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Prediction of microseismic 
events in rock burst mines based 
on MEA‑BP neural network
Tianwei Lan *, Xutao Guo , Zhijia Zhang  & Mingwei Liu 

Microseismic monitoring is an important tool for predicting and preventing rock burst incidents in 
mines, as it provides precursor information on rock burst. To improve the prediction accuracy of 
microseismic events in rock burst mines, the working face of the Hegang Junde coal mine is selected 
as the research object, and the research data will consist of the microseismic monitoring data from 
this working face over the past 4 years, adopts expert system and temporal energy data mining 
method to fuse and analyze the mine pressure manifestation regularity and microseismic data, and 
the "noise reduction" data model is established. By comparing the MEA‑BP and traditional BP neural 
network models, the results of the study show that the prediction accuracy of the MEA‑BP neural 
network model was higher than that of the BP neural network. The absolute and relative errors of the 
MEA‑BP neural network were reduced by 247.24 J and 46.6%, respectively. Combined with the online 
monitoring data of the KJ550 rock burst, the MEA‑BP neural network proved to be more effective in 
microseismic energy prediction and improved the accuracy of microseismic event prediction in rock 
burst mines.

One of the worst accidents that can happen during the mining of coal is a rock burst. Therefore, the ability to 
foresee the occurrence of rock burst events is crucial. Microseismic monitoring is an important technical tool 
to obtain information on the precursors of rock burst. The advanced anticipation of microseismic monitoring 
information is particularly important.

Taking into account the seismicity, magnitude (energy), and frequency of a region, it can directly reflect the 
"enhancement" or "calmness" of seismic activity  quantitatively1. This shows that the rock burst is often accom-
panied by the occurrence of microseismic events before the occurrence of the rock burst, and the sudden change 
of energy and frequency can be regarded as a sign of rock burst  danger2.

Zhang et al.3 investigated the regional hazard prediction of rock burst in deep mining by microseismic 
energy attenuation laminar imaging. The study shows that regional rock burst prediction using microseismic 
energy attenuation is an effective way to reveal the characteristics of rock burst. Hang Zhang and Jun Zeng et al. 
used neural networks for multi-microseismic parameter time series prediction starting from the microseismic 
time series of rock burst. It provides a good idea for microseismic magnitude (energy) time series periodicity 
 prediction4.

Research on the theory and application of artificial neural networks has been re-emerging worldwide since 
the mid-1980s5. Xie et al.6 proposed a study based on Bagging-SVM to investigate the role of multi-source 
microseismic data in rock burst hazard prediction, and Li et al.7 proposed a Bayesian network-based dynamic 
early warning of microseismic multiparameter rock burst. Both of them demonstrate the feasibility of neural 
networks in microseismic prediction applications. Hui Liu, Jiulong Cheng, et al. investigated microseismic inten-
sity prediction by radial-based probabilistic neural networks, exploring the sample process characteristics and 
control of the regularity of microseismic and periodically weighted events, and studying the statistical regularity, 
trends, and critical features behind the event sample data to predict the microseismic magnitude and risk  level8.

Chen and  Pan9 also proposed the application of the BP algorithm with genetically simulated annealing in rock 
burst for the prediction study of earthquake magnitude (energy). The prediction results are influenced by factors 
such as the variability of the algorithm structure and the different ways of data processing, while the thinking 
evolutionary algorithm has unique advantages over genetic algorithms, such as inherent structural parallelism, 
high overall search efficiency, etc., which helps to improve the accuracy of prediction. As a result, the BP neural 
network optimized by the evolutionary thinking algorithm may be superior to the BP neural network optimized 
by the genetic algorithm.

OPEN

Liaoning Technical University, Fuxin, China. *email: ltw821219@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-35500-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9523  | https://doi.org/10.1038/s41598-023-35500-1

