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Identifying polymorphic 
cis‑regulatory variants as risk 
markers for lung carcinogenesis 
and chemotherapy responses 
in tobacco smokers from eastern 
India
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Prateek Mascharak 1, Noyonika Mukherjee 1,7, Sangeeta Mitra 1,8, Samsiddhi Bhattacharjee 2, 
Ritabrata Mitra 3, Abhijit Sarkar 4, Tamohan Chaudhuri 4, Gautam Bhattacharjee 4, 
Somsubhra Nath 9, Susanta Roychoudhury 5 & Mainak Sengupta 1*

Aberrant expression of xenobiotic metabolism and DNA repair genes is critical to lung cancer 
pathogenesis. This study aims to identify the cis‑regulatory variants of the genes modulating 
lung cancer risk among tobacco smokers and altering their chemotherapy responses. From a list 
of 2984 SNVs, prioritization and functional annotation revealed 22 cis‑eQTLs of 14 genes within 
the gene expression‑correlated DNase I hypersensitive sites using lung tissue‑specific ENCODE, 
GTEx, Roadmap Epigenomics, and TCGA datasets. The 22 cis‑regulatory variants predictably alter 
the binding of 44 transcription factors (TFs) expressed in lung tissue. Interestingly, 6 reported lung 
cancer‑associated variants were found in linkage disequilibrium (LD) with 5 prioritized cis‑eQTLs from 
our study. A case–control study with 3 promoter cis‑eQTLs (p < 0.01) on 101 lung cancer patients and 
401 healthy controls from eastern India with confirmed smoking history revealed an association of 
rs3764821 (ALDH3B1) (OR = 2.53, 95% CI = 1.57–4.07, p = 0.00014) and rs3748523 (RAD52) (OR = 1.69, 
95% CI = 1.17–2.47, p = 0.006) with lung cancer risk. The effect of different chemotherapy regimens on 
the overall survival of lung cancer patients to the associated variants showed that the risk alleles of 
both variants significantly decreased (p < 0.05) patient survival.

Exposure to tobacco smoke in active and passive modes is a significant player in the etiology of lung cancer. A 
high risk of tobacco smoke-induced lung cancer is prevalent in heavy and light  smokers1–4. However, all individu-
als exposed to the same type and dose of tobacco smoke do not develop the  disease5. Epidemiological data reveals 
that about 15–20% of smokers develop lung cancer while the rest evades the  malady4,5, suggesting the existence 
of individual susceptibility. Although microarray analysis and SNP-based association studies have implicated 
many genes associated with lung carcinogenesis in tobacco smokers, the precise genetic risk signature(s) or 
prognostic marker(s) is still obscure.
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Aberrant expression of xenobiotic metabolism and DNA repair genes is a hallmark of lung  cancer6–9. The 
Phase I and Phase II xenobiotic-metabolizing genes (XMGs) are involved in the active clearance of tobacco smoke 
components that prevents subsequent oxidative stress-induced DNA damage in the pulmonary cells. Some of 
these genes function in the bio-activation of pro-carcinogenic tobacco smoke components into highly reactive 
and potent carcinogens resulting in increased carcinogen load in the lung  cells10–12 causing DNA lesions. The 
increased burden of carcinogenic metabolites in the pulmonary cells causes increased genomic insults leading 
to DNA  lesions13–15. Increased risk of smoking-induced lung cancer is, thus, not only due to exogenous/tobacco 
smoke contents but their interactions with genes involved in their detoxification or bio-activation10–12 and the 
extent and efficiency of repair of DNA  damage16,17 caused by tobacco smoke. Microarray and RNA-seq analy-
sis revealed differential expression patterns of XMGs and DNA repair genes (DRGs) in the airway bronchial 
epithelium of healthy smokers (HS)18 compared to healthy non-smokers (HNS)14,17 as well as in smokers with 
lung cancer (SLC) (Supplementary material Fig. S1). Therefore, genes with higher expression in smokers than 
non-smokers indicate their role in response to tobacco smoke, and their lower expression in lung cancer patients 
could be due to their inherent ineffective status. However, some genes overexpress in lung cancer patients and 
increase the carcinogenic load within the cells due to the bioactivation of smoke metabolites.

The regulation of differential gene expression could be due to the variations in the cis-regulatory elements 
of the gene concerned, often present at long-range upstream or downstream to the transcription start sites. The 
ENCODE (ENCyclopedia Of DNA Elements)19,20 has revealed the genomic positioning of DNase I hypersensitive 
sites (DHS), which are open chromatin structures accessible to DNA binding proteins like transcription  factors21. 
Transcriptional regulation by proximal or distal DHS could be modulated by single nucleotide variants through 
alteration in the transcription factor (TF)-binding and structural  looping22–24. Thus, these DHS-SNVs could 
be responsible for the aberrant expression of XMGs and DRGs in a certain fraction of the smoker population, 
resulting in the accumulation of carcinogens within the pulmonary cells causing oxidative DNA  lesions17, which, 
if not repaired effectively, might lead to a tumorigenic transformation of the cells. These SNVs, individually or 
 together25, could act as risk markers of lung cancer, conferring an inherited predisposition in specific individuals.

The standard adjuvant chemotherapy regimens include platinum-based drugs, which are ineffective in 
increasing the median life expectancy of lung cancer patients and are also extensively  toxic26,27. Earlier investi-
gations have reported differential gene expression as a predictor for determining patient-specific chemotherapy 
 regimens28 and polymorphic variants’ role in modifying chemotherapeutics’ sensitivity and efficacy on different 
 cancers29,30. Bioactivation and bioavailability of chemotherapeutic drugs depend on phase I and phase II xeno-
biotic metabolism enzymes, making them a central player in the efficacy of lung cancer  treatment31. Moreover, 
most standard chemotherapy drugs introduce DNA damage, which, if repaired, leads to lesser efficacy of the 
 drugs32. Therefore, the differential expression of specific lung cancer-associated genes from xenobiotic metabo-
lism and DNA repair pathways due to cis-regulatory variants could modulate the efficacy of standard adjuvant 
chemotherapy.

