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Sound source localization based 
on residual network and channel 
attention module
Fucai Hu 1, Xiaohui Song 1, Ruhan He 2 & Yongsheng Yu 3*

This paper presents a sound source localization (SSL) model based on residual network and channel 
attention mechanism. The method takes the combination of log-Mel spectrogram and generalized 
cross-correlation phase transform (GCC-PHAT) as the input features, and extracts the time–frequency 
information by using the residual structure and channel attention mechanism, thus obtaining a better 
localizing performance. The residual blocks are introduced to extract deeper features, which can 
stack more layers for high-level features and avoid gradient vanishing or exploding at the same time. 
The attention mechanism is taken into account for the feature extraction stage in the proposed SSL 
model, which can focus on the most important information on the input features. We use the signals 
collected by microphone array to explore the performance of the model under different features, and 
find the most suitable input features of the proposed method. We compare our method with other 
models on public dataset. Experience results show a quite substantial improvement of sound source 
localizing performance.

Sound source localization (SSL) refers to estimating the position or direction of arrival (DOA) of the sound 
source through multi-channel signals. This technology has been well developed over the past few decades and has 
achieved big  progress1. Microphone array-based SSL has received a lot of attention from researchers, where DOA 
estimation is an important research direction in multichannel audio  analysis2. DOA is usually represented by two 
relative angles: azimuth and elevation. In most practical cases, SSL is simplified as a DOA estimation problem. 
Although SSL is a long-standing and extensively researched topic, it remains a challenging problem to  date3.

Many traditional SSL methods based on signal processing have been proposed, such as steered-response 
power phase transform (SRP-PHAT)4 and generalized cross-correlation phase transform (GCC-PHAT)5. Tra-
ditional SSL algorithms are based on ideal signal model, so their robustness usually is not very good. With the 
rapid development of deep learning, more and more researchers are trying to use deep learning methods to 
solve the SSL  problem6. Deep learning-based SSL is often formulated as a classification or regression problem. 
The classification problem divides the space into different regions. For different inputs, the neural network 
will output its probability values in different regions. The regression problem, on the other hand, estimates the 
location coordinates or direction of the sound source directly from the  inputs7–10. With the popularity of deep 
learning methods, a large number of network architectures and input features are proposed every year, such 
as convolutional neural network (CNN) and convolutional recurrent neural networks (CRNN), and input fea-
tures such as short-time Fourier transform (STFT) and generalized cross-correlation (GCC)11–14. Many studies 
have shown that deep learning methods possess good  performance15,16. Xiao first proposed DOA estimation by 
neural networks to obtain sound source angle information using a fully connected  perceptron17. Since then, the 
SSL technology based on neural network has developed rapidly. Hirvonen uses CNN to extract features from 
multi-channel amplitude spectrograms, and then classifies the audio source position through four full connec-
tion  layers18. Chabarty proposed a classification method based on CNN to predict the angle of  speakers19. The 
input feature is multi-channel short-time Fourier transform phase spectrograms, and the system consists of 
three continuous convolutional layers and three fully connected layers. Adavanne presented a pioneering work 
using convolutional recurrent neural networks for SSL and showed good  performance20. The CRNN consists of 
multiple convolutional layers and recurrent layers. The convolutional layer has been proved to be suitable for 
extracting information from various input features. The recurrent layer is suitable for learning time information. 
Therefore, CRNN is often used for SSL.
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In the field of SSL, CRNN is the most popular architecture. However, the existing CRNN-based localiza-
tion models face a dilemma. It is difficult to extract effective high-level features when the model uses too few 
convolutional layers, while as the number of convolutional layers deepens, it leads to the problem of gradient 
vanishing or exploding. Therefore, a sound source localization method based on residual network and channel 
attention module (SSL-RC) is proposed in this paper. We bring in the residual blocks to extract deeper features, 
which can stack more layers for high-level features and avoid gradient vanishing or exploding at the same time. 
Meanwhile, we introduce the attention mechanism into the feature extraction stage of the proposed SSL model, 
which can focus on the most important information on the input features. As for the input features, we select the 
original audio captured by the microphone array system as the dataset to train the neural network, and compare 
and evaluate its localization performance under different input features to find the best input features for our 
model. Experiments compared with other SOTA SSL models on publicly available datasets show that our model 
get better performance.