www.nature.com/scientificreports/

Wang et al.10 investigated the evolutionary and generalization ability and predictability of the MEA-BP neural 
network and applied it to sea wave height warning and applied it to the wave height warning. Yu et al.11 applied 
the MEA-BP neural network model to the standard friction prediction of long-distance hot oil pipelines, and 
their predictions showed that the MEA-BP model prediction results have high accuracy and small dispersion. 
Chen and  Laghrouche12 applied the MEA algorithm and PSO algorithm in the proton exchange membrane fuel 
cell. The evolutionary algorithms including the MEA algorithm, PSO algorithm, and genetic algorithm (GA) 
were applied to optimize the parameters of the established proton exchange membrane fuel cell aging prediction 
model in the aging prediction of the proton exchange membrane fuel cell (PEMFC). The results showed that 
the parameter accuracy optimized by the MEA algorithm was improved by 10 times. Zhang et al.13 applied the 
MEA-BP neural network to predict the mechanical parameters of the surrounding rocks in the Pingdingshan 
mine and proved that the MEA-BP algorithm could improve the accuracy of the prediction. Yang et al.14 used 
the vegetation of the abandoned land in the arid mine. The results of training the MEA-BP algorithm using the 
vegetation cover and biomass maps of the abandoned land in the arid mine area also showed the advantages of 
the algorithm.

The MEA-BP neural network method is used to predict microseismic energy in light of the study above, and 
the new characteristics of the MEA algorithm are used to optimize the BP neural network. The MEA algorithm’s 
primary operating premise is that it adjusts the weights and thresholds of the BP neural network to prevent locally 
optimum solutions and too poor convergence during training.

MEA‑BP neural network prediction model construction
"Period‑energy‑frequency" data model construction and data processing. Junde coal mine is 
equipped with an SOS micro-earthquake monitoring system, and its simple layout is shown in Fig. 1.

The data of a horizontal working face from November 2017 to August 2021 were obtained, and 30 sets of data 
were collected each month, and a total of 910 sets of valid data were collected, and each set of data was divided 
into accumulated energy, maximum energy, average energy, and frequency. At present, many coal mines in 
China regard the microseismic large energy events concentrated in a short time as the precursor of rock burst.

Zhao et al.15 analyzed the regularity of energy accumulation and release of coal seam roof under the influence 
of working face retrieval speed, mainly studied the regularity of roof energy accumulation under the effect of 
retrieval speed, then analyzed the characteristics of roof energy release, and finally explored the mechanism of 
roof energy accumulation and release under the influence of retrieval speed. Zhang et al.16 studied the microseis-
mic regularity during the deep shaft roadway crossing fault group, and Zhen et al.17 analyzed the impact damage 
energy characteristics of the surrounding rock in the back mining roadway, which mainly studied the energy 
characteristics of the coal rock body when the impact damage occurred based on the microseismic monitoring 
energy characteristics of the typical tunnel impact damage, and carried out the conventional triaxial compres-
sion test and combined with theoretical analysis and numerical simulation. Li et al.18 studied the change process 
of microseismic parameters such as microseismic event rate, energy release, apparent volume, energy index, 
Schmidt number, b-value, and seismic response coefficient and their relationship with surrounding rock damage. 
Zhang et al.19 analyzed the change in spatial correlation length of microseismic events in mines at different spatial 

Figure 1.  SOS micro-earthquake monitoring system.
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scales and explained the mechanism behind it. Wang et al.20 studied the spatial and temporal distribution and 
evolution of microseismic events and analyzed the differences and correlations of multi-coal mining microseismic 
events under high-location thick and hard rock layers, especially the relationship between high-energy mining 
earthquakes and fractures and the motion pattern of high-location thick and hard rock layers.  Ding21 analyzed 
the evolution of mining seismic time sequence under different coal mining methods in the Huayan  coalfield. 
There are two main methods of microseismic early warning methods for rock burst. One is the method of early 
warning when the microseismic frequency, total microseismic energy, or the maximum value of microseismic 
energy reaches or exceeds the critical warning value. The other is the method of early warning when there is a 
continuous increase in microseismic frequency and total microseismic energy, an abnormal change in micro-
seismic frequency and total microseismic energy, and the accumulation of microseismic events in a local area.

I combine the above analysis with the analysis from the temporal energy data of the working face in the Junde 
coal mine. The background value of energy events in the Junde coal mine is changing continuously since April 
9, 2020. By observing the enlarged graph intercepted in Fig. 2, it can be found that the number of energy events 
shows a rapid increase from the highest daily occurrence of more than 100 energy events to more than 180 
events starting from August 14, 2021. Meanwhile, the energy event sequence of the last 2 years shows 5 peaks, 
corresponding to February, June, November 2020, February, and August 2021, 4 of which are accompanied by 
the rock burst phenomenon.