Therefore, this study aims to identify, annotate and prioritize the DHS-SNVs of xenobiotic metabolism 
and DNA repair genes as genetic susceptibility markers for lung cancer in tobacco smokers, followed by a 
case–control association study on the eastern Indian population. Further, we aimed to evaluate the role of lung 
cancer-associated regulatory SNVs on the effect of standard chemotherapy drugs used to treat the patients and 
their overall survival.

Materials and methods
Selection of candidate genes. We followed a detailed literature search to identify xenobiotic metabolism 
and DNA repair genes showing differential expression between lung cancer and healthy individuals. Following 
this, we checked the SEGEL  database33 for expressional differences between HNS and HS groups. We considered 
all the genes that showed differential expression (p < 0.05) and no significant expressional differences between 
the HNS and HS groups in more than two lung cell types. We did not consider the alveolar macrophage cell 
type from the SEGEL database in our study. Similarly, we listed median-gene expression of the same set of genes 
between HS and SLC individuals reported in the  literature4,7,9 and  ONCOMINE34 considering fold change ≥ 1.5 
and p < 0.05. Further, we validated the expression of the selected genes by comparing their expression between 
the lung adenocarcinoma (LUAD) and/or lung squamous cell carcinoma (LUSC) RNA-seq datasets of The Can-
cer Genome Atlas (TCGA) and normal lung epithelium from GTEx processed and presented as a web server, 
GEPIA (Gene Expression Profiling Interactive Analysis)35 (http:// gepia. cancer- pku. cn/). Based on our hypoth-
esis, we listed those genes that showed differential normalized median expression considering fold change ≥ 1.5 
and p-value < 0.05 between the LUAD/LUSC and GTEx datasets as our selection criteria for our SLC vs. HS 
group. Finally, we selected those genes that showed reciprocal expressional patterns between HS vs. HNS and 
SLC vs. HS groups.

Selection of candidate DHS and DHS‑SNVs. We curated the top 10 expression-correlated DHS 
(GRCh37/hg19 human genome assembly; cut-off p < 0.05) from the "Regulatory Elements Database" (http:// 
DNase. genome. duke. edu/)21,36,37 for each of the selected genes. According to Sheffield et al.21, this method calcu-
lates Pearson correlation across samples between gene expression and normalized DNase I scores for each DHS 
within 100 kb of each gene. A minimum value for DNase I signal and gene expression is set, followed by the 
calculation of permutation P-value using the null distribution of DHS correlations for each gene to a random 
sample of 10,000 DHSs from different chromosomes (p < 0.05). We obtained the SNVs within such selected 
DHS from the UCSC Table  Browser38 (http:// genome. ucsc. edu/). The UCSC Table Browser was configured to 
our desired settings by changing the default assembly parameter to Feb 2009.GRCh37/hg19″, “group: variation”, 
“track: common SNPs (141)”, “table: All SNPs (141)”.

http://gepia.cancer-pku.cn/
http://DNase.genome.duke.edu/
http://DNase.genome.duke.edu/
http://genome.ucsc.edu/
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Computational prioritisation of DHS‑SNVs. We used the ENCODE data analyzing tools: rSNPBase 
1.039 and RegulomeDB v 1.140 to prioritize DHS-SNVs to ascertain their regulatory potential. We performed 
SNV enrichment analysis for the rSNPBase and RegulomeDB filtering steps for the DHS-SNVs compared to 
a universe of randomly selected SNVs. For all the 23 XMGs and 25 DRGs, we selected the transcription start 
sites (TSS) ± 100 kb region and extracted all the SNVs listed in the dbSNP build 141. Among this pool of SNVs, 
we randomly selected 1720 SNVs from the XMGs and 1264 SNVs from DRGs as the universe of SNPs. Then, 
we performed Fisher’s exact text to evaluate the difference in the outcomes between the DHS-SNVs and the 
universe of SNVs at 5% level of significance. Further, we assessed the impact of DHS-SNVs in genotype-spe-
cific transcriptional regulation of target genes in normal healthy post-mortem lung tissue from GTEx Portal v6 
(https:// www. gtexp ortal. org/ home/)41–43. Similarly, as mentioned above, we performed SNV enrichment for the 
GTEx filtering step for the DHS-SNVs compared to the universe of randomly selected SNVs. Lung cell-type-
specific DHS of the genes were obtained from the Regulatory Elements Database21, considering DHS peak for at 
least one lung cell type. Further, LD blocks of the cis-eQTLs were obtained from HaploReg v4.1 (https:// pubs. 
broad insti tute. org/ mamma ls/ haplo reg/ haplo reg. php)44 based on the information from 1000 genome phase 3 
data. The gain or loss of transcription factor binding sites (TFBS) due to rSNVs from position weight matri-
ces (PWM) listed in  JASPAR45 and ENCODE motif libraries were statistically (pimpact < 0.001) evaluated in an 
R-based web server, known as “atSNP” (http:// atsnp. biost at. wisc. edu/)46. Further, the expression of such TFs in 
lung cancer was determined from the Database of Transcription Factors for Lung Cancer (DbTFLC) (https:// vit. 
ac. in/ files/ datab ase/ Home. php)47.

Regulatory functional annotation of prioritized rSNVs. Further, we assessed the prioritized rSNVs 
for more functional attributes that justify their cis-regulatory role in modulating lung cancer risk through the 
following analyses:

Epigenomic signatures at the rSNVs. According to their epigenetic marks, we classified the identified cis-
eQTLs (rSNVs) into functional chromatin domains, such as enhancers, promoters, and insulators. The data 
was obtained from HaploReg v4.144, which hosts the epigenomic data of the Roadmap Epigenomics consortium 
 201548,49.