Related work
The problem of SSL can be analyzed from the perspective of array signal processing, and can also be solved by 
using the idea of deep learning. Deep learning methods can find the relationship between multi-channel signals 
and sound source locations. Nowadays the SSL method based on deep learning has gradually become a research 
hotspot. Generally, the audio signals in different channels received by the microphone array is different, because 
the distance from the sound source to each microphone are different. Deep neural network (DNN) perform SSL 
by learning this difference and the complex relationship between input features and sound source location. Many 
existing researches prove that deep learning methods are feasible for SSL.

Researchers have proposed many neural network-based methods for SSL in recent years. Among these 
approaches, the majority of model rely on the learning of time–frequency domain features of the acoustic signal. 
Adavanne implements DOA estimation directly through a set of convolutional layers, a set of bidirectional gated 
recurrent unit (Bi-GRU) layers and a set of feedforward  layers21. Lu integrated some additional convolutional 
layers and replaced the Bi-GRU layers with bidirectional long short-term memory (Bi-LSTM) layers, and this 
method improved the DOA estimation  accuracy22. In recent years, more and more researchers have proposed 
improving methods for classical convolutional recurrent neural networks. Guirguis used temporal convolutional 
network (TCN) instead of bidirectional recurrent layers, which reduce the computational stress and improve the 
model inference and training  speed23. Naranjo improved feature utilization by adding residual squeeze excitation 
(SE) blocks to the convolutional recurrent neural network. The results show that the introduction of residual 
SE blocks can obtain better results than the baseline  system24. Grumiaux proposed a network model with more 
convolutional layers and pooling layers, which reduced the loss of information and improved the  performance25. 
Chakrabarty proposed a CNN based supervised learning method to estimate the DOA of the sound source. The 
phase component of the STFT of the sound signal was used as the input feature for training. At the same time, 
the impact of the convolutional layer on the localization performance was  evaluated26. He used convolutional 
layers and residual blocks to extract high-level features from the input features for localization, and showed good 
 performance27. Komatsu used gated linear units (GLUs) instead of convolutional layers to enhance the learning 
ability of the frequency dimension, and the model reduces the angular  error28. Deep learning-based SSL models 
need to extract useful information from the input features for inference learning, but it contains some informa-
tion that is not important for the final result. How to make good use of the important information in the features 
to improve the localization effect of the model is a problem worth studying.

In general, the convolutional module has a direct impact on the performance of the sound source location 
network model. More and more researches are focused on the optimization of convolutional modules. We will 
improve the classical convolutional recurrent neural network in this paper. In order to extract high-level fea-
tures and useful information, we use the residual structure and the channel attention mechanism to improve 
the information utilization effect.

The proposed method
We first describe the architecture of SSL-RC, then the specific feature extraction process of the network archi-
tecture is described.

Figure 1 shows the architecture of our model. The input of the model is the feature extracted from the original 
audio signal. When compared with other models on public data sets, the output of the model is azimuth and 
elevation angles. When using the data collected by ourselves, the output of the model is probability values of 
different spatial regions. The main body of the proposed model is mainly composed of residual structure and 
attention module. The input features are first reduced in frequency dimension size by two two-dimensional 
convolutional and pooling layers, then five residual blocks are used to complete further feature extraction, after 
which the attention mechanism is used to achieve channel weight selection for high-level features, and finally 
the DOA of each frame is obtained by two bidirectional GRU layers and two fully connected layers. Each two-
dimensional convolutional layer has 64 convolutional kernels, with a convolutional kernel size of 3 and a step 
size of 1. At the same time, the batch normalization layer and the max-pooling layer are connected respectively, 
and ReLu is selected as the activation function. The kernel size of each bidirectional GRU layer is 64 and Tanh 
is selected as the activation function. The final output is obtained by a fully connected layer. We use Dropout on 
the standard convolutional layers and recurrent layers to enhance the generalization of the model.

