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Classification models for assessing 
coronary artery disease instances 
using clinical and biometric data: 
an explainable man‑in‑the‑loop 
approach
Agorastos‑Dimitrios Samaras 1, Serafeim Moustakidis 1,3*, Ioannis D. Apostolopoulos 1,2, 
Nikolaos Papandrianos 1 & Elpiniki Papageorgiou 1

The main goal driving this work is to develop computer-aided classification models relying on clinical 
data to identify coronary artery disease (CAD) instances with high accuracy while incorporating the 
expert’s opinion as input, making it a "man-in-the-loop" approach. CAD is traditionally diagnosed in a 
definite manner by Invasive Coronary Angiography (ICA). A dataset was created using biometric and 
clinical data from 571 patients (21 total features, 43% ICA-confirmed CAD instances) along with the 
expert’s diagnostic yield. Five machine learning classification algorithms were applied to the dataset. 
For the selection of the best feature set for each algorithm, three different parameter selection 
algorithms were used. Each ML model’s performance was evaluated using common metrics, and 
the best resulting feature set for each is presented. A stratified ten-fold validation was used for the 
performance evaluation. This procedure was run both using the assessments of experts/doctors as 
input and without them. The significance of this paper lies in its innovative approach of incorporating 
the expert’s opinion as input in the classification process, making it a "man-in-the-loop" approach. 
This approach not only increases the accuracy of the models but also provides an added layer of 
explainability and transparency, allowing for greater trust and confidence in the results. Maximum 
achievable accuracy, sensitivity, and specificity are 83.02%, 90.32%, and 85.49% when using the 
expert’s diagnosis as input, compared to 78.29%, 76.61%, and 86.07% without the expert’s diagnosis. 
The results of this study demonstrate the potential for this approach to improve the diagnosis of 
CAD and highlight the importance of considering the role of human expertise in the development of 
computer-aided classification models.

In modern society, cardiovascular diseases (CVD) are one of the most common health problems and the leading 
cause of death1. According to the World Health Organization (WHO), an estimated 17.9 million people died 
from CVDs in 2019, representing 32% of all global deaths2. Coronary Artery Disease (CAD) is the most common 
type of cardiovascular disease. It is thus safe to assume that timely diagnosis and treatment of CAD can lead to 
a significant decrease in global mortality. This work aims to introduce a new tool based on Machine Learning 
(ML) classification models meant to be used in a consultative manner by experts in the process of diagnosis.

Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) are the 
main tools used for the visual assessment of CAD. Experts visually interpret these images and, by combining 
clinical, historical, and biometric data, conclude on a verdict and its consequent treatment. On the other hand, 
recently, Artificial Intelligence (AI) has significantly supported healthcare intervention decisions via customized 
Medical Decision Support Systems (MDSS). A repertoire of predictive models based on boosted trees, random 
forests, and straightforward Deep Learning (DL) have provided highly accurate predictions for multi-parameter 
and complex designs in medicine3. Imaging technologies and clinical data do not ensure a definite diagnosis, 
whilst there are many situations that pose diagnostic dilemmas. Therefore, it is very often that a patient is 
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subjected to ICA, invasive diagnosis, and treatment of CAD. Ideally, for healthy subjects, this procedure should 
be avoided.

There is a plethora of related work4–10 where common ML algorithms are used to predict CAD instances 
with varying results, ranging accuracy-wise from 71.1% to over 98% when also employing image data. Com-
monly, studies with datasets exceeding 200 patients tend to achieve accuracy lower than 84%4. These studies 
use both clinical data and image data (mainly from SPECT and PET) as inputs to predict CAD. In Ref.5, GA is 
used to select a feature set, which is then passed to Support Vector Machine (SVM) algorithms. In Ref.6, SPECT 
image data from a dataset of 192 patients is used along with two different classification models. Researchers in 
9 also did a 5-year follow-up of 10,030 patients with suspected coronary artery disease and then compared the 
prediction results of ML combining clinical and CCTA data against existing clinical or CCTA metrics alone; 
ML was found to significantly better predict 5-year ACM. Table 1 depicts a summary of recent work specifically 
on CAD classification. Further discussion and comparison with the findings of the current work is provided in 
the “Discussion” section.

In the scientific pool of relevant work, despite the diversity of input data and classification mechanisms, one 
essential input factor was almost never utilized: the expert’s judgment. Typically, while treating patients with 
suspected CAD, well-trained clinicians determine if the patient is at risk for CAD or is healthy. The majority of 
these specialists are medical school graduates with years of practical experience in cardiac disease. Consequently, 
their conclusion reflects their academic background and years of practical expertise. Additionally, research sug-
gests that having human/doctor-in-the-loop can be beneficial to the overall performance of ML or automated 
systems21,22. Therefore, this work uses the expert’s verdict as an additional input datum and tries to build upon 
it and enhance it. Another differentiating point is that different feature selection algorithms were used to select 
the most accurate feature set, and then the results were evaluated using stratified tenfold cross-validation23. All 
in all, the four major contributions of our work can be summed up as follows: (1) the use of expert’s prediction 
in the feature pool and highlighting its importance by comparing results without it; (2) assessing the efficiency 
of feature selection based on GA and forwards/backwards SFS, (3) studying the performance of five highly used 
ML algorithms on the subject with the help of five different metrics and tenfold cross validation; and finally (4) 

Table 1.   Related Work on CAD classification using clinical data.