Cis‑eQTLs in lung cancer. The PancanQTL web server (http:// bioin fo. life. hust. edu. cn/ Panca nQTL/)50 contains 
the processed cis-eQTL mapped data on 33 different cancers from The Cancer Genome Atlas (TCGA) raw data. 
We used this webserver to analyze the cis-eQTL mapping of the prioritized rSNVs of the selected XMGs and 
DRGs in lung cancer datasets.

Linkage disequilibrium (LD) block of rSNVs. We prioritized the LD SNPs  (r2 ≥ 0.8) of the prioritized rSNVs for 
their association with lung cancer and other carcinogen-induced cancer. In addition, we obtained the LD block 
SNPs from HaploReg v4.144 for each of the queried rSNVs, which was taken from the 1000 Genome Project 
Phase 3 data. Finally, we checked for an indirect association of the rSNVs with lung cancer by itself being in LD 
with lung cancer-associated SNPs.

Co‑occurrence of risk alleles and unweighted genetic risk scores. Furthermore, we assessed the co-occurrence of 
risk alleles of the prioritized rSNVs for all the 26 populations listed in the 1000  Genome51 Phase 3 data to identify 
the risk population based on their unweighted genetic risk scores. In addition, we calculated the unweighted 
genetic risk score (uGRS)52 (i.e., the summation of the number of risk alleles across all the prioritized rSNVs) for 
each 1000 Genome Project enlisted population.

Interactome analysis. We performed an interactome analysis for the prioritized protein coding in STRING 
v10.5 (http:// string- db. org)53,54, including known and predicted protein–protein interactions. The interactome 
was expanded to gain more interactors, with a required confidence score > 0.4 as the cut-off.

Case–control association analysis in a representative population from eastern India. Selection 
of the study subjects. This study included lung cancer patients (n = 101) from Saroj Gupta Cancer Centre and 
Research Institute and the Department of CHEST, IPGME&R in Kolkata. We recruited clinico-radiologically 
confirmed healthy smokers (n = 401) above 55  years55 of age and without any history of cancer as controls. The 
patients and controls belong to the same geographical region with a confirmed smoking history. We did not 
consider former smokers (who had quit smoking ≥ 15 years) for the study. First, a detailed questionnaire that 
included age at sample collection, ethnicity, pack-years, and tumor details like histotype, and TNM  staging56, 
were filled up under medical supervision. Then, we noted a detailed account of the followed treatment regimen, 
including drug combinations, dosages, cycles, responses, and survival time and status. All patients received 
platinum-based doublet chemotherapy consisting of either cisplatin or carboplatin and another drug in combi-
nation. Initially, the patients received 4 cycles of chemotherapy with careful observations of their responses. The 
treatment was stopped if significant toxicity was observed; otherwise, it was extended to 6 cycles.

Collection of blood samples. We collected 10 ml of peripheral blood by venipuncture from lung cancer patients 
and healthy controls under the supervision of our collaborating clinicians in ethylene-diamine-tetraacetic acid 
(EDTA) coated tubes. Before sample collection, we obtained informed written consent from the subjects or their 
family members for voluntary participation in the study.

https://www.gtexportal.org/home/
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
http://atsnp.biostat.wisc.edu/
https://vit.ac.in/files/database/Home.php
https://vit.ac.in/files/database/Home.php
http://bioinfo.life.hust.edu.cn/PancanQTL/
http://string-db.org
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Isolation of genomic DNA and genotyping. We performed the conventional phenol–chloroform  method57 to 
isolate genomic DNA and store them at − 20 °C. In addition, we used the PCR–RFLP method for genotyping. 
Primer sequences were custom designed in Primer3 software (http:// bioin fo. ut. ee/ prime r3-0. 4.0/ prime r3/) and 
purchased from Integrated DNA Technologies (IDT), USA. The restriction enzymes (New England Biolabs) and 
their cut patterns were determined from NEBcutter V2.0 (http:// nc2. neb. com/ NEBcu tter2/). We performed the 
PCR with the reaction mixture (20 µl) containing 50–80 ng of genomic DNA, 20 pmol of each primer, 10 μl of 
2X GoTaq PCR Master Mix (Promega), and adjusted the final volume to 20 µl with nuclease-free water. After the 
quality check, the PCR amplicons were digested with their respective restriction enzymes following the manu-
facturer’s (NEB) protocol and run on 12% polyacrylamide gels (non-SDS) with 100 bp DNA Ladder (Promega, 
Cat No. G2101). Three independent individuals verified each gel, 2 without having prior knowledge of the case/
control status of the subjects, to avoid biased genotype calls. Further, we confirmed the genotype status of ~ 10% 
of the study subjects by Sanger Sequencing.

Statistical analyses. The statistical analyses were performed in R Version 3.4.258, considering statistical 
significance at p < 0.05 (two-sided). We performed a goodness of fit chi-square test to assess the Hardy–Wein-
berg equilibrium status of the variants in our control population. Student t-test and Pearson’s chi-square tests 
evaluated the association of allele distribution and the demographic variables with lung cancer. Further, we 
performed logistic regression in additive, dominant, and recessive genetic models to assess the odds ratio (OR), 
standard error (SE), and 95% confidence intervals (95% CI) adjusted for covariates to measure the association 
of the rSNVs with lung cancer risk. We also conducted a subgroup analysis and effect modification test for the 
rSNPs stratified by covariate status on lung cancer risk.