Our model takes the combination of log-Mel spectrogram and GCC-PHAT as the input features. Log-Mel 
spectrogram is widely used in audio processing. This is found by observing the human ear, which is extremely 
sensitive to signals in some specific frequency bands. In order to extract log-Mel spectrogram, we first divide the 
audio signal into overlapping frames, then calculate Fourier transform and apply Mel-scale filter in frequency 
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domain. Finally, the energy in each sub-band is calculated and its logarithm is taken to get the log-Mel spectro-
gram. GCC-PHAT features are based on the traditional time delay estimation algorithm. For the same sound 
source, sound waves arrive at two microphones at different times due to sound propagation. Based on the above 
phenomena, the DOA of sound source can be estimated. GCC-PHAT algorithm uses the correlation between 
the signals received by two microphones from the same sound source to calculate the cross-correlation function. 
By maximizing the cross-correlation function, the time delay between the sound source and two microphones 
can be estimated. It can be seen that the log-Mel spectrogram and GCC-PHAT features of audio signals contain 
rich time and frequency domain information.

The baseline architecture used for the experiments in this paper is  CRNN20 which has three convolutional 
layers followed by two bi-directional GRU layers and two fully connected layers. We note that the traditional 
convolutional recurrent neural network has too few convolutional layers, which is not enough to extract high-
level features, so we add residual layers to enhance the ability of features extraction in time–frequency infor-
mation. Generally, the more layers the network has, the stronger the expression ability will be. However, more 
layers may cause gradient vanishing, which degrade the network performance. It is also difficult to avoid these 
problems by using some regularization and other optimization methods. The residual structure can avoid the 
problems caused by the increase in the depth of the convolutional layers, so a deeper network can be  designed27. 
We choose 2D convolutional layer with residual structure to extract features in our model. As shown in Fig. 2, 
our residual block uses a three-layer residual unit. The introduction of residual blocks greatly enhances the ability 
of the model to extract information from input features.

In the traditional convolutional recurrent neural network, the features extracted by the convolutional layer 
are directly transported to the recurrent layer for time-scale learning, however, the time–frequency features of 
different channels after convolution may have different influence on the localization performance. We need to 
learn the weight distribution for different channels, amplify the useful time–frequency features and attenuate 
the useless time–frequency features. So, we introduce an Efficient Channel Attention (ECA) module before the 
recurrent  layer29. It is a local cross-channel interaction strategy without dimensionality reduction, and effectively 
avoids the effect of dimensionality reduction on the learning effect of channel attention. The module involves 
only a few parameters but has a significant effect gain, and the proper cross-channel interaction can significantly 

Figure 1.  The architecture of the proposed method.

Figure 2.  Residual block.



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5443  | https://doi.org/10.1038/s41598-023-32657-7

www.nature.com/scientificreports/

reduce the complexity of the model while maintaining performance. Considering the outstanding performance 
of ECA, we introduce this module into the neural network model of SSL. ECA attention mechanism uses one-
dimensional convolutional to efficiently realize local cross-channel interaction and extract the dependencies 
between channels. Firstly, the input features are subjected to global average pooling operation. Secondly, one-
dimensional convolutional operation with convolutional kernel size K is performed, and the weight W of each 
channel is obtained through Sigmoid activation function. Finally, the weight is multiplied by the corresponding 
element of the original input feature to obtain the final output feature. For important channel, the output of the 
sigmoid function is close to 1. While for unimportant channel, the output of the sigmoid function is close to 
0. Through this module, we carry out channel weighting on the extracted features, so as to efficiently use the 
information extracted from the residual structure. The ECA module is shown in Fig. 3.

Experiments
To validate the performance of our proposed network architecture, we set up two experiments. In the first 
experiment, we compare the proposed method with other model on a public dataset. In the second experiment, 
in order to find the best features and explore the effect of the model in a real environment, we train the neural 
network using a real dataset and compare its localization performance using different features.

