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Influence of particle size 
in supercritical carbon dioxide 
extraction of roselle (Hibiscus 
sabdariffa) on bioactive compound 
recovery, extraction rate, 
diffusivity, and solubility
Nicky Rahmana Putra 1, Dwila Nur Rizkiyah 1, Ahmad Hazim Abdul Aziz 2, Hasmadi Mamat 2, 
Wan Muhammad Syahir Wan Jusoh 1, Zuhaili Idham 1, Mohd Azizi Che Yunus 1* & 
Irianto Irianto 3

The purpose of this work was to establish the best particle size for recovering high yields of total 
phenolic compounds (TPC), total anthocyanin compounds(TAC) and total flavonoid compounds (TFC) 
from roselle (Hibiscus sabdariffa) by applying supercritical carbon dioxide (ScCO2). The extraction 
rate, diffusivity and solubility of yield in ScCO2 were also studied and calculated utilizing models. 
Pressure (10 and 30 MPa), temperature (40 and 60 °C), and particle size (250 µm < dp < 355 µm, 
355 µm < dp < 425 µm and 425 µm < dp < 500 µm) were employed as variables in this experiment. The 
greatest recovery was 11.96% yield, 7.16 mg/100 g TAC, 42.93 mg/100 g TPC and 239.36 mg/100 g TFC 
under the conditions of 30 MPA, 40 °C and 250 µm < dp < 355 µm, respectively. The extraction rate of 
supercritical carbon dioxide in roselle extraction ranged from 5.19 E−03 to 1.35 E−03 mg/s fitted using 
the Esquivel model. The diffusivity coefficient of ScCO2 ranged from 2.17E−12 to 3.72E−11 mg/s2, as 
fitted by a single sphere model. The greatest solubility of global yield, TAC, TPC and TFC in ScCO2 was 
1.50 g/L, 0.3 mg/L, 1.69 mg/L and 9.97 mg/L, respectively, with a particle size of 250 µm < dp < 355 µm. 
The smaller particle size of roselle provides the maximum bioactive compound recovery and solubility. 
Furthermore, the diffusivity and extraction of ScCO2 are increased by decreasing the particle 
size. Therefore, a smaller particle size is appropriate for roselle extraction by ScCO2 based on the 
experimental and modelling data.

Roselle (Hibiscus sabdariffa L.) has a lengthy history of usage in a range of medical fields. It is used to treat liver 
damage, hypertension, and leukemia, among other disorders. Additionally, it has a number of medicinal ben-
efits that have been researched internationally1. Apart from being offered in the form of drinks such as jellies, 
fruit juices and dried fruit, it is also exploited as a colouring factor in a number of sectors2. Additionally, roselle 
contains a high concentration of phenolic, flavonoid, and antioxidant components3.

Current research demonstrates that supercritical carbon dioxide (ScCO2) is often utilized to extract important 
chemicals, notably phenolic, flavonoid and antioxidant compounds. ScCO2 is an innovative approach to optimize 
the extraction of phenolic compounds because this solvent is safe and green. The key advantages of this technique 
over conventional extraction include reduced extraction time, increased extract quality, lower extraction agent 
costs, and an environmentally friendly method4. This method is fast gaining acceptance as a feasible alternative 
to solvent-solid extraction5. Its usage in the domain of essences is very recent and extremely promising6. Previous 
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study shows that this method is applied to extract Cleome coluteoides Boiss7, L. acanthodes8, peanut skin9, omega-3 
from Dracocephalum kotschyi seed oil10 and rosmarinic acid from Orthosiphon stamineus11.

There are two factors, chemicals and mechanical factors, in supercritical carbon dioxide extraction12,13. 
Researchers commonly use chemical factors such as pressure and temperature to enhance bioactive compound 
recovery. On the other hand, mechanical factors, such as the particle size of materials, have been slightly high-
lighted by researchers to enhance the extraction process7,14. The particle size of roselle was studied to determine 
the best particle size to obtain high global yield and anthocyanin, phenolic and flavonoid compounds.

The modeling is utilized to evaluate the particle size data and assess the effect of particle size on the extraction 
process. There are two models, Brunner and Esquivel, used to calculate the extraction rate of ScCO2 affected 
by particle size as a factor15,16. Furthermore, the diffusivity of ScCO2 impacted by particle size is explored and 
calculated using single sphere models17. The solubility of global yield, anthocyanin, phenolic and flavonoid 
chemicals impacted by particle size is also determined. Therefore, this study is complete in terms of experimental 
analysis and supported by modeling analysis to determine the influence of particle size to enhance supercritical 
carbon dioxide extraction.