Furthermore, we have independently replicated all the 22 rSNVs from the C34-Malignant neoplasm of bron-
chus and lung dataset of the UK Biobank hosted in the Gene Atlas webserver (http:// genea tlas. roslin. ed. ac. uk/)59. 
We performed a Kaplan–Meier log-rank test that estimated the overall survival (OS) distribution for each lung 
cancer-associated rSNVs. The multivariate Cox-proportional hazard model was used to assess the effect of each 
rSNPs on the OS of lung cancer patients, adjusted for age, sex, and pack-years of smoking. Finally, we used the 
Cox hazard methodology to evaluate the relationship between OS and the rSNVs stratified by drug combina-
tions of the treatment regimen. The patients that showed complete or partial responses to the treatment were 
categorized as responders.

In contrast, patients with stable disease, poor responses, or progressive disease were grouped as non-respond-
ers. The time to event for the survival analysis was considered a negative outcome, i.e., time to death from the 
administration of the therapy. The Kaplan–Meier log-rank and Cox-proportional Hazard tests were done in 
R using survival60 and survminer61 packages. Furthermore, we compared the responses of the first and second 
chemotherapy regimens with the OS of the lung cancer patients considering the effects of the variants rs3764821 
(ALDH3B1) and rs3748523 (RAD52) through a Cox proportional hazards model.

Ethics approval and consent to participate. The Ethics Committee of Saroj Gupta Cancer Centre 
and Research Institute (IEC SGCCRI Ref No-2017/MS/1; dated: 11.10.2017), IPGME&R (Memo No. Inst/
IEC/2015/545; dated: 10.12.2015), Kolkata and the University of Calcutta (Ref No: 0024/16-117/1434; dated: 
24.10.2016), Kolkata, India; approved the study with human subjects as per the regulation of the Indian Council 
of Medical Research (ICMR) following the Declaration of Helsinki, 1964. Informed consent was obtained from 
all individual participants included in the study.

Results
Gene prioritization. Text mining revealed 53 xenobiotic metabolism genes (XMG) and 67 DNA repair 
genes (DRG) as contenders for identifying rSNVs. These genes are potential candidates for tobacco smoke 
metabolism and smoke-induced DNA damage repair (Fig. 1). Among the 53 XMG and 67 DRG, further analysis 
of microarray datasets of ONCOMINE and SEGEL, and RNA-seq dataset of GEPIA, revealed 34 XMG and 17 
DRG to be up-regulated, 11 XMG and 26 DRG to be down-regulated, 7 XMG and 24 DRG with no significant 
difference in the median expression and 3 XMG to be inconclusive when healthy smokers (HS) were compared 
to healthy non-smokers (HNS). The set of genes as obtained were clustered as ‘Set A.’ Again, among the 53 XMG 
and 67 DRG, 23 XMG and 38 DRG were down-regulated; 23 XMG and 22 DRG as up-regulated; only 4 XMG 
and 1 DRG were found with no significant expressional change in Smoker Lung Cancer (SLC) group compared 
to HS. These were grouped as ‘Set B’ for the mentioned study groups (Supplementary material Table S1 and 
Fig. S2). Five XMG and 6 DRG showed inconclusive results. For the xenobiotic metabolism gene set, the selec-
tion of genes was segregated into the following categories: (a) genes that were found to be up-regulated in ‘Set 
A’ but down-regulated in ‘Set B,’ (b) genes down-regulated in ‘Set A’ but up-regulated in ‘Set B,’ and, (c) genes 
with no significant expressional change in ‘Set A’ but downregulated in ‘Set B.’ For DRGs, the genes belonging to 
category (b) were not considered for further prioritization because the higher expression of DNA repair genes 
should not render individuals susceptible to tobacco smoke-induced lung carcinogenesis. Our gene prioritiza-
tion pipeline revealed 23 XMG and 25 DRG potential susceptibility markers for tobacco smoke-induced lung 
carcinogenesis (Fig. 1). Therefore, 43.4% of total XMGs and 37.31% of total DRGs show significant differential 
expression between SLC and HS.

Curation of expression‑correlated DHS and DHS‑SNVs. From the Regulatory Elements Database, 
we curated 370 expression-correlated DHS (p < 0.05) for the 48 prioritized genes. The regulatory elements data-
base enlists DHS sites, which showed correlations between DNase hypersensitivity to the expression of the near-
est genes. For example, we listed 181 positively and 77 negatively correlated DHS coordinates for 23 XMGs. 

http://bioinfo.ut.ee/primer3-0.4.0/primer3/
http://nc2.neb.com/NEBcutter2/
http://geneatlas.roslin.ed.ac.uk/
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Similarly, 174 positively correlated and 99 negatively correlated DHS coordinates were found for 25 DRG (Sup-
plementary material Table S2). Furthermore, screening for SNVs within these DHS sites revealed 1720 SNVs 
for xenobiotic metabolism genes, of which 1187 SNVs belonged to positively correlated DHS and 533 SNVs to 
negatively correlated DHS. Similarly, 1264 SNVs were obtained for DNA repair genes that consist of 813 SNVs 
within positively correlated DHS and 451 SNVs within negatively correlated DHS (Fig. 1).