References Dataset Size Data Types Results Remarks

Apostolopoulos et al.11 Train Data: 303
Test Data: 303

demographic,
medical tests,
symptoms,
patient history

Accuracy: 85.47%
Sensitivity: 89.3%
Specificity: 79.31%
AUC: 82.45%

Doctor not included

Apostolopoulos et al.12 Train Data: 566
Test Data: 566

demographic,
medical tests,
symptoms,
patient history

Accuracy: 75.79%
Sensitivity: 74.07%
Specificity: 76.16%
AUC: 71.09%

Doctor not included

Apostolopoulos et al.13 Train Data: 303
Test Data: 303

demographic,
medical tests,
symptoms,
patient history

Accuracy: 78.21%
Sensitivity: 83.95%
Specificity: 68.96%

Doctor not included

Alizadehsani et al.14 Train Data: 500
Test Data: 500

demographic,
medical tests,
symptoms,
lab results

Best of all:
SVM:
Accuracy: 96.4%
Sensitivity: 84.6%
Specificity: 48.4%

Doctor not included

Muhammad et al.15 Train Data: 405
Test Data: 101

demographic,
medical tests,
symptoms,

Best of all:
Random forest
Accuracy: 92.04%
Sensitivity: 86.5%
Specificity: 83.34%

Doctor is the reference

Sayadi et al.16 Train Data: 303
Test Data: 303

demographic,
medical tests,
symptoms,
lab results

Best of all:
SVM:
Accuracy: 95.45%
Sensitivity: 95.91%
Specificity: 91.66%

Doctor not included

Liu et al.17 Train Data: 185
Test Data: 185

demographic,
medical tests,

CAD
Sensitivity: 80.97% ± 7.75%
Specificity: 61.37% ± 14.4%
Non-CAD
Sensitivity: 61.37%
Specificity:80.97%

Doctor not included

Xiao et al.18 Train Data: 209
Test Data: N/A

demographic,
medical tests,
symptoms

Accuracy: 89.5%
Sensitivity: 89.8%
Specificity: 88.9%

Doctor not included

Johri et al.19 Train Data: 500
Test Data: 500

demographic,
medical tests,
patient history

Best of all:
LSTM
Accuracy: 95.34%
AUC: 0.99"

Doctor not included

Benjamins et al.20 Train Data: 830
Test Data: 830

demographic,
medical tests, expert’s yield,
symptoms

Expert
AUC: 0.87
LogitBoost
AUC: 0.91

Doctor-in-the-loop
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proposing the optimal feature sub-set and the accompanying best-performing ML algorithm to be used in a 
computer-aided decision-making system for CAD diagnosis.

The organization of the rest of this paper is as follows. “Methods” section outlines the details of the patient 
dataset, including the characteristics and demographics of the participants, as well as the ML algorithms 
employed for classification. The evaluation process used to measure the performance of the models is also 
outlined in this section, along with the proposed explainability analysis. In “Results” section, the experimental 
results are presented, including the performance metrics and any notable findings. “Discussion” section delves 
deeper into the strengths and weaknesses of the proposed models, comparing them to previous works in the 
field. Finally, “Conclusion” section concludes the study by summarizing the key findings and suggesting potential 
avenues for future research.

Methods
Patient population.  This study involves 571 participants. Of this pool, 248 patients were ICA-confirmed 
CAD positive (43.43%) and the rest were healthy. There was variation in both the biometric and clinical infor-
mation of the subjects. More specifically on the demographic side, 79.68% were male, the ages ranged from 32 
to 90, and the Body Mass Index (BMI) from 16.53 (underweight) to 87.2 (extremely obese). On the other hand, 
a variation of clinical data was used (e.g. Dyslipidemia, Diabetes etc.) in combination with some historical data 
(e.g. smoker/non-smoker, family history of CAD etc.). The features are presented in Table 2.

The patients comprising this work’s dataset underwent gated-SPECT Myocardial Perfusion Imaging (MPI) 
and were subsequently subjected to ICA within 60 days from MPI for further investigation. This is the state-
of-the-art procedure to determine whether a patient is actually CAD-affected and this was used as the ground 
truth for this work.

The patient data have been recorded at the Clinical Sector of the Department of Nuclear Medicine of the 
University Hospital of Patras from 16/2/2018 to 28/02/2022. Data collection has been approved by the ethical 
committee of the University General Hospital of Patras (Ethical and Research Committee of the University Hos-
pital of Patras, protocol number 108/10-3-2022) and the requirement to obtain informed consent was waived by 
the Director of the Diagnostic Center of the University due to its retrospective nature. The retrospective nature 
of the study waives the requirement to obtain informed consent from the participants. All data-related processes 
were performed anonymously. All procedures in this study were in accordance with the Declaration of Helsinki.

Table 2.   Features used as input by prediction models, after binary normalization.