Therefore, there are two objectives in this research. First, the focus of this research was to define the best 
particle size for recovering high yields, total anthocyanin compounds (TAC), total phenolic compounds (TPC) 
and total flavonoid compounds (TFC) from roselle by employing ScCO2. The second objective was to study the 
extraction rate, diffusivity and solubility of yield in ScCO2 influenced by particle size utilizing a model.

Materials and methods
Preparation of roselle.  The supplier of the dried roselle (Hibiscus sabdariffa) was Ekomekar Resources 
in Terengganu and grounded to various particle sizes of 250  µm < dp < 355  µm, 355  µm < dp < 425  µm and 
425 µm < dp < 500 µm using a professional blender (Panasonic, Japan) and sieved using an Endecott’s Octagon 
2000 Digital Sieve Shaker. The origin of the roselle is from the Terengganu, Malaysia. The moisture content of 
dried roselle was maintained below than 8%, that the moisture content (%) was calculated from the sample 
weight before and after drying. The dried was in a freezer (Liebherr EFL 3505).

Chemicals.  Sigma-Aldrich provided ethanol analysis grade (99.50%), gallic acid, Folin-Ciocalteu, KCl and 
Na2SO4. Anhydrous of Na2CO3. Al2NO3 and CH3COOK were also purchased from Sigma-Aldrich. Liquid CO2 
(99% purity) was used in the solid-solvent extraction purchased from Kras, Johor Bahru, Malaysia.

Supercritical carbon dioxide (ScCO2).  The equipment consisted of a 50 mL extraction vessel (internal 
diameter: 1.4 cm; length: 33 cm), a CO2 pump (Lab Alliance’s Supercritical 24), a back pressure regulator (Jasco 
BP 2080 Plus Automated BPR, Japan), and an oven (Memmert, Japan). Roselle powder (3 ± 0.005 g) was added 
to an extraction vessel, and the CO2 temperature chiller was adjusted to 6 °C. To find the optimal particle size, 
particle sizes of 250 µm < dp < 355 µm, 355 µm < dp < 425 µm and 425 µm < dp < 500 µm were used. The back-
pressure regulator’s heater was set to 50 °C. After slowly adding liquid CO2, 0.24 mL/min ethanol was introduced 
as an entrainer (VEtoh/VCO2). The extraction time was set to 60 min. The extract contained the ethanol as a co-
solvent was dried using vacuum evaporator at temperature of 40 °C to prevent the degradation process. Table 1 
summarizes the extraction parameters and responses. The schematic design of ScCO2 extraction utilizing etha-
nol as a cosolvent is shown in Fig. 1.

Analysis of total anthocyanin content (TAC).  A pH differential technique was used to assess the 
anthocyanin content of roselle calyces extract18. Two dilutions of the same material were prepared using potas-
sium chloride (0.025 M) and sodium acetate trihydrate solutions (0.4 M), respectively. Both were adjusted to pH 

Table 1.   The particle size parameters and responses of yield (%), TAC (mg/100 g), TPC (mg/100 g) and TFC 
(mg/100 g).

Run Temp, °C P, Mpa FCO2, ml/min FModifier, ml/min Time, min Dp, µm Global yield, % TAC, mg/100 g TPC, mg/100 g TFC, mg/100 g

1

40 10 4 0.24 60

250 < dp < 355 7.91 3.12 25.98 130.27

2 355 < dp < 425 6.91 2.09 21.28 123.27

3 425 < dp < 500 6.37 1.50 15.08 101.81

4

60 10 4 0.24 60

250 < dp < 355 7.93 2.59 22.37 120

5 355 < dp < 425 7.75 2.04 19.66 105.44

6 425 < dp < 500 6.78 1.70 15.76 93.63

7

40 30 4 0.24 60

250 < dp < 355 11.96 7.16 42.93 239.36

8 355 < dp < 425 11.57 6.28 39.32 219.27

9 425 < dp < 500 9.15 5.71 34.06 191.81

10

60 30 4 0.24 60

250 < dp < 355 8.99 6.66 39.67 231

11 355 < dp < 425 8.43 5.35 35.93 200.90

12 425 < dp < 500 6.59 4.82 31.86 170.90

Average 8.36 4.09 28.66 160.64
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1.0 and 4.5, respectively, using hydrochloric acid (0.1 M). The absorbance was determined using an ultraviolet–
visible (UV–Vis) spectrophotometer (Jasco, Japan) at 520 and 700 nm using Eq. (1).