Functional annotation and prioritization of DHS‑SNVs. Analysis of 1720 SNVs of xenobiotic 
metabolism and 1264 SNVs of DNA repair genes in rSNPBase 1.0 revealed 526 SNVs  (ORenrichment = 1.48, 95% 
CI = 1.27–1.72, penrichment = 3.3 ×  10−7) and 609 SNVs  (ORenrichment = 1.37, 95% CI = 1.18–1.59, penrichment = 2.4 ×  10−5) 
as ‘rSNPs,’ respectively based on various regulatory features such as the proximal and distal regulatory effect 
of the SNV, RNA binding protein-mediated regulation, and miRNA-mediated regulation in an SNV-specific 
manner (Supplementary material Table S3). The 1135 SNVs (526 SNVs + 609 SNVs) obtained from rSNPBase 
were then queried to RegulomeDB v1.1. Scores ranging between 1a to 1f indicate a high regulatory poten-
tial of the SNV concerned. Scores between 2a to 3b depict evidence of transcription factor binding disruption 
without any evidence of QTL; score 4 implies supporting evidence of transcription factor binding and DNase 
peak. In contrast, scores 5 and 6 depict minimal to no evidence for regulatory annotation of the  SNVs37. We 
selected 419 SNVs  (ORenrichment = 3.40, 95% CI = 2.86–4.04, penrichment = 2.2 ×  10−16) from the XMG set and 392 
SNVs  (ORenrichment = 3.1, 95% CI = 2.57–3.75, penrichment = 2.2 ×  10−16) from the DRG set with scores between 1a to 
4 for further prioritization (Supplementary material Table S4). GTEx portal (http:// www. gtexp ortal. org/ home/) 
revealed 13 SNVs from 7 XMG  (ORenrichment = 2.13, 95% CI = 1.03–4.37, penrichment = 0.037) and 9 SNVs from 7 
DRG  (ORenrichment = 2.64, 95% CI = 1.27–5.87, penrichment = 0.006) as lung tissue-specific cis-eQTLs (p < 0.05) 
(Table 1; Supplementary material Table S5) of the respective genes (Supplementary material Fig. S3). During 
this analysis, risk alleles were identified based on the genotype-specific expression of the concerned gene fol-
lowing the expressional status in SLC. Ambiguous QTL data that failed to interpret allele-specific expression 
were not considered for further analysis. The 22 prioritized potential regulatory SNVs (rSNVs) reside within 
at least one lung cell-type DHS studied in the ENCODE project, justifying tissue-specific transcriptional cis-
regulation (Supplementary Material, Table S6). Analysis of these rSNVs through the atSNP web server predicts 
15 rSNVs to impart statistically significant gain of TFBS for 39 transcription factors (TFs). Similarly, 13 rSNVs 
were predicted to exhibit a statistically significant loss of TFBS for 28 transcription factors (TFs) (Supplemen-
tary material Table S7). Out of these 67 TFs, mining the DbTFLC revealed 44 TFs for 22 rSNVs of 14 genes to 
express in lung cancer (Supplementary material Table S8). Thus, these 22 rSNVs predictably alter the binding of 
44 TFs found to express in lung cancer, further substantiating the loci’s cis-regulatory attribute. HaploReg v4.1 
revealed rs1802061C > T (synonymous SNP; Q117Q) and rs4986947G > A (intronic SNP) of GSTA4 to be in LD. 
Similarly, rs2153608A > G (intronic SNP) and rs3219472C > T (intronic SNP) of MUTYH were also found to be 
in LD (Supplementary material Table S9).

Cancer‑associated SNPs in LD with the prioritized rSNVs. Text mining of independent candidate 
association studies revealed 2 prioritized rSNVs, i.e., rs3748523 in the DHS of RAD5262 and rs4150276 in the 
DHS of ERCC563, reported to be associated with lung cancer previously. The risk allele reported in the literature 
for these SNVs matches those predicted through our pipeline, thus providing evidence for the precision of our in 
silico data mining pipeline. We enlisted the 858 LD SNPs  (r2 > 0.8) for all our 22 predicted rSNVs from HaploReg 

Figure 1.  Pathway analysis for identifying regulatory genetic loci as susceptibility markers conferring risk 
towards tobacco smoke-induced lung carcinogenesis. (A) After a detailed literature review on epidemiological 
reports, association studies, expression studies, and case studies followed by ONCOMINE and TCGA 
validation, important xenobiotic metabolism and DNA repair genes were selected in cigarette smoke-induced 
lung cancer. (B) The selection and screening of genes, their DNase I hypersensitive sites, and SNVs within the 
DNase I hypersensitive sites by step-wise use of in silico tools and databases to prioritize potential regulatory 
SNVs as susceptibility loci in lung carcinogenesis with replications in case–control cohorts. DHS, DNase I 
hypersensitive sites, eQTL, expression quantitative trait loci, XMG, xenobiotic metabolism gene group, DRG, 
DNA repair gene group, rSNP, regulatory single nucleotide polymorphism, MAF, minor allele frequency.

http://www.gtexportal.org/home/
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v4.1 and checked the literature for their association with cancer. Text mining revealed 5 lung cancer-associated 
SNPs in LD with 5 of our prioritized rSNVs.

Furthermore, 8 SNPs associated with other carcinogen-induced cancers were found in LD, with 6 of our 
prioritized rSNVs, of which 3 are shared with lung cancer (Supplementary material Table S10). This cross vali-
dates 8 of our prioritized rSNVs to be functionally relevant in carcinogenesis. Furthermore, we checked for 
the association of LD SNPs with lung cancer in the UK Biobank GWAS dataset C34 Malignant neoplasm of 
bronchus and lung, hosted by the Gene Atlas webserver (http:// genea tlas. roslin. ed. ac. uk/ search/) and found 57 
LD-SNPs of 2 prioritized rSNVs associated with lung cancer. Therefore, we obtained 62 (57 + 5) LD-SNPs asso-
ciated with lung cancer from UK Biobank and literature. Similarly, we curated the 1010 LD-SNPs of randomly 
selected 22 SNPs from the TSS ± 100 kb region of the 23 XMGs and 25 DRGs. This set of 1010 LD-SNPs was 
considered the universe of SNPs. Out of these 1010 LD-SNPs, we found 26 LD-SNPs to be associated with lung 
cancer. Therefore, the LD-SNPs of the rSNVs are significantly enriched  (ORenrichment = 2.81, 95% CI = 1.73–4.67, 
penrichment = 8.78 ×  10−6). Thus, due to strong LD (r2 > 0.8), there is transitive evidence that the prioritized rSNVs 
are also associated with lung cancer. In such a case, the prioritized rSNVs could be the causal variants or impart 
a combinatorial effect on lung cancer pathogenesis with another functional variant. The literature search also 

