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Prediction method of surface 
settlement of rectangular pipe 
jacking tunnel based on improved 
PSO‑BP neural network
Da Hu 1,2,3*, Yongjia Hu 2, Shun Yi 2, Xiaoqiang Liang 1,2, Yongsuo Li 1 & Xian Yang 1,2

To provide theoretical support for the safety control of rectangular pipe jacking tunnels crossing an 
existing expressway, a method for predicting the surface settlement of a rectangular pipe jacking 
tunnel is proposed in this study. Therefore, based on the high approximation of the BP neural 
network to any function under the multiparameter input, the PSO-BP mixed prediction model of 
the ground subsidence of the ultrashallow buried large section rectangular pipe jacking tunnel is 
established by taking into account the adaptive mutation method, adopting the improved particle 
swarm optimization (IPSO) algorithm with adaptive inertia weight and mutation particles in the later 
stage to determine the optimal hyperparameters of the prediction model. Through the case study 
of an ultrashallow large cross-section rectangular pipe jacking tunnel, this algorithm is compared 
with the traditional algorithm and combined with field monitoring data for analysis and prediction. 
The prediction results show that compared with the traditional BP neural network prediction model, 
AWPSO-BP model and PWPSO-BP model, the improved PSO-BP mixed prediction model shows a 
more stable prediction effect when the change in surface subsidence is gentle and the concavity and 
convexity are large. The predicted subsidence value is close to the actual value, and the accuracy and 
robustness of the prediction are significantly improved.

Rectangular pipe jacking construction technology is often used in urban underpass tunnel projects because of 
its safe and reliable construction and low disturbance to the surrounding environment. As an increasing number 
of pipe jacking tunnels need to penetrate existing buildings (structures) closely, ensuring the stability of pipe 
jacking construction and reducing the impact of tunnel construction on existing buildings (structures) are hot 
issues at present. During the jacking process, the ultrashallow buried large-section rectangular pipe jacking 
tunnel inevitably disturbs the surrounding strata, changes the distribution of the stress field and displacement 
field of the strata, and finally affects the overall consolidation and settlement of the tunnel location with increas-
ing time. The cause of formation deformation caused by pipe jacking construction is mainly that the formation 
damage disturbance caused by excavation cannot be compensated for in time, it is difficult to return to the initial 
state of undamaged disturbance, and a new three-dimensional equilibrium state can only be achieved through 
the necessary stress adjustment or change process. Therefore, it is of great significance to accurately predict the 
ground subsidence caused by rectangular pipe jacking tunnels to reduce the impact of engineering construction 
on the surrounding environment and ensure the safety of the project.

The existing surface settlement prediction methods mainly include empirical methods, analytical meth-
ods, numerical simulation methods, model test methods and artificial intelligence algorithm predictions. The 
well-known Peck formula in the empirical method1–4 can describe the general morphology of surface settle-
ment and roughly believes that the lateral distribution of surface settlement generated by tunnel construction 
is approximately the normal distribution curve, but due to the large difference in the values of different strata 
empirical parameters, the two key parameters surface settlement trough width i and maximum settlement Smax 
are related to many factors. Therefore, the empirical method expects settlement to have a wide distribution and 
cannot guarantee the accuracy and consistency of the prediction results. The analytical method5–9 often only 
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considers the three factors of the frontal additional thrust of the pipe jacking tunnel, the friction between the 
pipe section and the soil mass and the soil loss, and it is difficult to consider the soil loss distribution and grouting 
situation. The calculation process is cumbersome and complex, which is difficult to use in actual engineering. 
The numerical simulation method10–13 can comprehensively consider the nature of the strata, the interaction 
between the pipe jacking machine and the strata, tunnel parameters, the location of the excavation surface, the 
tunnel lining and other factors, which provides a powerful visualization method for researchers to understand 
the failure mechanism inside the rock and soil mass. However, numerical simulation is intensive, laborious and 
laborious, and it is difficult to select geotechnical parameters and boundary conditions during the modelling 
process, which makes the analysis data different and uncertain. The model test14–17 method is widely used to 
study the evolution mechanism of settlement during pipe jacking construction, but the factors considered are 
limited and costly, so it cannot be used to predict surface settlement in real time. Moreover, due to the difference 
between the model test conditions and the actual engineering boundary conditions (such as the pipe jacking 
machine, size effect, etc.), the correction coefficient may have errors in the actual situation, and the conclusion 
needs to be verified by actual engineering.