The TAC was calculated as mg cyanidin-3-glucoside (cya 3-glu)/100 g of dry roselle as in Eq. (1);

A is absorbance, MW is the molecular weight of cyanidin 3-glucoside (449.2 g/mol), DF is the dilution factor, 
Ɛ is the cyanidin 3-glucoside extinction coefficient (26,900 L/cm mol), and L is the cell path length (1 cm). TAC 
(mg/L) was transformed to mg of roselle extract per 100 g of dried roselle.

Analysis of total phenolic compounds (TPC).  According to Rizkiyah et al.3, the total phenolic com-
pounds in each sample were determined. 5 mL of Folin–Ciocalteu reagent was sonicated for 5 min in 50 mL of 
distilled water and 40 mL of distilled water containing 3 g of Na2CO3. The concentration of extract was set 1 mg/
mL. Furthermore, 1 mL of diluted extract was added 5 mL of Folin–Ciocalteu solution. The addition of 4 mL 
of Na2CO3 solution was followed by a 30 min rest at room temperature. Using a UV–Vis spectrophotometer, 
the absorbance at 760 nm was measured (Jasco, Japan). The limit of detection (LOD) and limit of quantifica-
tion (LOQ) were 23.31 and 70.63, respectively. The total phenolic compounds were analyzed using a gallic acid 
standard curve, and the results are reported in milligrams of gallic acid equivalents per 100 g of dried roselle 
(mg/100 g).

(1)Absorbance : (A520 − A700)pH1.0− (A520 − A700)pH 4.5.

(2)TAC
(

mg/L
)

: A × MW × DF × 1000/ε × L.

 
(a) 

 
(b) 

Figure 1.   The ScCO2 extraction (a) schematic diagram (b) apparatus.
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Analysis of total flavonoid compounds (TFC).  The analysis of total flavonoid compounds was con-
ducted using Putra et al.19. The concentration of extract was set 1 mg/mL. 1 mL of sample was mixed with 0.2 mL 
of 10% Al2NO3 and 0.2 mL of 1.0 M CH3COOK at room temperature for 40 min. At 415 nm, the absorbance of 
each sample was measured using a UV–Vis spectrophotometer (Jasco, Japan). The limit of detection (LOD) and 
limit of quantification (LOQ) were 21.34 and 64.67, respectively Using quercetin as a standard, a standard curve 
was constructed, and the results were reported as mg quercetin equivalents per 100 g of dried roselle (mg/100 g).

Experimental design.  Pressure (10 and 30  MPa), temperature (40 and 60  °C), and particle size 
(250 µm < dp < 355 µm, 355 µm < dp < 425 µm and 425 µm < dp < 500 µm) were employed as variables in this 
experiment. The responses of this study were global yield, TAC, TPC and TFC.

Calculation of global yield recovery.  The global yield recovery was calculated using Eq. (1),

where ma is the mass of the extract (g) and mab is the mass of the sample (g).

Extraction rate of bioactive compounds from roselle using ScCO2.  Brunner’s and Esquivel’s mod-
els were used to fit the extraction rate data of global yield. The Esquivel model has two adjustable parameters 
( y and k ) as shown in Eq.  (4)16. The adjustable parameters are obtained from SFsolver Microsoft Excel 2019 
(Microsoft® Word 2019 MSO (Version 2212 Build 16.0.15928.20196) 64-bit).

where y is the predicted global yield (mg), k are the adjustable parameters (s), and t is the extraction time (s). 
The extraction rate of the global yield can be obtained by y/k (mg/s).

Brunner’s model also has two adjustable parameters ( Y2andk2 ) that represent a specific solution of Fick’s law, 
as shown in Eq. (5)15:

where GY is the global yield (mg), y is the predicted total phenolic or flavonoid content (mg/g), 1/k is the 
adjustable parameter and t is the extraction time (s). The extraction rate of global yield can be obtained by y/k 
(mg/s).