Table 1.  Chromatin States and risk allele prediction of DHS-SNVs as cis-eQTLs of the target genes belonging 
to Xenobiotic metabolism and DNA repair pathway. Data from healthy cadaver lung tissue as obtained from 
the Genotype to Tissue Expression (GTEx) dataset. For lung cancer tissue, cis-eQTL mapping data was 
obtained from the PancanQTL webserver by analyzing the TCGA data. The chromatin states that data were 
obtained from HaploRegv4.1 linked to RoadMap Epigenomics, 2015 data. Normal lung tissue-specific cis-
eQTL was calculated, and screening of the rSNVs as cis-eQTL was based on a p-value < 0.05*. The risk alleles 
from the lung cancer group match that of the predicted risk alleles in healthy individuals. FDR corrected 
p < 0.05*. TSS, transcription start site. Lung cancer cis-eQTLs are depicted in bold. Significant values are in 
bold.

Gene symbol SNP p-value Effect size Tissue
Predicted risk 
allele cancer type Beta (β) t-stat p-value

Risk alleles in 
lung cancer

The Chromm 
States in the 
lung (25-core 
model)

[I] Xenobiotic metabolism genes

 SULT1A1 rs743590 2.00E−11 − 0.37 Lung G LUAD − 0.2 − 4.02 6.68E−05 G Active Enhancer 1

 SULT1A1 rs3760091 1.40E−12 0.36 Lung G No data No data No data No data No data Promoter 
Upstream of TSS

 SULT1A1 rs112411210 0.012 0.38 Lung A No data No data No data No data No data Active Enhancer 2

 GSTA1 rs10948723 4.00E−07 − 0.15 Lung C LUAD 0.35 8.04 6.92E−15 C Quiescent

 SULT1A2 rs743590 5.50E−06 0.21 Lung A No data No data No data No data No data Active Enhancer 1

 GSTA1 rs2207950 6.80E−05 0.12 Lung A LUAD 0.27 5.94 5.39E−09 A Quiescent

 GSTA4 rs1802061 0.0015 − 0.15 Lung T No data No data No data No data No data Quiescent

 ALDH3B1 rs3764821 0.0023 − 0.08 Lung G No data No data No data No data No data Promoter Down-
stream of TSS 1

 SULT1A2 rs3760091 0.023 − 0.097 Lung C No data No data No data No data No data Promoter 
Upstream of TSS

 GSTO1 rs12250592 0.027 0.13 Lung C No data No data No data No data No data Promoter Down-
stream of TSS 1

 GSTO1 rs17883150 0.00085 0.078 Lung G No data No data No data No data No data Primary DNase 
site

 GSTA4 rs4986947 0.0015 − 0.15 Lung A No data No data No data No data No data Quiescent

 SULT1A2 rs13331376 0.0058 − 0.39 Lung T No data No data No data No data No data Promoter 
Upstream of TSS

 GSTO1 rs7083465 0.027 0.13 Lung G No data No data No data No data No data Primary H3K27ac 
possible Enhancer

 MAFG rs35568625 0.042 − 0.043 Lung C No data No data No data No data No data Quiescent

[II] DNA Repair genes

 RAD52 rs3748523 2.50E−28 − 0.39 Lung G No data No data No data No data No data Active TSS

 EME2 rs238679 0.00017 − 0.11 Lung G No data No data No data No data No data Quiescent

 EME2 rs1625393 0.0012 − 0.13 Lung G No data No data No data No data No data Quiescent

 ERCC5 rs4150276 0.0009 0.094 Lung T No data No data No data No data No data Quiescent

 MUTYH rs2153608 0.012 − 0.091 Lung G No data No data No data No data No data Weak Enhancer 2

 MUTYH rs3219472 0.026 − 0.082 Lung T No data No data No data No data No data Quiescent

 POLM rs11764344 1.40E−11 − 0.38 Lung C No data No data No data No data No data Quiescent

 PMS1 rs5742926 0.00013 0.15 Lung G LUSC 0.29 4.11 4.72E−05 G Promoter Down-
stream of TSS 1

 MLH1 rs145070498 0.01 − 0.12 Lung T No data No data No data No data No data Promoter 
Upstream of TSS
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revealed 5 coding SNPs from 5 of our prioritized genes associated with lung cancer in Caucasian, Chinese, and 
Japanese populations (Supplementary material Table S11). This implies a higher risk of tobacco smoke-dependent 
lung carcinogenesis if the genes harbor the risk alleles of both coding and regulatory polymorphisms leading to 
significant impairment of gene activity and expression.

We found nominal associations (p < 0.05) of three rSNVs, such as rs35568625 (MAFG), rs3760091 (SULT1A2), 
and rs743590 (SULT1A1), with lung cancer in 1655 cases and 450,609 controls of all white British origin samples 
from the UK Biobank GWAS dataset C34 Malignant neoplasm of bronchus and lung, hosted by the Gene Atlas 
webserver (http:// genea tlas. roslin. ed. ac. uk/ search/). However, the three rSNVs, viz. rs3764821 (ALDH3B1), 
rs3748523 (RAD52), and rs5742926 (PMS1), with which we performed our case–control association study failed 
to show any association with lung cancer in the C34 Malignant neoplasm of bronchus and lung GWAS dataset 
(Supplementary material Table S12). From the pool of 2984 randomly selected SNPs within the TSS ± 100 kb 
region of 23 XMG and 25 DRGs, we randomly subsetted 100 SNPs as the universe of SNPs and found only 4 
SNPs to be associated with lung cancer in the UK Biobank GWAS dataset C34 Malignant neoplasm of bronchus 
and lung  (ORenrichment = 11.05, 95% CI = 1.51–70.31, penrichment = 0.009).