Comparisons with other models. We conducted a comparative experiment using a publicly available SSL 
 dataset7,30. Convolutional recurrent neural network baseline architecture is very popular in the field of sound 
source localization. It usually consist of three 2D convolutional layers, two bidirectional LSTM or bidirectional 
GRU recurrent layers, and fully connected  layers7,20. We compared SSL-RC with the baseline architecture and 
other models. At the same time, in order to clarify the influence of channel attention mechanism and the number 
of residual structures on the performance, the influence of the existence of channel attention mechanism and 
the number of residual blocks on the localization accuracy and error is compared. The input features used in the 
model are the combination of log-Mel spectrogram and GCC-PHAT. The number of Fourier transform points 
is set to 1024, the window length is 1024, the overlap rate is set to 50%, and the window function is a Hanning 
window. The model is trained using the Adam optimizer. The early stop method is used during training, and the 
process will be stopped if no improvement in validation loss is observed within 30 epochs. We calculated the 
percentage of correct prediction angles of the model when the error range is 5°, 10° and 15° respectively, that 
is, the ratio of the number of correct predictions within the corresponding angle range to the total number of 
samples in the test set. The mean localization error of the model on the test set was also calculated. The results 
are shown in Table 1. The best performance in each column is highlighted in bold.

The results in Table 1 show that the localization accuracy of SSL-RC is improved in different error ranges 
compared with other models. In the 5° error range, the accuracy is improved by about 5.70–16.86% compared 
with other models, and our model achieves the smallest localization error. Among the compared models, the 
CNN performs poorly in the localization metrics due to the lack of learning of temporal information. The 
3Conv-ECA model means that we add ECA module after feature extraction block of the baseline architecture. 
The 3Conv-Res model means that we replace the last convolutional layer of the baseline architecture with five 

Figure 3.  ECA module.
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residual blocks. The localization effect of both models has been improved, which also indicates that both residual 
blocks and ECA module have active influence on the model.

Table 2 shows comparative experiments on the proposed architecture with different number of residual 
blocks. Models using different numbers of residual blocks with the attention module have higher accuracy than 
the baseline system. The number of residual blocks also effect the model performance, and the model shows the 
best performance when the channel attention mechanism is added and the number of residual blocks is 5. The 
possible reason is that when the number of residual blocks is too small, the model cannot extract enough informa-
tion, and when the number of residual blocks is too large, the model ignores part of the important information.

Data preparation. The input feature selection experiments use audio signals captured by microphone 
arrays as training data to explore the localization accuracy of the proposed model with multiple input features 
and find the best-performing features. Deep learning is a data-driven technology, and it usually need a large 
amount of data to train model. Currently in the field of deep learning SSL, supervised learning is still the domi-
nant approach, which requires a certain amount of labeled data. Most of the current studies use synthetic data 
to develop neural network  models31,32. However, synthetic data cannot fully reflect the real environment. We 
want to use data from real environments for SSL studies. Most SSL algorithms rely on the signal collected by 
the microphone array. We use a microphone array to acquire audio signals from a real environment, hope to get 
a dataset for SSL studies. The acquisition process is shown in Fig. 4. The acquisition range of azimuth angle is 
[− 180°, 180°] and the acquisition range of elevation angle is [− 10°, 10°], using 10° as the division interval, the 
array element spacing of microphone array is about 0.14 m, and the sampling frequency is 48 kHz.

Table 1.  Ration of correct predictions and Mean localization error comparisons.

Model < 5° < 10° < 15° Mean

Adavanne20 71.11 94.03 97.82 4.29

Tang7 69.67 92.09 97.71 4.41

Komatsu28 78.3 95.96 98.76 3.64

Grumiaux25 75.18 94.48 98.23 3.84

Naranjo24 80.83 96.98 99.30 3.14

Guirguis23 77.11 96.62 99.01 3.49

CNN 45.96 79.22 90.64 7.43

3Conv-ECA 80.17 96.88 99.01 3.22

3Conv-Res 83.06 97.54 99.07 3.02

SSL-RC 86.53 98.03 99.30 2.73

Table 2.  Comparison of model performance with different number of residual blocks.