Single sphere model.  A single sphere model was proposed by Reverchon17 with the following assump-
tions:

1.	 Intra particle of mass transfer is the main factor in the extraction process.
2.	 Resistance of mass transfer is zero between the extract and the solvent.
3.	 The roselle as a raw material is an inert porous sphere.
4.	 Particle size of roselle is homogenous.
5.	 Global yield is extracted move through the particles by process ‘similar to diffusion.

The diffusion equation for a constant diffusion coefficient takes the form of Eq. (6).

where Mt is the total amount of diffusing substance at a specific time, M∞ is the corresponding quantity after 
infinite time, De is the diffusivity coefficient (m2/s), R is the radius of the particle (m) and t is time (s). In this 
investigation, the solver in Microsoft Excel 2021 was used to determine the diffusivity coefficient. The adjustable 
parameters are obtained from SFsolver Microsoft Excel 2019 (Microsoft® Word 2019 MSO (Version 2212 Build 
16.0.15928.20196) 64-bit).

Calculation of solubility.  Determination of the solubility of global yield is according to Eq. (7)

where GY(g) is the global yield (g) and �Vco2(L) is the total CO2 consumption. The total CO2 consumption is 
measured based on the flowmeter of the CO2 pump.

(3)GY(%) =
ma

mab
× 100,

(4)GY
(

mg
)

= y

(

t

k + t

)

,

(5)GY
(
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)
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)
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Average absolute relative deviation (AARD).  The AARD value is used to identify the optimal model 
between the model and the experimental data and is shown in Eq. (8).

where n is the number of data points, Emodel is the model data, and Eexp is the experimental data.

Coefficient of determination (R2).  The R2 value is used to establish the optimal model between the 
model and experimental data, as shown by Eq. (9)

Based on Eq. (9), 
∑

i (EMi − EDi)
2 is the residual data (i.e. an error between the model and the experimental 

data). Meanwhile, 
∑

i (xi − x)2 is the variance of the data.

Results and discussion
The dried roselle was grounded and sieved to various particle sizes of 250 µm < dp < 355 µm, 355 µm < dp < 425 µm 
and 425 µm < dp < 500 µm. The exclusion of particle size dp < 250 was due to the clogging of the apparatus. Fine 
particle of dried roselle will be compact in high pressure condition. Therefore, the extraction efficiency of the 
process will be reduced20. The moisture content of dried roselle was maintained below than 8%. This prevented 
the production of ice particles in the extraction tube4. Additionally, this development will block the ScCO2 
extraction tube. In this research, the effect of particle size was examined and discussed with the responses of 
bioactive compound’s recovery, diffusivity, extraction rate and solubility.

Effect of particle size on global yield, TAC, TPC and TFC.  The particle size of the sample matrix is 
crucial for obtaining the maximum yield of supercritical carbon dioxide extraction using ethanol as an entrainer/
cosolvent. Reducing the solute particle size will increase the extraction process yield14. Although reducing the 
particle size will increase the extract yield, previous researchers have reported that reducing the particle size does 
not always increase the yield extract. Therefore, preliminary studies are required to determine the optimal parti-
cle size to obtain the highest extract yield with various particle sizes6. In this investigation, roselle was produced 
via milling, where the milling process may enhance the specific area of the particle solute and damage the cell 
walls of roselle by decreasing the particle size21.

Figures 2, 3, 4 and 5 show the influence of particle size on global yield in the extraction of roselle by ScCO2 
at constant parameters (a) 10 MPa, 40 °C, (b) 10 MPa, 60 °C, (c) 30 MPa, 40 °C, and (d) 30 MPa, 60 °C. Table 1 
also shows the particle size parameters and responses of yield (%), TAC (mg/100 g), TPC (mg/100 g) and TFC 
(mg/100 g). The results show that decreasing the particle size from 425 µm < dp < 500 µm to 250 µm < dp < 355 µm 
at constant parameters (a) 10 MPa, 40 °C, (b) 10 MPa, 60 °C, (c) 30 MPa, 40 °C, and (d) 30 MPa, 60 °C increases 
the global yield, total anthocyanin content (TAC), total phenolic compounds (TPC) and total flavonoid com-
pounds (TFC), as shown in Figs. 2, 3, 4 and 5. Reducing the particle size improves the sample contact area with 
extraction solvents. Grinding produced coarser and smaller samples, but powdering produced more homogene-
ous and smaller particles, resulting in improved surface contact with extraction solvents. The solvent must make 
contact with the solute, and a particle size less than 0.5 mm is optimal for efficient extraction. Reverchon et al.22 
also mentioned that larger particles may result in lengthy diffusion-controlled solvent extraction and that slow 
diffusion can significantly impact the extraction kinetics.