Epigenomic signatures classifying the rSNVs into chromatin domains. Using the Roadmap Epig-
enomic data, the 22 prioritized rSNVs were classified by their epigenomic signatures into functional chromatin 
domains specific to lung tissue. The analysis revealed 4 prioritized rSNVs bearing enhancer marks, 8 rSNVs 
with transcription start site flanking region/promoter marks, and 11 rSNVs with insulators/ heterochromatin/ 
repressed region-specific epigenomic marks (Supplementary material Table S13).

Population segregation based on unweighted genetic risk score. The 1000 Genome data revealed 
12 rSNVs from the 9 prioritized XMGs and 8 rSNVs from 8 DRGs to be polymorphic with global MAF > 0.01 
(Supplementary Material, Table S14). The mean uGRS estimate for each of the geographical populations of the 
1000 Genome project for 22 prioritized rSNVs revealed that the Europeans (uGRS = 83.51) are at the highest 
risk of developing tobacco-related lung cancer, followed by the East Asians (uGRS = 82.9) and South Asians 
(uGRS = 80.58). The Latin Americans (uGRS = 74.71) were at least risk, followed by the Africans (uGRS = 79.1) 
for tobacco smoke-induced lung carcinogenesis. However, the mean uGRS calculated for each subpopulation of 
the 1000 Genome data revealed the Gambians in the Western divisions in the Gambia (GWD) (uGRS = 95.92) 
to be at the highest risk of developing tobacco smoke-induced lung cancer, followed by Yorubans in Ibadan, 
 Nigeria64 (uGRS = 90.96) and Iberians in Spain (IBS) (uGRS = 88.71). On the other hand, Americans of African 
Ancestry in South West USA (ASW) (uGRS = 50.42) are the population at least risk of tobacco smoke-induced 
lung cancer, followed by people of Mexican Ancestry from Los Angeles, USA (MXL) (uGRS = 56.04) and Mende 
people in Sierra Leone (MSL) (uGRS = 69.71). (Supplementary material Table S15).

Interactome analysis for more candidate genes. The interaction network analysis between the prior-
itized genes and expanded to 50 more interactors revealed strong associations among the GST family (GSTA1, 
GSTA4, GSTO1) proteins with a high mean score greater than 0.9. Furthermore, other candidate players, such 
as TP53, NFE2L2, TPT1, and NF2, involved in apoptosis, cytoskeletal remodeling, cell cycle regulation, cancer 
stemness, and many critical cancer regulatory pathways, were found to interact with our prioritized protein-
coding genes (Supplementary material Fig. S4). The analysis revealed TP53 as the nodal gene that connects the 
xenobiotic metabolism pathway with apoptosis, DNA repair, cytoskeletal remodeling, and cancer stemness. Fur-
thermore, co-expression of our prioritized genes with other reported lung cancer-associated genes was found, 
which depicts their possible functional interplay in the disease pathogenesis (Supplementary material Table S16). 
Pathway analysis revealed a cross-regulation between cytoskeletal remodeling, metastasis, apoptosis, xenobiotic 
metabolism, DNA repair, and cell cycle regulatory pathways. Such cross-regulation among the pathways reveals 
the gene regulatory interactome in lung cancer pathogenesis (Supplementary material Tables S17–S20).

Analysis of mapped cis‑eQTL in lung cancer cases. The prioritized rSNVs were further assessed for 
their cis-regulatory potential in lung cancer cases on the processed TCGA data hosted by the PancanQTL web-
server. The analysis revealed a subset of 4 rSNVs as significant cis-eQTLs in both Lung Adenocarcinoma (LUAD) 
and Lung Squamous cell carcinoma (LUSC) datasets after false discovery rate (FDR) correction (pFDR < 0.05) 
(Supplementary material Fig. S5). Furthermore, the risk alleles of these 4 cis-eQTLs match our prediction, indi-
cating the precision and accuracy of the predictive analysis (Table 1).

Case–control association analysis. The clinical and demographic attributes of the study subjects. The 
study involved 101 smoker cases and 401 smoker controls with a mean age of 58.93 ± 12.29 and 66.18 ± 7.85, 
respectively, collected from two hospitals in Kolkata. The formula for estimating pack-years of smoking: [(No. 
of cigarettes/beedis /cigars)/20) × No. of years smoked] showed no significant difference between cases and con-
trols. However, the distribution of males over females is higher in both cases and controls. This contributed to a 
sex bias in our sampling of controls, for which we were unable to consider the parameter of gender in our asso-
ciation study. The histological subtype Adenocarcinoma (ADC) was found to be the most abundant type of lung 
cancer, followed by Squamous cell carcinoma (SqCC) and Small cell lung cancer (SCLC).

Furthermore, TNM staging data, available for 99 patients, showed that Stage III and Stage IV were highly 
over-represented compared to Stage I and Stage II, probably due to late reporting of the patients to oncologists. 
For 2 patients, TNM staging was not done till the date of sample collection. Nearly 90% of the lung cancer cases 
of our sample population exhibit distant metastasis (M1), while the remaining patients did not show any sign of 
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metastasis till the date of collection. The clinical and demographic characteristics, including age, sex, pack-years, 
tumor histology, TNM staging, and metastases, are summarised in (Table 2, Supplementary material Table S21).