A/A Feature Name Description Feature Class/Type

1 known Cad Coronary Artery Disease Predisposing Factor

2 previous AMI Acute Myocardial infarction Predisposing Factor

3 previous PCI Percutaneous Coronary Intervention Predisposing Factor

4 previous CABG Coronary artery bypass graft surgery Predisposing Factor

5 previous Stroke Stroke Predisposing Factor

6 Diabetes Diabetes positive patient Predisposing Factor

7 Smoking Smoker/Non-smoker Predisposing Factor

8 Arterial Hypertension Known Arterial Hypertension instance Recurrent Diseases

9 Dyslipidemia Known Dyslipidemia instance Recurrent Diseases

10 Angiopathy Known Angiopathy instance Recurrent Diseases

11 Chronic Kidney Disease Known Chronic Kidney Disease instance Recurrent Diseases

12 Family History of CAD CAD occurrence in family Recurrent Diseases

13 Asymptomatic No symptoms Symptoms

14 Atypical Atypical symptoms Symptoms

15 Angina-like Angina-like symptoms Symptoms

16 Dyspnea Dyspnea on exertion Symptoms

17 Precordial Pain Precordial pain occurrence Symptoms

18 Sex Male/female Demographics

19 Normal Weight BMI lower than 24.9 Demographics

20 Overweight BMI between 25 to 29.9 Demographics

21 Obese BMI over 30 Demographics

22  < 40 Aged under 40 Demographics

23 40–50 Aged between 40 to 50 Demographics

24 50–60 Aged between 50 to 60 Demographics

25  > 60 Aged over 60 Demographics

26 RST ECG Diagnostic Resting Electrocardiogram Diagnostic Test (ECG)

27 Doctor Expert’s prediction Expert’s Prediction

28 CAD ICA—ground truth Reference Variable
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Dataset.  Binary encoding was the most suitable method to represent the majority of features, which were 
binary in nature. For instance, patients were classified as having diabetes or not, or as male or female. Neverthe-
less, there were two continuous data fields: age and BMI. Hence, some data transformation was needed to be 
applied to these two categories for their data to fit the binary problem. For the normalization of age, we split 
up the information into 4 different fields. As is widely known in the medical field, the most common years for 
CAD to occur are between 40 and 60 years of age24. Even though inside this range there is great variation in 
symptoms, for humans younger than 40 or older than 60, age is not a deciding or indicating factor as far as 
CAD is concerned25. So, the 4 different fields used for age are < 40, 40–50, 50–60 and > 60. On the matter of 
BMI, our approach was the one adopted by WHO26. Thus, the BMI information was divided into 3 mutually 
exclusive fields; underweight, normal weight, and obese. Further categorization of obesity (i.e. moderately obese, 
severely obese and very severely obese) was not used, as it does not offer much differentiation for CAD instance 
purposes27.

Overall, after the data preprocessing was done, the information fueling this work is contained in 28 features, 
as shown in Table 2. These can be categorized in seven groups:

	 (i)	 Predisposing Factors (feature No 1–7)
	 (ii)	 Recurrent Diseases (feature No 8–12)
	 (iii)	 Symptoms (feature No 13–17)
	 (iv)	 Demographics (feature No 18–25)
	 (v)	 Diagnostic Test (ECG) (feature No 26)
	 (vi)	 Expert’s Prediction
	 (vii)	 Invasive Coronary Angiography (the actual reference)

The predictions of the ML models were tested against the ICA results. Invasive coronary angiography uses 
X-rays to examine blood flow to the heart, most commonly for patients presenting with acute coronary syn-
dromes, or heart attacks.

Feature selection.  The initial phase consisted of filtering the original sum of 26 features (excluding the 
ground truth field—‘CAD’) to highlight the most significant ones, hence optimizing the accuracy of the pre-
diction algorithms. In order to achieve that, we used 3 very common feature selection algorithms, forwards 
SFS, backwards SFS and Genetic Algorithm28–31. In a loop of 5 iterations, they were applied to each of the ML 
algorithms studied in this paper. Each iteration loop resulted in a feature subset and a corresponding accuracy 
metric score. This function produced a feature subset and an accompanying accuracy score for each feature 
selection algorithm and each ML algorithm. So for every ML algorithm, we had 3 selected feature subsets with 
their relative scores. Eventually, the best one was selected to be used in the training, prediction, and evaluation 
procedures. The aforementioned steps are shown in Algorithm 1.

Particularly for the genetic algorithm, which allows for more complex parameter customization than the 
SFS algorithms, numerous configurations were evaluated. Each configuration had different parameters (e.g., 
crossover probability, number of generations, etc.) and produced a different subset for every ML algorithm. Each 
ML algorithm’s particular subsets were evaluated separately. Afterwards, the best of them (accuracy-wise) was 
compared with the most accurate subsets produced by the SFS feature selection algorithms in order to determine 
the best feature subset for the particular ML algorithm, which was to be used in the next step of the process.
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Algorithm 1 – ML predic�on model crea�on and evalua�on (simplified)
1) Perform binary normaliza�on of feature dataset 
2) For each ML algorithm do

3) For 1 to 5 do (feature selec�on)
4) Execute Forwards SFS 
5) Execute Backwards SFS 
6) Execute GA 
7) End

8) Save feature subset with best accuracy 
9) Remove field “Doctor” from subset
10) Repeat steps 3 – 7 
11) Save feature subset with best accuracy 
12) End

13) For each ML algorithm do
14) For 1 to N do (run with expert opinion)
15) Configure parameters 
16) Run training & predic�on using best subset containing field “Doctor”
17) Perform Stra�fied 10-fold cross valida�on 
18) Save best configura�on 
19) End
20) Repeat steps 14 – 19 using best subset without field “Doctor”
21) Interpret predic�on process of best performing model 

22) End

ML algorithms.  Support Vector Machine, Decision Trees, K Nearest Neighbors, Adaptive Boosting and 
Random Forest are the five well-documented ML classification algorithms used in this study. This range of algo-
rithms has been widely used by the research community4,15,32–37 with proven effectiveness.

The SVM classifier38 is a supervised machine learning algorithm developed by Vladimir Vapnik and his col-
leagues at AT&T Bell Laboratories. It projects training data into a higher dimensional space via mappings known 
as kernels. Then a boundary (also known as hyperplane) is devised with the criterion of maximum separation 
between classes. New examples are then projected to the hyperplane, and the boundary is used to determine 
classification labels.

As far as tree-based ML algorithms go, Decision Tree39 is the simplest form. It functions by constructing a 
tree structure in a recursive fashion (hence the name). The classification is performed by assigning every sample 
to leaf nodes (decision splits) accordingly. It is also the basis for more complex tree-based ML algorithms, such 
as Random Forests or Boosted Forests.

The working theory behind K-nearest neighbor40 revolves around the k parameter. This parameter is used to 
assign the number of nearest neighbors that are tested for similarity to the new input with the use of a distance 
function. For instance, for k = 2 the algorithm assigns to a new instance the label that minimizes its distance 
from two of its neighbors.