At the same time, working face pressure monitoring was done. By keeping an eye on mine pressure monitoring 
data, it was found that mine pressure was revealed before each large energy event. Therefore, the author makes a 
time-series empirical analysis of long-term mine pressure data and finds that whenever a periodic large energy 
event occurs, the mine pressure will gradually increase before the cycle, and the phenomenon of mine pressure 
accumulation will occur before the next large energy event. A large amount of mine pressure data shows that the 
initial incoming pressure cycle at this working face is generally 2–3 days, and the periodic incoming pressure is 
generally around 5–10 days, with a general step of 10–25 m.

At the same time, the author also analyzed the long-term microseismic data of the Junde coal mine for the 
cycle evolution and combined it with the regularity of mine pressure manifestation, and concluded that the daily 
microseismic frequency increased 10 times continuously within 3–7 days, and the total microseismic energy 
increased continuously within 3–7 days with mine pressure manifestation. In this cycle, the average energy 
change deviates from the period of no impact pressure precursor, and the single-day microseismic frequency 
and total microseismic energy change abnormally, and the microseismic events gather in the local area within 
3–7 days. The cycle evolution analysis reveals the changing pattern of rock burst microseismic event precursors 
in Junde Mine.

The frequency, maximum energy, and average energy before the occurrence of the rock burst have a significant 
deviation from the normal value of the changing pattern, and the most typical change lies in the energy change 
of the week before it. Given the above analysis and the processing of the expert system, the author constructed 
the "period-energy-frequency" model. The model will "noise reduce" the data. The model eliminates data that 
are not meaningful based on the pattern of microseismic events at the mine.

The construction of this model also provides a new way of thinking for the data processing of other mine 
safety testing equipment, as shown in Fig. 3. Figure 3 includes mine pressure cycles and microseismic energy 

Figure 2.  Time series of microseismic energy events in the Junde coal mine.
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event cycles, and different cycles were chosen based on the analysis of the corresponding data for this mine, with 
the microseismic labeled 3d and 7d, and the mine pressure labeled 5d and 10d, respectively.

The cumulative energy, average energy, and frequency of each seven days were used as input data for the 
neural network. This gives a total of 130 sets of data. The maximum energy event of the microearthquake will 
directly affect the mine safety, so the maximum energy can be taken as output data to form the prediction sample 
of the neural network.

This allows the data from the previous group to be used to predict the maximum energy of the next group 
of microseismic energy events. Due to the inconsistent units of the monitoring data, the variation of the mag-
nitudes is large. If the data are fed into the model for training without any processing, there will be an impact 
on the fit of the model and thus on the accuracy of the model and also on the convergence rate of the model. 
Therefore, the original data are  normalized22, thus avoiding the effects due to the different magnitudes of the 
data. As shown in Eq. 1.

where  Xi and  Xi’ are the original data and the normalized data, and  Xmax and  Xmin are the maximum and mini-
mum values in the same component.

MEA‑BP neural network prediction steps. 

(1) "Noise reduction" of the data using the "period-energy-frequency" model.
(2) To avoid errors caused by different magnitudes, the data are normalized.
(3) Determine the topology of the BP neural network, create the initial training set and test set, the correspond-

ing initial population using the initial population generation function, and the winning sub-population 
and temporary sub-population using the sub-population generation function.

(4) After the winning subpopulation and temporary subpopulation are generated, each subpopulation is subject 
to the convergence operation, and the population maturity discriminant function is used to determine 
whether the subpopulation "convergence" operation is completed. When the temporary subpopulation and 
the winning subpopulation are generated, each subpopulation must perform the "convergence" operation 
and use the population maturity discriminant function to determine whether the "convergence" operation 
of the subpopulation is completed.

(5) The subpopulations are dissimilarities and new subpopulations are added according to the results of the 
dissimilarization  operation23.

(6) When the iteration is stopped, the MEA algorithm ends and the optimal individual is found and used as 
the weight and threshold of the BP neural  network24.

(7) In order to train and learn utilizing the training data that has already been processed, the resulting weights 
and thresholds are used as the BP neural network’s initial weights and thresholds.

(8) A neural network model that achieves the effect is created after the training is finished and tested.

The prediction process is shown in Fig. 4.

