-path.

Calculations on surface states around the Dirac point with irreps P2P2 (marked in Fig. 5c) are shown in 
Fig. 5f,g. By following a smaller k-path enclosing M̄ on the (001) surface BZ shown in Fig. 5g, there are also 
two groups of anti-HSSs around M̄ , protected by �̃ x and �̃ y . Thus, we claim that anti-parallel quad-HSSs can 
originate from both of the Dirac points with irreps of P2P2 and P1P3 in the phonon spectra of Si.

We note that Dirac points associated with nonzero monopole charge Q and anti-parallel helical surface states 
can be also obtained in the spinless electronic band structure of silicon, as shown by the yellow dots in Fig. 6b.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9239  | https://doi.org/10.1038/s41598-023-36168-3

www.nature.com/scientificreports/

Discussion
In this work, we systematically study parallel and anti-parallel helical surfaces both theoretically and numerically 
with two material examples. They can be obtained in various quasiparticle systems, such as electrons, phonons, 
magnons, and so on, but associated with different topological invariants and reflect different topologies of the 
system. The former parallel helical surfaces show both the local and global nature of Z-type monopole charge C 
associated with Weyl points, while the latter anti-parallel helical surface states show the global nature of Z2-type 
monopole charge Q associated with Dirac points. Thus, the number of the parallel helical surfaces is equal to | C | 
in Weyl semimetals, while the anti-parallel ones show the number of the TG symmetries in Dirac semimetals. 
Considering the restriction of both onsite symmetries and crystalline symmetries, quad-helical surface states 
are the maximal ones that both parallel and anti-parallel surface states can have. Parallel surface arcs are mutu-
ally separated and will rotate in the same way as the energy changes, while anti-parallel surface arcs will meet in 
pairs on the TG-invariant line and rotate in opposite ways within each pair. Thus, they can be distinguished by 
energy-dependent spectral detections and have the potential to be used in multi-channel and low-loss electronic 
and phonon devices.

Methods
First-principles calculations on both the electronic band structures and phonon spectra are implemented by 
the Vienna ab initio Simulation Package (VASP)56 within the Perdew-Burke-Ernzerhof exchange  correlation57. 
Energy cutoff for the plane-wave basis is 380 eV for boron, and it is 400 eV for silicon. (Equivalent) k-mesh 
of 15×15× 15 and 9 ×9× 9 in the Brillouin zone are used for the self-consistent calculations on electronic band 
structures and phonon  spectra58 for boron and silicon, respectively. We use  WANNIERSTOOLS59 to calculate 
the surface states.

Data availability
All results and codes are available from the corresponding author upon reasonable request. The datasets gener-
ated during and/or analyzed during the current study are available from the corresponding author on reasonable 
request.

Code availability
All codes used in this work are either publicly available or available from the authors upon reasonable request.
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