Adaptive Boosting41, or as it is commonly known, AdaBoost, is a classification ML algorithm designed by 
Yoav Freund and Robert Schapire in 1995. It is most often applied in cases of binary classification. AdaBoost 
uses a form of “adaptive learning” where the output of learning algorithms (“weak learners”) is combined into a 
weighted sum that represents the final output of the boosted classifier. Subsequent weak learners are tweaked in 
favor of those instances misclassified by previous classifiers. The most common use configuration of AdaBoost 
employs Decision Trees as weak learners. This algorithm is adaptive in the sense that subsequent weak learners 
are tweaked in favor of those instances misclassified by previous classifiers. In some problems, it can be less 
susceptible to the overfitting problem than other learning algorithms. Individual learners can be weak, but as 
long as the performance of each one is slightly better than random guessing, the final model can be proven to 
converge to a strong learner.

Random forest42 is another tree-based supervised ML algorithm. At its core, it consists of multiple decision 
trees, and it is used mainly for regression and classification problems. The individual decision trees function as 
a group, where each tree produces a label/class of prediction. The label chosen by the majority of trees is then 
selected as the model for prediction.

Results evaluation.  The final step of the model in this work is to evaluate the best prediction models pro-
posed by each of the ML classifiers and eventually choose the best one. To achieve this, we used 6 widely imple-
mented metrics, accuracy, sensitivity, specificity, Jaccard score, F1-score and confusion matrix. All of the above 
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metrics determine the performance of a model by using a combination of correlation between True Positive 
(TP), True Negative (TN), False Positive (FP) and False Negative (FN) instances.

Accuracy may be the most frequently employed parameter for evaluating the prediction performance of an 
ML model. It determines the percentage of correctly predicted instances over the total number of cases. It is 
expressed as follows:

Sensitivity focuses on the percentage of CAD instances correctly predicted by the ML algorithms. This met-
ric expresses which of all the CAD positive instances were actually correctly predicted by the model, and it is 
expressed using the following equation:

Specificity, on the other hand, expresses the percentage of healthy instances correctly predicted by the ML 
algorithms. This metric is used to indicate which of all the CAD negative instances were actually correctly pre-
dicted by the model, and it is implemented as follows:

The Jaccard Index, or Jaccard similarity coefficient, is a statistic used to showcase the similarity degree between 
sample sets. The measurement emphasizes similarity between finite sample sets, and is formally defined as the 
size of the intersection divided by the size of the union of the sample sets. In this particular case, it is expressed 
mathematically as:

F1-score, also called F-score, is employed mainly in binary classification cases and is a way of combining the 
precision and recall of a model. It is defined as the harmonic mean of the model’s precision (number of true posi-
tive results divided by the number of all positive results, including FP) and recall (number of true positive results 
divided by the number of all samples that should have been identified as positive). Its mathematic formula is:

Lastly, a Confusion Matrix is a summary of prediction results on a classification problem. In binary classifica-
tion problems, it is a 2 by 2 matrix, which is formed by the TP, TN, FP and FN fields. Such a confusion matrix 
has the following form:

Predicted condition

Positive (PP) Negative (PN)

Actual condition
Positive (P) True positive (TP) False negative 

(FN)

Negative (N) False positive (FP) True negative 
(TN)

The prediction results of each of the ML algorithms were passed through a tenfold stratified cross validation. 
Then the cross validated results were used to calculate the evaluation metrics for each ML model. These are 
presented in Tables 3 and 4 of the “Results” section.

The same procedure was run in 3 test scenarios:

	 (i)	 With feature selection and using the expert’s verdict
	 (ii)	 Without feature selection and using the expert’s verdict
	 (iii)	 With feature selection and without using the expert’s verdict

(1)Accuracy =
TP + TN

TP+ TN+ FP+ FN

(2)Sensitivity =
TP

TP+ FN

(3)Specificity =
TN

TN+ FP

(4)Jaccard index =
TP

TP+ FP+ FN

(5)F1 =
2× TP

2× TP+ FP+ FN

Table 3.   Best accuracy for each ML model—with expert’s opinion as input. Standard deviation (STD) is 
included in parentheses. Significant values are in bold.

SVM DT KNN ADA RF

GA 82.66% (3.80) 81.96% (4.95) 83.01% (6.34) 81.26% (4.13) 83.02% (4.27)

Bwd SFS 82.13% (4.15) 78.63% (6.34) 82.66% (6.87) 79.69% (4.74) 75.48% (5.13)

Fwd SFS 81.78% (5.28) 78.81% (5.80) 82.14% (5.65) 80.74% (5.15) 77.23% (3.96)

All features 80.73% (5.09) 71.10% (5.30) 79.34% (4.01) 77.60% (5.65) 77.23% (5.96)
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The expert’s verdict has an accuracy of 78.81%. This prediction is based on all the clinical data, image data 
from SPECT/PET and years of theoretical knowledge and practical expertise. This accuracy is what this work aims 
to enhance and will thus be used as a soft threshold to determine the performance of each AI model. Needless 
to say, any model that uses the expert’s verdict as input and does not achieve an accuracy metric score higher 
than 78.81% will not be considered.

Results interpretation.  In conclusion, the best-performing prediction model will be examined to provide 
an explanation for its results. This will provide an added layer of transparency and understanding of the model’s 
decision-making process, making it more trustworthy and reliable for users.

The majority of AI systems typically operate as black boxes. This obviously decreases the level of confidence, 
especially when unexpected outputs are predicted. Therefore, by making the ML prediction tool of this study 
more comprehensible and shedding light on its prediction making process, we would be able to make it more 
appealing and trustable. In order to achieve that, we employ mainly two interpretability mechanisms: Cohen 
effect size and SHAP values.