Data testing by applying the MEA‑BP neural network model. The author initially sorted the gath-
ered data in accordance with the algorithm prediction procedure and set the BP neural network’s input layer 
nodes to three, output layer nodes to one, and hidden layer nodes to eight, seven, and six. Finally, the number of 
hidden layer nodes is fixed at 7 based on the various experimental  findings25.

The parameters of the MEA algorithm were set according to the structural characteristics of the system, 
the population size was set to 300 according to the continuous debugging effect, the number of superior and 
temporary subpopulations was set to  526, and the parameters S1, S3, and S2 of the input layer, output  layer27, 
and hidden layer were set to 3, 7, and 1,  respectively28,29. After continuous operations, the optimal weights of the 
BP neural network and the threshold values were obtained. Then, the data are assigned to the corresponding 

(1)x
′

i =

xi − xmin

xmax − xmin

Figure 3.  Mine time series cycle interval.
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parameters and trained using the training data that have been initialized. After the training is completed, the 
test data is used for testing. All the above operations are done by MatlabR2020a.

Analysis of MEA‑BP microseismic prediction results
According to the above study, 125 sets of data were selected as training data and actual monitoring of the mine 
for 35 days as validation data, to test the actual prediction effect. Two neural networks, MEA-BP neural network, 
and BP neural network were used for the experiments respectively, and run by MatlabR2020a, by comparing the 
performance of the MEA-BP neural network and BP neural network methods and the prediction effect. From 
these two neural networks, the prediction outcomes, convergence speed, and degree of data fit were examined; 
the mean square error curve analysis revealed the model’s best validation performance and convergence speed. 
The degree of fitting of the two neural networks to the data may be determined by examining the correlation 
coefficient R of the neural network regression curve, and the relative error and absolute error of the two neural 
networks can be compared to evaluate the prediction effect.

(1) The "convergence" process of MEA algorithm optimization can be obtained by observing the subpopulation 
convergence process in Fig. 5. It can be found that after multiple "convergence" operations, subpopulation 
3 in the temporary subpopulation in Fig. 5b still has a higher score than subpopulation 3 in the winning 
subpopulation in Fig. 5a, and the MEA algorithm still needs to perform one more "dissimilation" opera-
tion, and at the same time, a population needs to be added to the temporary population to perform the 
"convergence" operation again, and after the operation is completed, it is found that the temporary sub-
population still has a higher score than the winning sub-population. Therefore, the above operation will 
be continued, and the subpopulation will be matured by repeating the above process.

(2) The mean square error (MSE) curve is an indicator of the neural network’s ability to anticipate outcomes 
and rate of convergence. The difference between the projected value and the actual value, squared, is what 
is referred to as the mean square error. When the MSE number is lower, it can denote a more accurate 
forecast in light of the pertinent circumstances. The MSE can reflect the fluctuation in the data. The MSE 
error curve in Fig. 6 shows that the best validation performance of the BP neural network is 0.009908, and 
it has started to converge after 4 training sessions; the mean square error curve in Fig. 7 shows that the best 
validation performance of the MEA-BP neural network is 0.04623, and its data training set also starts to 
converge after 4 training sessions, which fully indicates that the MEA-optimized BP neural network has 
better accuracy than BP neural network has better accuracy.

(3) The correlation coefficient R is mainly used to judge the good or bad situation of the fitted data of the neural 
network. When the neural network fits better, its R-value is closer to 1, otherwise, it means that the neural 
network fits poorly. The regression state curve of the BP neural network and the regression state curve of 
the MEA-BP neural network are shown in Figs. 8 and 9. The training set, validation set, test set, and all 
the correlation coefficients of the MEA-BP neural network are 0.97801, 0.83186, 0.92435, 0.95558, and the 
experimental parameters of the BP neural network are 0.95749, 0.61335, 0.93600, 0.89304. It can be seen 

Figure 4.  Prediction flow chart.
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that the correlation coefficient of the MEA-BP neural network is closer to 1 than that of the BP neural 
network, and its fitting degree of data is better. According to the analysis of the experimental results, the 
MEA-BP neural network did not show any overfitting.

(4) As seen in Figs. 10 and 11, the MEA-BP neural network performs significantly better than the BP neural 
network, with the maximum absolute error and maximum relative error of the BP neural network being 
559.3 J and 139.7%, respectively, and 453.8 J and 32.7%, respectively, for the MEA-BP neural network.