Config < 5° < 10° < 15° Mean

3Res 75.38 95.56 98.69 3.74

4Res 83.41 97.38 99.13 2.91

5Res 86.53 98.03 99.30 2.73

6Res 76.73 96.16 98.82 3.52

7Res 75.82 95.19 98.49 3.68

8Res 75.27 94.74 98.27 3.73

9Res 80.73 97.04 99.06 3.27

Figure 4.  Acquisition of signal.
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Comparison of different features. By synthesizing the analysis of existing literature, we extracted seven 
input features such as multichannel phase spectrograms, multichannel amplitude spectrograms, log-Mel spec-
trogram, and GCC-PHAT that are applicable to microphone array audio  signals6. The Fourier transform param-
eter settings in feature extraction are consistent with the first part of the experiment. First, we compare the 
accuracy of each input feature in terms of azimuthal classification, i.e., the ratio of the number of correct classifi-
cations to the total number of samples. Figure 5 shows the effect to the azimuthal angle using seven different fea-
tures. It should be noted that phase represents the short-time Fourier transform phase spectrogram, magnitude 
represents the short-time Fourier transform magnitude spectrogram, GCC-PHAT represents the generalized 
cross correlation feature. According to the effect on the test set, the model accuracy using the above seven input 
features is 93.61%, 64.75%, 94.83%, 73.08%, 97.33%, 96.44%, and 96.12%, respectively. It can be clearly seen 
that the accuracy of the amplitude spectrogram and the log-Mel spectrogram has a large gap compared with the 
other features, and their effect is the worst. The accuracy of the other five features is over 90%. The combination 
of features of the phase and amplitude spectrogram performs almost as well as the combination of features of 
the log-Mel spectrogram and GCC-PHAT. Figure 6 shows the effect to the elevation angle under seven different 
features. The overall performance of the seven features is very good, and the accuracy rate is over 95%. At the 
same time, we also note that the combination of features of log-Mel spectrogram and GCC-PHAT get the best 
performance. Finally, we compare the effect of the model on joint classification of azimuth and elevation angle. 
Figure 7 shows the results. The results show that the accuracy of the seven features are 88.52%, 71.30%, 95.15%, 

Figure 5.  Accuracy of classification of azimuth only.

Figure 6.  Accuracy of classification of elevation only.
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74.94%, 93.94%, 97.01%, 86.58% respectively. The combination of features of log-Mel spectrogram and GCC-
PHAT is still superior to other features. They are 1.86–25.71% higher than other features.

Experimental analysis
To validate the performance of SSL-RC, we first compare it with the baseline architecture and other improved 
models on a publicly available dataset, and the results show that our model outperforms the other models in 
terms of localization accuracy and mean error. In the first experiment, the 3Conv-ECA and 3Conv-Res models 
show the improvement effect in localization accuracy and mean error, demonstrate that residual structure and 
attention mechanism are helpful to the improvement of SSL performance. In the second experiment, the clas-
sification accuracy of the model under different features is investigated. The experimental results show that the 
combination of features of log-Mel spectrogram and GCC-PHAT outperforms other features, and its average 
accuracy is 0.76–19.46% higher than the rest of features, as shown in Table 3.

Conclusion
This paper presents a SSL model based on residual network and channel attention module. The input features are 
extracted by the residual network, and then the channels are weighted by the attention module, so that the model 
can use the time–frequency information more effectively. In order to illustrate the reliability of the proposed 
model, we compared the proposed model with the popular baseline architecture based on convolutional recurrent 
neural network and other improved models using the public dataset. Our model shows the best performance 
in terms of localization accuracy and error. Meanwhile we use the audio signals collected by microphone array 
in a real environment to study the performance of the model with different input features. The experimental 
results show that the combination of features of log-Mel spectrogram and GCC-PHAT get the best performance.

Figure 7.  Accuracy of classification of azimuth and elevation.

Table 3.  Average accuracy of the model with different input features.

Input features Average accuracy (%)

Phase 92.62

Magnitude 78.25

GCC-PHAT 96.44

Log-mel spectro 81.19

Log-mel spectro + GCC-PHAT 97.71

GCC-PHAT + magnitude + phase 92.62

Magnitude + phase 96.95
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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