The Cohen effect size is a statistical measure used to determine the magnitude of the difference between 
two groups. It is calculated by dividing the difference between the means of the groups by the pooled standard 
deviation. Cohen43 proposed that an effect size of 0.2 should be considered small, 0.5 as medium, and 0.8 as 
large. This measure is commonly used in various fields (e.g., psychology, medicine, etc.) to interpret the results 
of experiments and studies. It is a useful tool for determining the practical significance of the results and com-
paring them to previous research.

On the other hand, SHAP analysis44 is one of the most common techniques used to increase the transparency 
of an ML prediction model. Using cooperative game theory concepts, this type of analysis tackles the explain-
ability problem, by treating each feature as a “player” in a game where the prediction is the goal. The method tries 
to split the goal among all the features in a fair manner or, alternatively, assign each feature an importance value 
for a particular prediction, depending on how much each feature contributed to the final score/goal.

Results
The steps outlined in Algorithm 1, as presented in the “Methods” section, were executed in a Linux environment 
consisting of an 8-core i7 CPU, 16 GB DDR3 RAM, and Ubuntu 20.04LTS. The core coding for this project was 
developed using the Python programming language. Several machine learning-specific Python libraries, such 
as sklearn, shap, and genetic_selection, were particularly useful in creating an automated environment capable 
of running and evaluating the performance of multiple machine learning prediction models.

SVM, decision trees (DT), k nearest neighbors (KNN), adaptive boosting (ADA), and random forest (RF) are 
five well-documented ML classification algorithms that were used in this work. To minimize the dimensionality 
of the initial feature space for each ML model, evolutionary algorithms (genetic algorithm—GA), forward fea-
ture selection (SFS), and backward feature selection (SFS) techniques were utilized. The training and evaluation 
procedures were repeated for two scenarios: with and without the doctor’s diagnosis as input.

Feature selection impact.  Table 3 showcases the best accuracy achieved by each ML model and which 
feature selection algorithm led to the relative data subset when including the field “Doctor” (the expert’s diag-
nosis). The best testing accuracy was achieved by the RF-based ML model with a feature subset selected using 
GA. For comparison, the last row showcases how each model performed on the dataset without feature selection. 
The SVM model had the highest testing accuracy at 80.73% (which is 1.92% higher than the average expert’s 
opinion).

On the other hand, Table 4 depicts the best accuracy achieved by each ML model and which feature selection 
algorithm led to the relative data subset without considering as input the field “Doctor” (the expert’s diagnosis). 
In this testing scenario, SVM and DT both achieved the best accuracy. Additionally, Forwards SFS gave the 
optimal feature subsets for both models. For comparison, the last row showcases how each model performed 
on the dataset without feature selection. The SVM model once again achieved the best predicting accuracy at 
74.79% (which is, though, 4.02% lower than the average expert’s opinion).

Results using subsets from feature selection, including expert’s verdict.  After running feature 
selection to improve the dataset beforehand, the performance of all algorithms improved dramatically. For this 
type of tests, the results are shown in Table 5. All ML models attained an accuracy greater than 78.81% (the 
expert’s accuracy). Specifically, the Random Forest model had the highest accuracy (83.02%) and specificity 

Table 4.   Best accuracy for each ML model—without expert’s opinion as input. STD is included in parentheses. 
Significant values are in bold.

SVM DT KNN ADA RF

GA 78.12% (4.24) 73.04% (2.49) 76.37% (3.10) 76.54% (3.74) 77.59% (3.13)

Bwd SFS 77.77% (3.61) 76.01% (4.32) 77.95% (3.38) 75.49% (4.12) 74.09% (3.72)

Fwd SFS 78.29% (3.86) 78.29% (4.32) 75.84% (4.44) 75.49% (3.82) 76.54% (2.62)

All features 74.79% (2.19) 66.37% (5.73) 70.76% (3.45) 74.09% (4.02) 72.33% (6.15)
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(85.49%), whereas the SVM model had the highest results for all other metric scores. In addition, Table 6 dem-
onstrates the highest performing feature subsets selected for each ML method.

Results using subsets from feature selection, without expert’s verdict.  The final batch of results 
is displayed in Tables 7 and 8. With expert verdict no longer available as data input, the performance of every 
machine learning system decreased significantly. None of the models attained a better degree of accuracy than 
78.81% which is the expert’s accuracy (soft threshold). The model with the best metric performance was the one 
that utilized the DT algorithm. It performed the best across all metrics. Table 8 displays the selected subset of 
features for each model without expert’s verdict.

Table 5.   Metrics scores achieved on selected feature subsets including expert’s verdict. STD is included in 
parentheses. Significant values are in bold.

w Doctor SVM DT KNN ADA RF

sensitivity 88.71% (4.01) 86.29% (5.74) 83.47% (7.92) 81.85% (7.41) 83.06% (6.42)

specificity 84.52% (6.03) 82.04% (6.74) 84.21% (7.45) 82.04% (7.22) 85.49% (5.27)

accuracy 82.66% (3.72) 81.96% (4.95) 83.01% (6.34) 81.62% (4.74) 83.02% (4.27)

Jaccard 73.83% (4.86) 69.93% (7.20) 69.23% (9.66) 63.34% (7.21) 69.83% (6.87)

f1 86.39% (3.49) 83.95% (5.67) 83.92% (6.76) 82.00% (5.15) 84.43% (4.84)

Table 6.   Best performing feature subsets for each ML model and their selection algorithm (with expert 
verdict).