Figure 5.  Convergence diagram of the subpopulation.
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Figure 5.  (continued)
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Figure 6.  BP neural network regression state curve.
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Figure 7.  Regression state curve of MEA-BP neural network.
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(5) The comparison of the MEA-BP neural network and the BP neural network is presented in Figs. 10 and 
11. It is clear that the MEA-BP neural network’s prediction error has a lesser overall trend than the BP 
neural network. Additionally, it is known that the average absolute error and relative error of the MEA-BP 
neural network are 196.34 J and 20.5%, respectively, and that the average absolute difference and average 
absolute error of the BP neural network are 443.58 J and 67.1%, respectively. The accuracy of the MEA-BP 
neural network prediction is higher when compared to the findings of the BP neural network prediction. 
The MEA algorithm helps the BP neural network perform better.

Validation of results
To further verify the accuracy of the MEA-BP neural network prediction, the KJ550 rock burst online monitor-
ing system is used as shown in Fig. 12.

Stress sensors are installed in the upper and lower gang of the duct and in the coal body of the upper and 
lower gang of the machine. The location of the hole opening in the upper gang of the air duct is 1 ~ 1.5 m from 
the bottom plate, the height of the hole opening in the lower gang of the air duct is 0.5 ~ 1 m from the bottom 
plate, the height of the hole opening in the upper gang of the machine duct is 1.5 ~ 2 m from the bottom plate, 
and the height of the hole opening in the lower gang of the machine duct is 0.5 ~ 1 m from the bottom plate. The 
installation depth of the stress gauge is 8 m for shallow holes and 14 m for deep holes, with a spacing of 1 m. The 
stress gauge pressure should be filled with oil to make up the pressure when it is lower than 3 MPa. The yellow 
warning value for shallow holes is 10 MPa; the red warning value is 12 MPa; the yellow warning value for deep 
holes is 13 MPa; the red warning value is 15 MPa.

The KJ550 monitoring system will monitor the changing pattern of the mining stress field at the working 
face, and the two indicators of stress and stress change rate will be used to determine the impact hazard at the 
monitoring point. According to the model of the "period-energy-frequency" prediction method, the prediction 
period of the MEA-BP neural network is 7 days. Therefore, the author uses the stress and maximum stress rate 
of change every seven days as the corresponding verification of the prediction results.
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Figure 8.  MEA-BP neural network regression state.
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The maximum stress and maximum stress increment of the corresponding five groups did not exceed the 
alert value over the course of 35 days of continuous online stress monitoring. Additionally, the maximum stress 
of each group did not exceed 10 MPa, and the maximum 24-h stress change rate of each group did not exceed 
1.5 MPa. The stress monitoring findings and the anticipated energy events lined up, further confirming the 
accuracy of the forecast results.
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Figure 9.  Regression state of BP neural network.

Figure 10.  Absolute error contrast.
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Conclusion
Through the analysis of microseismic data and mine pressure data evolution of the working face of the Junde coal 
mine, it is concluded that the frequency, maximum energy, and average energy before the occurrence of rock 
burst tend to deviate significantly from the normal value, and there is a mine pressure manifestation, and the 
most typical change is the energy change in the previous week. The "cycle–energy–frequency" data processing 
model is constructed. The MEA-BP neural network conducts validation better than the BP neural network, and 
its correlation coefficient R is nearer 1. The MEA-BP neural network prediction result’s absolute error is reduced 
by 247.24 J, and the relative error is decreased by 46.6%. The better fitting effect, smaller prediction error, and 
improved prediction accuracy are all characteristics of the MEA-BP neural network. Meanwhile, according to the 
analysis of the prediction results, no overfitting of the model occurred. It shows how the MEA-BP neural network 
can be used to forecast microseismic activity in the Junde coal mine. The MEA-BP neural network prediction 
results have an absolute average error of 196.34 J and an average relative error of 20.5%. The working face was 
continually observed by the stress online monitoring system, and the results of the stress monitoring matched 
those of the microseismic energy event forecast. MEA-BP neural network can better predict the magnitude of 
microseismic energy events in Junde Coal Mine, which has reference value for predicting microseismic events in 
rock burst mines in Junde Coal Mine. It can provide strong support for the prevention and control of rock burst.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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