Artificial intelligence algorithms have powerful information processing capabilities, such as nonlinearity, 
high parallelism and high fault tolerance learning and generalization capabilities18. Among them, the machine 
learning algorithm can learn the characteristics of the data through a sufficient number of sample inputs and 
then perform regression fitting analysis on the data to effectively analyse new inputs with similar patterns and 
make predictions19. By establishing a machine learning probability and statistics model, the internal connections 
of the input data can be automatically analysed, and the high-dimensional fitting of cross-cell and cross-latitude 
multiparameters can be realized. Moreover, the machine learning settlement prediction model is trained with fast 
calculation and accurate results, which meets the requirements of actual engineering to obtain surface settlement 
in a timely and accurate manner. Since the 1980s, some scholars have tried to use methods related to machine 
learning to solve practical tunnel engineering problems20–28. In recent years, artificial neural networks, support 
vector machines and random forest algorithms have become the main machine learning algorithms used to 
predict surface subsidence caused by shield tunnels. Ramezanshirazi29 and Tang30 used machine learning algo-
rithms to effectively predict surface subsidence caused by tunnel construction. Chen et al.31 found that regression 
neural networks and random forest algorithms can perform best among the six machine learning algorithms and 
accurately identify the evolution of settlement caused by tunnels. Elbaz et al.32 established an improved particle 
swarm optimization algorithm (PSO) combined with an adaptive neural fuzzy inference system (ANFIS) based 
on the fuzzy C-means (FCM) clustering method for the prediction of the shield performance of metro tunnels. 
Cao et al.33 proposed a fully ensembled empirical model with adaptive noise length and short memory to monitor 
ground subsidence during tunnel construction, which can divide one-dimensional data into multidimensional 
data. It can be seen from the above that in the past tunnel surface settlement prediction problem, most of them 
chose to use several single algorithms for separate prediction, and the results were compared to illustrate the 
superiority of a certain algorithm.

To improve the prediction accuracy, this paper intends to use the combination of the two algorithms to build 
a predictive model to improve the prediction accuracy and robustness. In this paper, an improved particle swarm 
algorithm is proposed to balance the local and global optimization ability of particles and enhance the ability 
to jump out of a local minimum in the late stage of particle search by adaptive inertial weights and the position 
of mutated particles. Relying on the real-time monitoring data of rectangular pipe jacking tunnel construction 
on the west extension of Liuye Avenue, the improved particle swarm algorithm (IPSO) combined with the 
traditional BP neural network is used to establish a PSO-BP hybrid prediction model for the surface settlement 
of rectangular pipe jacking tunnels, and the prediction performance and stability of the old and new algorithm 
models are compared and analysed to provide theoretical support and technical reference for the design and 
construction of similar rectangular pipe jacking tunnels. In addition, improved particle swarm optimization 
(IPSO) has been used successfully in other fields. For example, Jin et al.34 built the PSO-BP neural network, 
wrote the PSO-BP code, collected the historical container throughput data of Shenzhen Port, set the relevant 
parameters, and used the PSO-BP model to predict the container throughput of Shenzhen Port. Wan et al.35 
proposed a BP neural network adaptive PID controller based on particle swarm optimization (PSO). Using the 
Chinese national standard variable rate fertilizer seeder control system, the system’s performance indicators, 
such as fertilizer rate adjustment range, fertilizer rate adjustment response time and fertilizer rate control accu-
racy, were evaluated, and the variable rate fertilizer performance parameters were successfully improved. Shu 
et al.36 proposed a PSO-BP neural network to evaluate the customer perceived value of new Chinese clothing. 
The experimental results show that the PSO-BP neural network can accurately evaluate the customer perceived 
value of the new Chinese style clothing, and enterprises can improve the product design quality through the 
evaluation index and model of the customer perceived value of the new Chinese style clothing, thereby improv-
ing the sustainable competitive advantage of enterprises and finally realizing the sustainable development of the 
new Chinese style clothing industry.

Settlement prediction methods
BP neural network algorithm.  The BP neural network (backpropagation neural network), also known 
as the error backpropagation neural network, contains two learning processes of forwards transmission of input 
signals and backpropagation of error signals, mainly composed of an input layer, hidden layer, and output layer 
in structure. Its topology is shown in Fig. 1. Data are obtained from the input layer {xm,m = 1, 2, 3, . . . n} , and 
the output value of the layer xi is obtained through formula (1). To facilitate the operation, no activation opera-
tion is carried out in the output layer. At the same time, the obtained output value is backpropagated by error, 
the weight and threshold between each layer are adjusted, and the prediction accuracy of the neural network 
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is improved through continuous forwards and negative propagation until the error value is less than the target 
value and the best model is obtained. The number of layers and number of hidden layer neurons are very impor-
tant for the accuracy of the model. The number of nodes is small, the learning ability of the neural network is 
low, the accuracy rate is low, the number of nodes is large, the network is prone to overfitting, and the calculation 
time is long.