ML Subset Algorithm

SVM
[’known CAD’, ’previous PCI’, ’previous CABG’, ’Diabetes’, ’Smoking’, ’Dyslipidemia’, ’Angiopathy’, ’Chronic Kidney 
Disease’, ’ASYMPTOMATIC’, ’ATYPICAL SYMPTOMS’, ’ANGINA LIKE’, ’RST ECG’, ’male’, ’40–50’, ’Doctor: 
Healthy’]

GA

DT [’previous AMI’, ’previous CABG’, ’Arterial Hypertension’, ’Angiopathy’, ’Chronic Kidney Disease’, ’Family History of 
CAD’, ’ANGINA LIKE’, ’male’, ’ < 40’, ’Doctor’] GA

KNN
[’known CAD’, ’previous AMI’, ’previous CABG’, ’Diabetes’, ’Smoking’, ’Arterial Hypertension’, ’Dyslipidemia’, ’Angi-
opathy’, ’Chronic Kidney Disease’, ’ASYMPTOMATIC’, ’ATYPICAL SYMPTOMS’, ’ANGINA LIKE’, ’INCIDENT OF 
PRECORDIAL PAIN’, ’male’, ’Overweight’, ’ < 40’, ’50–60’, ’Doctor’]

GA

ADA [’known CAD’, ’previous AMI’, ’Diabetes’, ’Family History of CAD’, ’ATYPICAL SYMPTOMS’, ’ANGINA LIKE’, 
’INCIDENT OF PRECORDIAL PAIN’, ’RST ECG’, ’male’, ’Overweight’, ’Obese’, ’ < 40’, ’Doctor: Healthy’] GA

RF [’known CAD’, ’previous PCI’, ’Diabetes’, ’Chronic Kidney Disease’, ’ANGINA LIKE’, ’RST ECG’, ’male’, ’ < 40’, ’Doc-
tor’] GA

Table 7.   Metrics scores achieved on selected feature subsets without expert’s verdict. STD is included in 
parentheses. Significant values are in bold.

w/o Doctor SVM DT KNN ADA RF

Sensitivity 76.21% (9.30) 76.61% (5.74) 65.73% (9.66) 70.56% (7.85) 75.81% (8.49)

Specificity 80.80% (4.93) 86.07% (7.14) 84.83% (4.94) 82.04% (4.17) 82.04% (5.88)

Accuracy 78.29% (3.86) 78.29% (4.17) 76.89% (4.42) 76.54% (3.74) 77.59% (3.13)

Jaccard 60.97% (6.52) 64.85% (7.55) 54.88% (8.04) 57.19% (6.34) 61.44% (5.23)

f1 78.82% (4.98) 81.90% (7.14) 76.23% (6.67) 76.96% (4.90) 79.32% (4.09)

Table 8.   Best Performing Feature Subsets for each ML model and their Selection algorithm (without expert’s 
verdict).

ML Subset Algorithm

SVM [’known CAD’, ’previous PCI’, ’Diabetes’, ’INCIDENT OF PRECORDIAL PAIN’, ’RST ECG’, ’male’, ’40–50’] Fwd SFS

DT [’known CAD’, ’previous PCI’, ’previous STROKE’, ’Diabetes’, ’Family History of CAD’, ’DYSPNOEA ON EXER-
TION’, ’INCIDENT OF PRECORDIAL PAIN’, ’RST ECG’, ’male’, ’ < 40’, ’40–50’] Fwd SFS

KNN [’known CAD’, ’previous CABG’, ’Diabetes’, ’Angiopathy’, ’Chronic Kidney Disease’, ’ATYPICAL SYMPTOMS’, ’INCI-
DENT OF PRECORDIAL PAIN’, ’male’, ’40–50’, ’50–60’, ’ > 60’] Fwd SFS

ADA [’known CAD’, ’Diabetes’, ’Angiopathy’, ’Family History of CAD’, ’ATYPICAL SYMPTOMS’, ’male’, ’40–50’] GA

RF [’known CAD’, ’previous PCI’, ’Diabetes’, ’INCIDENT OF PRECORDIAL PAIN’, ’RST ECG’, ’male’, ’40–50’] GA
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Interpretation of best performing model.  The best performing model for this set of experiments was 
the one based on the Random Forest algorithm. It achieved an accuracy score of 83.02% and the feature subset 
that contributed to this result is shown in Table 6. Figure 1 depicts the Cohen effect sizes for each feature in the 
selected subset, and Fig. 2 displays the relative summary plot using the SHAP values for every feature used as 
input. Moreover, Fig. 3 showcases the waterfall plot for a CAD positive data entry (unhealthy), while Fig. 4 shows 
the corresponding waterfall plot for a CAD negative data entry (healthy).

In Fig. 1 the features are ranked based on their impact on the prediction result. The higher the impact, the 
higher the feature appears in the plot. In other words, the doctor’s initial diagnosis has the highest impact on 
the prediction result, whereas the feature “Chronic Kidney Disease” the lowest. Positive Cohen effect values 
indicate the feature leads the prediction to a healthy result. For instance, when the doctor diagnoses the subject 
as healthy, it leads to a prediction of healthy.

Similarly, in the summary plot of SHAP values (Fig. 2), the features are also sorted in order of magnitude 
of effect. This summary plot depicts the relative importance of each input feature in the prediction model. The 
SHAP values for this particular scenario are depicted on the horizontal axis. In our case, negative SHAP values 
indicate that the feature leads the prediction towards the CAD class (unhealthy subject). For instance, the feature 
“Doctor: Healthy” has a high negative SHAP value when its value is low (Doctor: Healthy = 0). This indicates that 
when this feature has a value of ‘1’ (which means the doctor initially predicted the subject was healthy), it leads 
to a NO-CAD (healthy) prediction. Alternatively, low values of the feature “Diabetes” have high positive SHAP 
values, indicating that a non-diabetic subject is more likely to lead to a healthy prediction.

As far as the waterfall plots are concerned (Figs. 3, 4), E[f(x)] is the prediction threshold and f(x) is the model’s 
prediction result. The decision threshold for this scenario is 0.435 and it is used to label each prediction. Results 
with a score f(x) lower than the decision threshold E[f(x)] are categorized as NO-CAD (healthy), while results 
with a score higher than the decision threshold E[f(x)] are categorized as CAD (unhealthy). Ergo, each feature, 

Figure 1.   Cohen effect size for each input feature sorted by magnitude of effect.
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Figure 2.   Summary plot illustrating the relative importance of each input feature in the prediction model, as 
represented by the SHAP values. Being a binary classification problem, feature values can either be ‘0’ or ‘1’, with 
value ‘1’ indicating the positive (e.g. male = 1, means the patient is male).