Sodeifian et al.23 discovered that particle size may have two contradictory impacts on extraction yield. In 
contrast, the grinding procedure increases the contact area between the supercritical fluid and the samples, hence 
increasing the extraction yield. In fact, from a mass transfer stand point, additional particle size reduction may 
inhibit the extraction process, since the volatile oil may be simply reabsorbed on matrix surfaces, resulting in a 
decrease in solute transport.

In addition, the small size of particles may contribute to bed caking formation (particles sticking together, 
channelling) along the bed through which ScCO2 can flow more efficiently, resulting in insufficient contact 
between the sample and ScCO2 and, ultimately, insufficient extraction yield. Furthermore, Putra et al.6 also found 
that the fine particle of peanut skin (dp < 250 µm) give low extraction efficiency of catechin as polar compounds. 
The polarity of catechin is similar to the anthocyanin, thus the process can be compared. This phenomenon is 
due to the small size of particles may contribute to bed caking formation during the extraction. It reduced the 
extraction efficiency of ScCO2. It is also reducing the diffusivity of CO2 to break the cell wall of materials.

Additionally, Darbandi et al.24 discovered that grinding the material prior to the extraction procedure 
enhances the interfacial area. In addition, crushing the particles facilitates the release of oil from the cells. 
During the grinding process, certain cells are damaged, and the contained oil is released from the shattered cells. 
ScCO2 makes this quantity of released extract containing bioactive compounds more accessible, and it dissolves 
rapidly in the solvent. Milling the particles reduces the intraparticle barrier to mass transfer in addition to these 
benefits. Consequently, the route of diffusion in solids becomes shorter. Thus, the solute will be easier to move, 
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and the extraction yield will increase. The aforementioned causes may explain why the extraction yield increases 
as the particle size decreases.

Sabio et al.25 also studied the impact of particle size on the extraction yield of a combination of tomato 
skin and seeds. Contrary to this research, greater particle size increases yield more than smaller particle size 
at constant pressure of 300 bar, temperature of 60 °C, and flow rate of 0.792 kg/h for two distinct particle sizes. 
Larger particles in this instance give a unique diffusion-controlled extraction but need a lengthy processing time. 
The extraction yield increased as the particle size decreased. This is the result of the increased interfacial area.

Influence of the particle size of roselle on the extraction rate of global yield.  Brunner’s and 
Esquivel’s models were used for the investigation of the extraction rate because they require fewer adjustable 
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Figure 2.   Influence of particle size on yield in extraction of roselle by ScCO2 at constant parameters (a) 10 MPa, 
40 °C, (b) 10 MPa, 60 °C, (c) 30 MPa, 40 °C, and (d) 30 MPa, 60 °C.
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parameters and are simply fitted to experimental data9. Table 2 demonstrates that the findings of Brunner and 
Esquivel’s model fit the global yield recovery from roselle using ScCO2. Meanwhile, Fig. 6 shows that the experi-
mental data are fitted by Esquivel’s model at pressures of 10 and 30 MPa, temperatures of 40 and 60 °C, and 
particle sizes (250 µm < dp < 355 µm, 355 µm < dp < 425 µm and 425 µm < dp < 500 µm).

On the basis of the average coefficients of determination (R2) and the average absolute relative deviation 
(AARD), the most appropriate model was identified and is displayed in Table 2. The mathematical model with 
the greatest average coefficients of determination (i.e., R2 > 1) and the lowest average absolute relative deviation 
(AARD < 10%) was the most suitable. Table 2 demonstrates that Esquivel’s model provided a better fitting for 
global yield recovery than Brunner’s model, indicating that it might give more accurate data on the extraction 
rate of global yield.