Formula:ωij is the weight of the node,bij is the threshold value of the point

f  is the activation function, and the activation function of the hidden layer in this article uses the sigmoid func-
tion (as shown in Eq. (2)) for convenient operation, and the output layer does not perform activation calculation.

Particle swarm algorithm.  The particle swarm algorithm is an evolutionary computing technique that 
simulates a bird in a flock by designing a massless particle with only two properties: speed and position, where 
speed represents how fast it moves, and position represents the direction of movement. Each particle in the 
search space of the optimal solution is recorded as the current individual extreme value, and the individual 
extreme value is shared with other particles in the entire particle group. The optimal individual extreme value is 
found as the current global optimal solution of the entire particle group. All particles in the particle group adjust 
their speed and position according to the current individual extreme value they find and the current global 
optimal solution shared by the entire particle group and at the same time continue to iterate until the optimal 
solution of the target is found. The speed and position of the particles are set as follows. The formula for updating 
the velocity and position of the particles is shown in Eq. (3):

Formula: k is the number of iterations;ω is the inertia weight;c1, c2 are the "individual" and "global" learning 
factors;r1, r2 is the interval [0,1] random numbers; pi,j , gi,j are the individual optimal and global optimal solutions 
of particle i in dimension j , respectively.

PSO‑BP hybrid predictive model.  The improved PSO-BP neural network model proposed in this paper 
is hereinafter collectively referred to as the IPSO-BP hybrid prediction model, and the outstanding advantage 
of the traditional BP neural network is that it has a strong nonlinear mapping ability and flexible network struc-
ture. The number of intermediate layers and the number of neurons in each layer can be set arbitrarily accord-
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Figure 1.   Neural network topology diagram.
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ing to the specific situation, and the operation is relatively simple and convenient, but the learning rate is slow, 
the convergence time is long, and the random initial weights and thresholds will have a greater impact on the 
results, thereby reducing the prediction performance of the network as a whole. To reduce the impact, this paper 
adopts the improved particle swarm algorithm and introduces the linear decreasing inertia weight ωi , which 
better balances the global search ability and local search ability of the algorithm, and the ωi update formula is 
shown in (4). Through the global search of particles, when the later particle search falls into the local optimum, 
the mutation jumps out of the local point and studies until the optimal individual in Eq. (5) and the loss target 
value are found, and the fitness function fitness is shown in Eq. (6); otherwise, it continues to iterate to optimize 
the adjustment of weights and thresholds to accelerate the convergence speed of the network and improve the 
learning efficiency of the network. The specific calculation process and model framework diagram are shown 
in Fig. 2. To further reflect the superiority of the improved method in this paper, this paper adds an improved 
standard PSO-BP model based on formula (4) (AWPSO-BP) and an improved standard PSO-BP model based 
on formula (5) (PWPSO-BP) for comparative analysis:

Formula:ωstart and ωend are the starting inertia weights;i and iall are the current number of iterations and the 
total number of iterations; C = 0.95, r is [0, 1] random number;xi and yi are output layers, respectively Predicted 
and true values.

Data processing and model evaluation.  To avoid the phenomenon of gradient explosion in the net-
work training process due to the different magnitudes of each index in the calculation process, the data should be 
preprocessed after the normalization operation is entered into the grid, and the normalization formula is shown 
in Eq. (7), mapping all data to the interval of [− 1,1] and inverse-normalizing and visualizing the results after all 
calculations are completed.

(4)ωi = ωstart − (ωstart − ωend) ·

(

i
/

iall

)
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∣

∣xi − yi
∣
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Figure 2.   Model framework and step flow chart.
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Formula:xmin and xmax are the maximum values of x.
To evaluate the performance difference between the two algorithms in predicting the settlement of tunnel 

construction strata excavated by the rectangular pipe jacking method, three error indexes are used to evaluate 
the superiority of the model by using three error indexes: correlation coefficient (R), mean squared error (MSE), 
and mean absolute error (MAE), such as Eqs. (8)–(10).