Figure 3.   Waterfall diagram for a prediction of a healthy patient. This diagram indicates which features drove 
the algorithm to predict the entry as healthy. It is noteworthy, that the expert had initially wrongly identified this 
as a CAD instance, but ICA proved the patient was healthy.
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depending on its value, “pushes” the decision result in the appropriate direction. For instance, in Fig. 3 feature 
“Doctor: Healthy” has a value of ‘0’ (unhealthy diagnosis) and thus pushes the decision towards an unhealthy 
outcome (‘1’).

Discussion
The driving objective behind this work is multifaceted. First of all, a man-in-the-loop approach was to be opted 
for, which meant taking into account the expert’s prediction in order to explore the benefits of doctor’s predic-
tion in the overall prediction model. Furthermore, feature selection mechanisms were employed to assess the 
importance of focused datasets in this problem of CAD prediction.

The results of the previous section highlight some major conclusions, both for each case individually and in 
their combinations. The insight derived from the results can be summed up in the following points:

(i)	 Feature selection greatly enhanced the performance of all ML prediction models used in this work
(ii)	 The expert’s verdict can be solidly enhanced with the aid of an ML prediction model
(iii)	 A prediction model based entirely on clinical data and without the expert’s opinion as input cannot (easily) 

outperform the doctor/expert
(iv)	 The feature selection process and the best resulting feature subsets highlight the importance of specific 

data, as they were present in the majority of selected subsets
(v)	 Explainability provided valuable insight into the decision-making process of the model, making it more 

transparent and trustworthy.

Considering every metric, when using as input a more stripped-down dataset with no irrelevant or trivial 
information, all the ML algorithms performed significantly better. Specifically, accuracy-wise, the results were 
more accurate by 1.93% for SVM, 10.86% for Decision Tree, 3.67% for K-Nearest Neighbor, 4.02% for AdaBoost 
and 5.79% for Random Forest. Consequently, comparing the performance of ML models with and without feature 
selection clearly highlights a performance gap.

The second point highlighted by the results of this work is that a computer-aided decision-making tool/system 
can surely enhance the prediction accuracy of human experts. Specifically, the expert’s prediction accuracy is 
78.81%. As Table 3 exhibits, all the ML prediction models managed to surpass that accuracy by varying margins. 
Moreover, the model based on random forest, which was the best performing, achieved an accuracy score of 
83.02%. Consequently, the utilization of RF improves the expert’s prediction by 4.21%.

Another factor that has a substantial impact on the prediction model is the use of the expert’s opinion itself as 
an input. Table 7 depicts the best results for every model when employing data preprocessing (feature selection) 
and not taking into consideration the expert’s verdict. It can be observed that no model managed to achieve accu-
racy higher than 78.81% which is the accuracy of the expert. Additionally, a comparison with Table 5 highlights 

Figure 4.   Waterfall diagram for a prediction of a CAD positive patient. This diagram indicates which features 
drove the algorithm to predict the entry as CAD. The expert had correctly identified this as a CAD instance and 
ICA confirmed it.
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the increase in performance when using the expert’s opinion: 4.37% for SVM, 3.67% for Decision Tree, 6.12% 
for K-Nearest Neighbor, 5.08% for AdaBoost and 5.43% for Random Forest. Given that the expert’s/ doctor’s 
forecast is based on years of theoretical and practical expertise, as well as in findings on SPECT/PET imaging 
data, these outcomes are completely rational in retrospect. Therefore, it is not a simple task to replace the expert’s 
knowledge with an AI prediction model that utilizes mostly clinical and demographic data as inputs. This also 
justifies some calls in the research community21,22 for the inclusion of the doctor in the decision-making loop 
of AI systems.

Figure 5 clearly illustrates the two arguments above. It can be plainly seen that all the models surpassed the 
doctor’s accuracy, when using the expert’s diagnosis as input. On the other hand, none surpassed the doctor’s 
accuracy without the expert’s diagnosis as input.

Considering related studies on the same subject, as displayed in Table 1, some comparisons can be drawn. 
It is evident that the current study differs from most of the related work in terms of its approach, specifically in 
the incorporation of expert’s opinion as input and the use of interpretability mechanisms to increase transpar-
ency and understanding of the model’s decision-making process. Almost every other study that focuses on the 
problem of CAD/NO-CAD classification, does not use the medical expert’s diagnosis as input. On the contrary, 
this information is used as the testing/labeling case (desired output to be predicted). Ergo, it is unsafe to make 
direct comparisons of the models’ performance, as the desired prediction output of the current work is confirmed 
against the actual results of the ICA procedure. Nevertheless, the performance of all prediction models when 
including the doctor’s yield in their input, as it is presented in the “Results” section, is on par with the body of 
work in this specific field. Moreover, the dataset used in the current work is one of the largest used in research 
on this specific scenario. However, there has been a similar study20 employing a doctor-in-the-loop approach. 
The researchers explore the effect of common risk factors for CAD and combine the doctor’s diagnosis as input, 
similarly to this work. Still, there are some major differences. First and foremost, ICA, which the current paper 
uses as a test variable for the prediction results, is the gold standard for the diagnosis of obstructive CAD, making 
the current results and metrics the most reliable. Furthermore, in Benjamins et al.20, the expert’s input is in fact 
the doctor’s interpretation of the Computed Tomography Angiography (CTA) results, whereas in the current 
study it is taken prior to ICA and based on clinical data. Consequently, in contrast with the method used in 
Ref.20, the prediction models presented in this work do not require a Tomography Angiography procedure for 
full functionality. Nevertheless, both studies showcase a consistent increase in the accuracy of the model when 
employing the expert’s yield (in any form).