The average extraction rate of the global yield was 0.01 mg/s, as shown in Table 2. On the other hand, a pres-
sure of 10 MPa, temperature of 60 °C and particle size of 250 µm < dp < 355 µm gave the maximum extraction 
rate (1.35 E−02 mg/s) and at pressure 30 MPa, tempereature 40 °C and particle size 425 µm < dp < 500 µm gives 
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Figure 3.   Influence of particle size on total anthocyanin compounds (TAC) in extraction of roselle by ScCO2 at 
constant pressure (a) 10 MPa and (b) 30 MPa.
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the minimum extraction rate (5.15E−03 mg/s). Overall, the particle size of 250 µm < dp < 355 µm gives a higher 
extraction rate of global yield compared to 355 µm < dp < 425 µm and 425 µm < dp < 500 µm, as shown in Fig. 7. 
It is often assumed that cavitation effects, heat impacts, and mechanical effects have a substantial impact on 
the ScCO2 extraction method12. These actions result in cell wall disintegration, particle size reduction, and an 
increase in reaction rate by mass transfer of the cell wall, without altering the extracts’ structure or function26,27. 
Therefore, a smaller particle size might improve the particle cell wall damage, hence increasing the extraction 
rate and global yield.

Influence of the particle size of roselle on diffusivity of global yield.  To determine the diffusivity 
coefficient and mass transfer between solvent and solute on supercritical carbon dioxide, the single sphere model 
is typically employed as the kinetic model. The single sphere model is easier to use than other kinetic models 
because it has a single adjustable parameter compared to other models28. Table 3 demonstrates that the findings 
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Figure 5.   Influence of particle size on total flavonoid compounds (TFC) in extraction of roselle by ScCO2 at 
constant pressure (a) 10 MPa and (b) 10 MPa.

Table 2.   The experimental data fitted by Esquivel and Brunner models.

Run Temp, °C P, Mpa
FCO2, ml/
min Dp, µm

Global 
Yield, %

Esquivel Brunner

k y
k/y 
(mg/s) %AARD R2 k 1/y

k/y 
(mg/s) %AARD R2

1

40 10 4

250 < dp < 355 7.91 1.13E + 04 9.41E + 01 8.32E−03 3.00 1.00 1.88E−04 4.46E + 01 8.37E−03 3.15 1.00

2 355 < dp < 425 6.90 3.46E + 04 2.46E + 02 7.12E−03 1.26 1.00 1.53E−04 4.87E + 01 7.47E−03 3.67 0.99

3 425 < dp < 500 6.37 6.16E + 05 3.50E + 03 5.69E−03 0.18 1.00 1.18E−04 5.35E + 01 6.31E−03 4.01 1.00

4

60 10 4

250 < dp < 355 7.94 8.96E + 03 1.21E + 02 1.35E−02 12.70 0.99 8.90E−05 1.31E + 02 1.16E−02 10.23 0.99

5 355 < dp < 425 7.75 9.12E + 03 1.17E + 02 1.29E−02 14.40 0.98 9.75E−05 1.16E + 02 1.13E−02 12.30 0.99

6 425 < dp < 500 6.79 1.11E + 10 8.36E + 07 7.53E−03 8.08 1.00 6.63E−05 1.27E + 02 8.45E−03 9.76 0.99

7

40 30 4

250 < dp < 355 11.97 1.13E + 04 9.41E + 01 8.32E−03 3.99 1.00 1.88E−04 4.46E + 01 8.37E−03 4.15 1.00

8 355 < dp < 425 11.57 1.50E + 04 1.05E + 02 7.00E−03 0.56 1.00 1.18E−04 5.92E + 01 6.96E−03 0.63 1.00

9 425 < dp < 500 9.15 3.65E + 10 1.88E + 08 5.15E−03 3.13 1.00 3.94E−05 1.41E + 02 5.55E−03 4.35 1.00

10

60 30 4

250 < dp < 355 8.99 2.91E + 04 2.45E + 02 8.42E−03 7.53 0.99 7.11E−05 1.19E + 02 8.45E−03 7.72 0.99

11 355 < dp < 425 8.43 1.09E + 04 9.83E + 01 9.00E−03 13.15 0.99 1.94E−04 4.78E + 01 9.28E−03 13.91 0.98

12 425 < dp < 500 6.59 1.97E + 08 1.03E + 06 5.22E−03 8.70 1.00 1.18E−04 5.20E + 01 6.13E−03 11.95 0.99

Average 8.36 3.99E + 09 2.27E + 07 0.01 0.99 6.39 0.00 82.00 0.01 7.15 0.99
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of the single sphere model fit the global yield recovery from roselle using ScCO2. Meanwhile, Fig. 8 shows that 
the experimental data are fitted by a single sphere model at pressures of 10 and 30 MPa, temperatures of 40 and 
60 °C, and particle sizes (250 µm < dp < 355 µm, 355 µm < dp < 425 µm and 425 µm < dp < 500 µm). On this vari-
able, the single sphere model is slightly successful in fitting the experimental data with a higher percentage of 
error. This is because the single sphere model is suitable for high pressure conditions; hence, this pressure is not 
enough to obtain a high diffusivity of solvent29. Table 3 shows that the design of the experiment for this study 
based on all single sphere model experiments has an error higher than 5%.