Formula: yi is the true value of the data; fi is the predicted value; ỹ is the average; N is the total. A larger R 
indicates a higher correlation between the independent variable and the surface settlement of the dependent 
variable. The smaller the values of MSE and MAE are, the lower the error of the model’s prediction and the bet-
ter the overall performance.

Algorithm parameter initialization.  The number of hidden layer nodes is set according to Kolmogorov’s 
theorem, s = 2n+ 1 ( n is the number of input layer nodes, and s is the number of hidden layer nodes). Table 1 
shows the remaining hyperparameter settings:

Project overview
Case introduction.  At the central pile number K7 + 081.113 in the center of the road, the west extension of 
Liuye Avenue is equipped with a two-hole net aperture of 18.2 × 6.0 m diagonal rectangular pipe jacking tunnel, 
the rectangular pipe jacking tunnel and the long-tension high-speed diagonal intersection of 63.881°, the total 
length of each hole rectangular pipe jacking tunnel is 51 m, and the thickness of the tunnel top cover is approxi-
mately 2.000 ~ 2.683 m. The rectangular pipe jacking tunnel is prefabricated in 4 sections, each with a length of 
12 m, 13 m, 13 m, and 13 m. The tunnel construction adopts the form of setting up working pits, back walls, 
skateboards, and steel shield supports on site and adopts the construction process of "diagonal, diagonal, and 
frontal roof ". The settlement joints connected by each rectangular tube jacking tunnel are 4 cm wide. The general 
arrangement of the rectangular pipe jacking tunnel of the west extension of Willow Avenue is shown in Fig. 3.

In the construction of this project, it is impossible to interrupt the traffic on the Changzhang Expressway, and 
the steel shield bracket is erected on site. A matching jack is laid in the relay room and tail end of the rectangular 
pipe jacking tunnel for jacking construction, but the jacking construction will disturb the highway subgrade and 
cause the road surface to settle and deform, which easily affects driving safety. To this end, steel shield brackets are 
used to maintain the slope ratio of the highway, which improves the safety and applicability of the construction, 
especially for tunnel jacking construction, which is more reliable and minimizes the repeated disturbance of the 
highway subgrade during shallow cladding jacking construction. However, the steepening rate of the rectangular 

(7)xm = 2×
x − xmin

xmax − xmin
− 1
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∑
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(10)
MAE =

n
∑

i=1

∣
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∣

∣
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Table 1.   Superparameter settings.

Algorithm Hyperparameter type Value

BP

Hidden layer nodes 9

Learning rate 0.001

Network target loss value 0.0004

Number of learnings 2000

PSO

Group size 20

Inertia weights ωstart and ωend 0.9 ;0.4

Learning factor c1 and c2 1.49;1.49

Speed extremes 1.3; − 1.3

Total number of iterations 100

Optimize the target loss value 0.0001
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pipe jacking tunnel is too fast, and the core soil is overexcavated, which will still cause the road surface to sink. 
In addition, when the rectangular pipe jacking tunnel comes out of the hole, due to the thin overlying soil layer 
(only 2 m at the thinnest point of this project), if the jacking rate is too fast, the jacking rectangular pipe jack-
ing tunnel will drive the upper layer of overburden to move along the top direction (backsoil effect), resulting 
in horizontal displacement of the door frame beam at the exit opening and even causing longitudinal cracking 
of the road surface. The three-dimensional measurement point layout of the road surface is shown in Fig. 4a,b.

Database.  All the data in this article are derived from the construction site monitoring of the rectangular 
pipe jacking tunnel on Willow Leaf Avenue. According to the research of Zhang et al., the factors affecting surface 
settlement can be divided into four categories: tunnel geometric parameters, excavation parameters, geological 
conditions and abnormal factors. Since the jacking construction is excavated at the same level, the relevant speci-
fications and burial depth of the tunnel hardly change, and the influence of the tunnel geometry on the results is 
not taken into account here. In the selection of excavation parameters, the jacking force and excavation speed are 
mainly selected, which are the key parameters of pipe jacking construction control and can be collected in real 
time through sensors and other data acquisition systems, which are accurate and reliable. At the same time, it 
also takes into account the large influence of parameters such as grouting pressure on overcutout voids and later 
settlement. Therefore, several variables of the above boring parameters are the main factors affecting surface set-
tlement. The geological conditions need to consider the basic physical and mechanical properties of the soil layer 
and the spatial position of the soil layer, and the soil excavated in this project is relatively homogeneous, all silty 
clay, so the influence of geological conditions on the results can be ignored. Since tunnel jacking construction 
adopts the method of manual excavation, the process is relatively simple, and there are few abnormal factors, 
so it is not considered for the time being. In summary, based on the important and easy-to-obtain indicators 
in the actual construction process, the jacking force, tunneling speed, and grouting pressure are selected as the 
input parameters of the prediction model. The jacking force is a major factor causing soil settlement. The jacking 
speed directly affects the stability of the soil layer during the construction process. As an auxiliary process in the 
jacking process, the grouting pressure can increase the degree of friction in the jacking process and accelerate the 
construction progress, and a total of 27 sets of data were used, of which approximately 75% of the first 20 groups 