Furthermore, it is worth mentioning that some of the features were nearly constantly present in the optimal 
feature subsets for each model. An overview of Tables 6 and 8 indicates that features ’known CAD’, ’Diabetes’, 
’male’, ’ < 40’ were present in every subset, fields ’ANGINA LIKE’ and ’RST ECG’ in nearly all, and the field 
’Chronic Kidney Disease’ was also very common. These are very well known indicating risk-factors when study-
ing a patient for CAD45–52. However, an unexpected result was that other extremely common CAD risk-factors 
were absent. In particular, smoking was only included in 2 subsets, whereas Dyslipidemia was included in only 
two, as well. On the other hand, even though Arterial Hypertension was present in almost every subset when 
taking the expert’s opinion into consideration, it was not included in any of the subsets when not having the 
doctor’s prediction as input whatsoever. This is compelling because the doctor’s opinion would be based most 
probably on this risk factor, thus one would assume that the factor’s absence in the subsets of Table 6 is reason-
able. The same, though, cannot be said for the feature subsets of Table 8.

On the matter of explainability, there is a noticeable similarity between the features identified as most impact-
ful through the use of Cohen effect sizes (Fig. 1) and SHAP values (Fig. 2). Additionally, it is immediately 
evident that the feature with the greatest impact is the doctor’s initial diagnosis. This is a strong argument for 
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Figure 5.   Best tenfold testing accuracies (%) achieved by each ML model when using expert’s verdict as input 
(blue) and when not (orange). The comparison horizontal line depicts the doctor’s accuracy (78.81%).
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the doctor-in-the-loop approach, and it is also quite logical, given the fact that the doctor’s opinion in a sense 
encapsulates all the other features as well. As displayed in Fig. 2, there is evidently a strong connection between 
feature “Doctor: Healthy” (i.e. healthy diagnosis) and the final prediction; when the expert diagnoses the entry as 
healthy it leads to a prediction of NO-CAD (healthy). Another major factor is, apparently, the history of CAD for 
the patient. If the patient was CAD affected in the past, it is very probable that they will be CAD positive. There 
is also a correlation between CAD and Diabetes (when a subject is diabetic it leads to an unhealthy prediction), 
which is a well-documented risk factor for CAD. Males also seem to be more prone to CAD than females and 
subjects who lead more active lifestyles (high values of RST ECG) are less prone to be CAD affected. All in all, 
both the Cohen effect size chart and the SHAP summary plot are quite consistent with medical bibliography45–52 
on the subject of cardiovascular diseases and its common risk factors.

Figures 3 and 4 showcase the decision process of the best-performing prediction model for a healthy subject 
(Fig. 3) and a CAD positive one (Fig. 4). More specifically, in the case of the healthy subject, the initial expert 
diagnosis was that the subject had CAD (but the ICA results later proved otherwise). As such, this outlier case 
greatly impacts the performance of the prediction model. However, taking into account the other contributing 
factors such as the patient’s lack of a CAD history and diabetes, the model ultimately reached the correct conclu-
sion that the subject does not have CAD (score threshold for CAD: 0.435; entry’s score: 0.39). On the other hand, 
as the waterfall plot in Fig. 4 showcases, this prediction was much clearer. Specifically, the expert had correctly 
diagnosed the patient as CAD positive, thus greatly influencing the model towards this notion. The patient had 
no history of CAD; he/she was, however, diabetic. Overall, this particular entry’s score was 0.704 against an 
effective threshold of 0.435; thus, the model successfully identified this instance as a CAD positive one.

In conclusion, the results of this study highlight the significance of explainability in machine learning models 
for CAD diagnosis. The use of explainability mechanisms such as Cohen effect sizes and SHAP values provide 
insight into the decision-making process of the model and allows for better understanding of the factors that con-
tribute to its predictions. This can increase the trust and acceptability of the model among experts and healthcare 
professionals. Additionally, the explainability insight provided by this study also allows for better identification 
of outliers and potential errors in the input data, leading to more accurate predictions and improved diagnosis 
of coronary artery disease.

Nevertheless, this study has some limitations. In the scope of this study, only clinical data were used, without 
any image data from SPECT/PET. It is most likely that the addition of these images might further improve the 
prediction accuracy of the models. Moreover, the ML models presented in this work function as black boxes. 
That is, there is no direct insight into the weights and leading factors used by the algorithms when making the 
prediction of whether a patient is CAD-affected or not.

Conclusion
The main objective of this work was to assess the impact of a man-in the-loop approach to the CAD prediction 
problem. It is shown that the ML models manage to integrate the human expert’s yield and improve the diag-
nostic accuracy by 5% when using the human expert in the loop. This work has highlighted the importance of 
an AI aided decision-making tool in the process of CAD evaluation. The results have showcased a substantial 
enhancement of prediction accuracy, when including the expert’s opinion on the input data. It has also been 
pointed out that feature selection can lead to further improvement of the prediction results for the ML models. 
Involving the expert in the decision/prediction making process is also emphasized, as this has a significant impact 
on the accuracy of the final prediction. Interestingly, some common risk factors for CAD (e.g. Dyslipidemia) 
were consistently ignored during the feature selection process. In the future, we plan to incorporate image data 
or prediction results from AI models that utilize image data as inputs. Furthermore, more research could be 
conducted on the findings of Sect. 2, specifically on these well-documented CAD risk factors that were not 
selected in the feature subsets, such as smoking and arterial hypertension.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request. The repo containing the scripts that were used to produce the above findings is located at: 
https://​github.​com/​agosa​maras/​CAD-​AI.
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