Table 3 shows that the average diffusivity coefficient was 7.83E−12 m2/s. on the other hand, the pressure 
10 MPa, tempereature 60 °C and particle size 250 µm < dp < 355 µm gives the maximum diffusivity coef-
ficient (3.72E−11 m2/s) and at pressure 30 MPa, tempereature 40 °C and particle size 425 µm < dp < 500 µm 
gives the minimum diffusivity coefficient (2.17E−12 m2/s). Moreover, the results show that a particle size of 
250 µm < dp < 355 µm at different lowest and highest constant pressures and temperatures gives the maximum 
oil yield and diffusivity coefficient. This confirms that 250 µm < dp < 355 µm is the optimum particle size due to 
the high diffusivity coefficient of the extraction process, as shown in Fig. 9.

The high diffusivity coefficient indicates the high mass transfer process between supercritical carbon dioxide 
and extract as a solute. Therefore, increasing the diffusivity of the extraction will enhance the kinetic transfer of 
the extract to dissolve into the solvent30. Decreasing De indicates the difficulty of supercritical solvent diffusion 
into the pores of particles to dissolve the solute and implies that the mass transfer resistance is mainly located 
in the solid phase31.

Influence of the particle size of roselle on the solubility of global yield, TAC, TPC and TFC.  Solu-
bility data are a valuable measure, especially in ScCO2 extraction, to encourage the extraction process. Therefore, 
the extraction conditions can be determined appropriately by using this information. The solubility of roselle 
extracts in ScCO2 under various operating conditions is shown in Table 4, where the average solubility of global 
yield, TAC, TPC and TFC were 1.05 g/L, 0.17 mg/L, 1.19 mg/L and 6.69 mg/L, respectively. The solubility was 
evaluated at pressures of 10 and 30 MPa, temperatures of 40 and 60 °C and particle sizes of 250 µm < dp < 355 µm, 
355 µm < dp < 425 µm and 425 µm < dp < 500 µm. The value of ScCO2 density was obtained from Engineering 
toolbox (https://​www.​engin​eerin​gtool​box.​com/​carbon-​dioxi​de-​densi​ty-​speci​fic-​weight-​tempe​rature-​press​ure-
d_​2018.​html).

Table 3.   The experimental data fitted by single sphere models.

Run Temp, °C P, Mpa FCO2, ml/min FModifier, ml/min Time, min Dp, µm Global yield, % De, mg/s2 %AARD