Figure 3.   Schematic diagram of the rectangular pipe jacking tunnel of the west extension line of LiuYe Avenue.

Figure 4.   Layout of pavement deformation observation points.
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were used for the training and calculation of the model, and the last 7 groups were used for the prediction of the 
test set. The specific measurement point data sets are shown in Tables 2 and 3:

Predicting the outcome
Adaptability changes.  As the grid is iteratively updated by backpropagation and the overall error is gradu-
ally reduced, Figs. 5 and 6 show the variation process of the optimal fitness value of the self-variant IPSO-BP 
algorithm for the lateral 26-day settlement data of the left and right rectangular pipe jacking tunnels Z-1, Z-2, 
Z-3, Y1, Y2 and Y3.

Sedimentation data analysis.  To study the sedimentation change law of the measurement point with 
time, considering the influence of the jacking force, ejection speed and grouting pressure, the BP and IPSO-BP 
hybrid prediction model were constructed based on the monitoring data and model parameters. The test set of 

Table 2.   Data set of lateral measuring points.

Variable Parameter type

Data (26 sets)

Min Max Ave S.D

Left, top thrust (KN)

Input

15,780.31 47,755.17 34,566.32 9608.77

Right, advance speed (m/d) 0.825 1.985 1.640 0.223

Left, advance speed (m/d) 0.777 1.885 1.409 0.249

Grouting pressure (MPa) 0.063 0.416 0.271 0.079

Y1

Output

− 4 2 − 0.231 1.250

Y2 − 27 13 − 4.385 8.513

Y3 − 5.5 5 0.038 2.742

Z-1 − 10 1 − 2.385 2.573

Z-2 − 9 10 − 1.5 4.236

Z-3 − 8 44 − 1.654 2.674

Table 3.   Data set of longitudinal measuring points.

Right portrait Left portrait

Distance from centerline/m Sedimentation value/mm Distance from centerline/m Sedimentation value/mm

21.55 2 21.55 − 3

11.15 3 11.15 1

0.75 2 0.75 − 5

− 11.5 1.8 − 0.75 3

– – − 11.15 6

– – − 21.55 8.2

Figure 5.   Fitness change diagram of the left measuring point.
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the corresponding measurement points on the left and right amplitudes of the rectangular pipe jacking tunnel is 
trained, and the prediction results and real settlement data are obtained as shown in Figs. 7, 8, 9, 10, 11 and 12.

Analysis of Figs. 7, 8, 9, 10, 11 and 12 shows that when the fluctuation value of the settlement value is large, 
the prediction effect of the traditional BP neural network is obviously poor; when the data fluctuate more gently, 
the forecast performance is average. The self-varying IPSO-BP hybrid prediction model is very close to the real 
settlement value of other points, except for the distortion of individual point data and poor prediction effect, and 
the comprehensive prediction effect is obviously better than that of the traditional BP neural network model.

To study the settlement law of measurement points on the same section at the same time, the variables in 
the model can be regarded as constants, and the only independent variable is the distance of the measurement 
point from the centerline of the rectangular pipe jacking tunnel (the spatial position of the measurement point 
of the same section). According to the distribution of measurement points, the settlement of longitudinal meas-
urement points is predicted and analysed, and the real settlement and predicted settlement pairs of the left and 
right amplitude Y4’-Z1’ and Y4’-Y1’ measurement points are obtained, as shown in Figs. 14 and 15. Figures 13 
and 14 show that the prediction effect of the four algorithm models on the longitudinal settlement data is good, 
but the improved IPSO-BP hybrid prediction model has a lower error index, and the performance is more stable 
and superior.

Algorithm performance comparison.  To better compare the prediction performance of the IPSO-BP 
hybrid prediction model, the average value of the left and right horizontal measurement point evaluation index 
is mainly used for comparison, and the prediction performance is shown in Figs. 15, 16, 17 and 18.

The comparative analysis of Figs. 15, 16, 17 and 18 shows that the PWPSO-BP model has the lowest MAE 
value of 0.75 and the highest R of 0.95 in the rectangular pipe jacking tunnel training set, followed by the IPSO-BP 
algorithm model. The lowest MAE value is 1.07, and the highest R is 0.98. The other two models have relatively 

Figure 6.   Fitness change diagram of the right measuring point.

Figure 7.   Right Y1 measuring point.
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Figure 8.   Right Y2 measuring point.

Figure 9.   Right Y3 measuring point.

Figure 10.   Left Z-1 measuring point.
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Figure 11.   Left Z-2 measuring point.

Figure 12.   Left Z-3 measuring point.

Figure 13.   Longitudinal measuring points on the left.
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Figure 14.   Longitudinal measuring points on the right.

Figure 15.   Performance evaluation index of the algorithm model of the right training set.

Figure 16.   Performance evaluation index of the algorithm model of the left training set.
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high error indicators, indicating that their realization in the training set is relatively poor. In the test set, the 
IPSO-BP algorithm model has the lowest MAE value relative to the other three models, with a minimum differ-
ence of 0.71 and a maximum of 3.99. At the same time, the R value is the largest but not much different from the 
PWPSO-BP model. The R values of the other models are all above 0.6, and the effect is general. From Figs. 19 
and 20, it can be seen that the overall MSE error of the IPSO-BP model is similar to that of PWPSO-BP, but the 
gap is not large and is better than other models. It is worth noting that the individual points with larger errors 
may be caused by not considering the surrounding uncertainties such as highway traffic load. In summary, the 
IPSO-BP algorithm in this example has deeper learning power and stability than the other three models, with 
faster convergence, an obvious optimization effect, and relatively short time consumption.

Conclusion
In this paper, the improved IPSO-BP algorithm with adaptive inertial weights and particle variability factors 
is introduced, combined with the traditional BP neural network, and the horizontal and longitudinal surface 
settlement data of the corresponding monitoring points are compared and predicted. The main conclusions are 
as follows:

A)	 The improved adaptive weight can make the particles dynamically adjust with the iterative process, which 
greatly increases the probability of finding the optimal parameters. At the same time, adding the factor of 
particle mutation can ensure that the particles jump out of the local optimal value in the later stage of con-
vergence to carry out a new optimization path. Theoretically, as long as the number of iterations is large, the 
algorithm for optimizing the optimal threshold and weight of the BP neural network introduced in this paper 
must be able to find the best parameters for model prediction. The results show that the improved IPSO-BP 
algorithm performs better than the other comparison models in this paper.

Figure 17.   Performance evaluation index of the algorithm model of the right test set.

Figure 18.   Performance evaluation index of the algorithm model of the left test set.
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B)	 For transverse measuring points, the settlement prediction error of the improved IPSO-BP algorithm model 
is significantly smaller than that of the other three traditional algorithm models. The maximum single-
point prediction error of the former is − 2 mm, the PWPSO-BP model is 6.57 mm, the AWPSO-BP model 
is 13.12 mm, and the BP model is 30 mm. The average prediction error of IPSO-BP is − 1.814 mm, that of 
PWPSO-BP is 4.28 mm, that of AWPSO-BP is 4.33 mm, and that of BP is 9.189 mm. It can be seen that 
the improved IPSO-BP algorithm model has great advantages over other traditional models in predicting 
single-point settlement.

C)	 The improved IPSO-BP hybrid prediction model verifies that it can predict the surface settlement law during 
the construction process in the ultrashallow buried large-section rectangular pipe jacking tunnel project, 
and the results are more accurate, which can provide new ideas for settlement precontrol of similar projects. 
Based on the support of engineering intelligent big data, the applicability and accuracy of the model can be 
further improved by expanding the data set to strengthen learning.

Because the improved IPSO-BP hybrid prediction model does not take into account all the factors affecting 
surface subsidence, it has certain limitations. However, the method proposed in this study has certain univer-
sality. As long as the index selection can be based on the actual situation of the project, it can also be applied to 
study the settlement of other pipe jacking. When the project is relatively complex and there are many indicators 
selected, dimension reduction work should be further carried out. The higher-dimensional data are projected 
into the low-dimensional space to maximize the retention of the information of the original data and finally 

Figure 19.   MSE comparison diagram of the left frame.

Figure 20.   MSE comparison diagram of the right frame.
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predict the calculation. Our next research will use more popular and stable algorithms to apply to other studies 
to help other researchers interested in this knowledge field.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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