1

40 10 4 0.24 60

250 < dp < 355 7.91 4.27E−12 29.06

2 355 < dp < 425 6.91 3.67E−12 22.88

3 425 < dp < 500 6.37 3.54E−12 23.17

4

60 10 4 0.24 60

250 < dp < 355 7.93 3.72E−11 42.35

5 355 < dp < 425 7.75 1.20E−11 40.28

6 425 < dp < 500 6.78 1.02E−11 31.70

7

40 30 4 0.24 60

250 < dp < 355 11.96 2.88E−12 24.55

8 355 < dp < 425 1157 2.78E−12 20.32

9 425 < dp < 500 9.15 2.17E−12 28.00

10

60 30 4 0.24 60

250 < dp < 355 8.99 6.22E−12 32.35

11 355 < dp < 425 8.43 5.88E−12 30.79

12 425 < dp < 500 6.59 3.19E−12 29.08

Average 8.36 7.83E−12 29.54

https://www.engineeringtoolbox.com/carbon-dioxide-density-specific-weight-temperature-pressure-d_2018.html
https://www.engineeringtoolbox.com/carbon-dioxide-density-specific-weight-temperature-pressure-d_2018.html
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Figure 8.   The experimental data with different particle size is fitted by single sphere model data at constant 
parameters (a) 10 MPa, 40 °C (b) 10 MPa 60 °C (c) 30 MPa 40 °C and (d) 30 MPa 60 °C.
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Figure 9.   The diffusivity coefficient of global yield obtained from single sphere model with different particle 
size is fitted by Esquivel data at constant parameters (a) 10 MPa, 40 °C (b) 10 MPa 60 °C (c) 30 MPa 40 °C and 
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Figure 10 shows that the higher pressures and lowest particle size increased the solubility of the extract 
because the increase in pressure enhances the density of solvents. In addition, the increase in pressure increases 
the solvation power of the ScCO2 mixture to roselle32. Table 4 also shows that the lowest particle size of 
250 µm < dp < 355 µm gives the highest solubility TAC, TPC and TFC. Fine particles are simpler to extract because 
they have a large surface area per unit volume, contain a high proportion of “free oil” and need less distance for 
the “tied oil” to reach the surface, which minimizes the internal mass transfer resistance33,34. Reverchon17 found 
that the influence of particle size on cumulative solubility may be described in terms of mass transfer resistances. 
The extraction of solute from the solid matrix presents two forms of mass transfer resistances, namely, internal 
mass transfer resistance and exterior mass transfer resistance35. If the internal mass transfer mechanisms com-
prise the governing phase of the extraction process, the particle size of the roselle matter may greatly impact the 
cumulative extraction yield. In this condition, extraction from various particle sizes will mostly depend on the 
length of the diffusion path20. If internal mass transfer or equilibrium is the controlling stage of the process, the 
particle size could significantly impact the extraction rate/solubility36.

Conclusion
Roselle (Hibiscus sabdariffa) provides anthocyanin, phenolic, flavonoid, and antioxidant components, among 
other things. The essential compounds in roselle are extracted using ScCO2 as a green solvent. Mechanical 
parameters, such as the particle size of materials, have been slightly studied by researchers to enhance the 
efficiency of ScCO2 extraction. The particle size of roselle was studied to obtain the best particle size with high 
global yield and anthocyanin, phenolic and flavonoid compounds. The greatest recovery was 11.96% yield, 
7.16 mg/100 g TAC, 42.93 mg/100 g TPC and 239.36 mg/100 g TFC under the conditions of 30 MPA, 40 °C and 
250 µm < dp < 355 µm, respectively. The extraction rate of ScCO2 in roselle extraction was ranged from 5.19 E−03 
to 1.35 E−03 mg/s fitted using the Esquivel model. The diffusivity coefficient of ScCO2 ranged from 2.17E−12 to 
3.72E−11 mg/s2, as fitted by a single sphere model. The maximum solubility of global yield, TAC, TPC and TFC in 
ScCO2 was 1.50 g/L, 0.3 mg/L, 1.69 mg/L and 9.97 mg/L, respectively, with a particle size of 250 µm < dp < 355 µm. 
In conclusion, a reduced particle size enhances the solubility, diffusivity, extraction rate and recovery of the 
extract.

Table 4.   Particle size effect on solubility of roselle extract and its bioactive compounds.

Run Temp, °C P, Mpa FCO2, ml/min
FModifier, ml/
min Time, min Dp, µm

Global yield, 
%

Solubility 
global yield, 
g/L

Solubility 
TAC, mg/L

Solubility 
TPC, mg/L

Solubility 
TFC, mg/L

1

40 10 4 0.24 60

250 < dp < 355 7.91 0.99 0.13 1.08 5.43

2 355 < dp < 425 6.91 0.86 0.09 0.89 5.14

3 425 < dp < 500 6.37 0.80 0.06 0.63 4.24

4

60 10 4 0.24 60

250 < dp < 355 7.93 0.99 0.11 0.93 5.00

5 355 < dp < 425 7.75 0.97 0.09 0.82 4.39

6 425 < dp < 500 6.78 0.85 0.07 0.66 3.90

7

40 30 4 0.24 60

250 < dp < 355 11.96 1.50 0.30 1.79 9.97

8 355 < dp < 425 1157 1.45 0.26 1.64 9.14

9 425 < dp < 500 9.15 1.14 0.24 1.42 7.99

10

60 30 4 0.24 60

250 < dp < 355 8.99 1.12 0.28 1.65 9.63

11 355 < dp < 425 8.43 1.05 0.22 1.50 8.37

12 425 < dp < 500 6.59 0.82 0.20 1.33 7.12

Average 8.36 1.05 0.17 1.19 6.69
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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