Regulatory polymorphic variants and their association with lung cancer risk. The 1000 Genome data revealed 
12 rSNVs from the 9 prioritized XMGs and 8 rSNVs from 8 DRGs to be polymorphic with global MAF > 0.01, 
and we would designate them as SNPs from now on in the text as per the definition of the term (Supplemen-
tary Material, Table S21). Out of these 20 rSNPs, 3 promoter rSNPs with GTEx p-value < 0.01, i.e., rs3764821 
for ALDH3B1, rs3748523 for RAD52, and rs5742926 for PMS1, were selected for our case–control association 
analysis on the East Indian population. After genotyping, the three rSNPs were found in Hardy–Weinberg equi-
librium (Supplementary Material, Table S22). Sanger Sequencing reconfirmed that the genotype calls in about 
10% of the total samples. The representative gel and chromatogram pictures are shown in (Fig. 2).

Analysis by Pearson’s chi-square revealed an association between the predicted risk allele of rs3764821-
ALDH3B1 (G: OR = 2.54, 95% CI = 1.55–4.15, p = 0.00022***) and rs3748523-RAD52 (G: OR = 1.65, 95% 
CI = 1.13–2.41, p = 0.01*) with lung cancer while, no significant association of rs5742926 (PMS1) with lung 
cancer in smokers was found (Table 3).

Unadjusted logistic regression revealed strong association of rs3764821 of ALDH3B1 (G vs. A: OR = 2.64, 95% 
CI = 1.63–4.29, p = 0.00009***) and rs3748523 of RAD52 (G vs. C: OR = 1.69, 95% CI = 1.17–2.47, p = 0.006**) with 
lung cancer in additive model. In the dominant model, association with lung cancer was found for both rs3764821 
(AG + GG vs. AA: OR = 2.69, 95% CI = 1.61–4.50, p = 0.0002***) and rs3748523 (CG + GG vs. CC: OR = 1.77, 
95% CI = 1.14–2.76, p = 0.01*). The rSNP, rs5742926 of PMS1, has no association with lung cancer (Table 3).

Further, covariate-adjusted logistic regression revealed an association of rs3764821 of ALDH3B1 in both 
additive (G vs. A: OR = 2.51, 95% CI = 1.42–4.67, p = 0.002**) and dominant (AG + GG vs. AA: OR = 2.49, 
95% CI = 1.35–4.59, p = 0.003**) models. The rSNP, rs3748523 of RAD52 also revealed a significant associa-
tion with lung cancer in additive (G vs. C: OR = 1.83, 95% CI = 1.15–2.92, p = 0.016*), dominant (CG + GG vs. 

Table 2.  Clinical and demographic characteristics of lung cancer patients and controls. SD standard deviation, 
N total number of case-patients or control subjects. p-values for sex were derived from the Chi-square test; the 
Student t-test was used for age and pack-years. All P-values are two-sided. p < 0.05 was considered statistically 
significant.

Variable Cases, N = 101 Controls, N = 401 p-value

Age – – –

 < 39 8 0

 40–49 8 0

 50–59 28 72

 60–69 43 212

 ≥ 70 14 115

Mean ± SD 58.65 ± 12.12 66.14 ± 7.83 < 0.001***

Pack years

 < 20 9 103

 20–49 26 156

 ≥ 50 66 130

Mean ± SD 66.92 ± 34.95 59.29 ± 37.47 0.064

Gender

 Male 80 400 < 0.001***

 Female 21 1

Tumour histology

 Adenocarcinoma (ADC) 50

 Squamous cell carcinoma (SqCC) 39

 Small cell lung cancer (SCLC) 13

 Others 1

TNM staging

 I 2

 II 11

 III 48

 IV 40

 Unknown 2

Metastasis

 No 9

 Yes 91
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CC: OR = 1.73, 95% CI = 1.03–2.92, p = 0.04*) and recessive (GG vs. CC + CG: OR = 5.39, 95% CI = 1.35–21.54, 
p = 0.02*) effect models (Table 3).

Association of the polymorphic regulatory variants with clinicopathological features of lung cancer. We found 
a significant association of rs3764821 with adenocarcinoma (OR = 2.79, 95% CI = 1.03–7.53, p = 0.043) and 
SCLC (OR = 5.95, 95% CI = 1.65–21.47, p = 0.007) adjusted for age, sex, and pack-years of smoking. Similarly, 
rs3748523 was associated with squamous cell carcinoma (OR = 2.32, 95% CI = 1.01–5.34, p = 0.046) adjusted for 
age, sex, and pack-years of smoking. The Association of the variants with different TNM stages and distant 
metastases in additive and dominant models is summarized in the supplemental material (Supplementary Mate-
rial, Table S23).

Effect of tobacco smoking on the association of the polymorphic regulatory variants with lung cancer. The sub-
group analysis stratified by pack-years revealed a significant association of rs3764821 of ALDH3B1 in both low 
pack-years (< 47 py) (OR = 2.58, 95% CI = 1.13–5.88, p = 0.024*) and high pack-years (≥ 47 mean py) (OR = 2.73, 

Figure 2.  Genotyping of (A) rs3764821 of ALDH3B1, (B) rs3748523 of RAD52 and (C) rs5742926 of PMS1 by 
PCR–RFLP method with a representative chromatogram of Sanger sequencing for each genotype of the rSNPs. 
For rs3764821, Gel 1: Lane 1,2,4,6 depicts AG genotypes with cut patterns as 240 bp, 198 bp, 42 bp; Lane 3, 7, 
8 depicts GG genotypes with 198 bp and 42 bp fragments. For rs3748523, Gel 2: Lane 1,2,3,7 & 8 depicts CC 
genotypes with 228 bp and 24 bp (not visible) fragments; Lane 4 & 6 depicts GG genotypes as uncut (252 bp) 
fragments; Lane 8 depicts CG genotype with 252 bp, 228 bp and 24 bp fragments. For rs5742926, Gel 3: Lane 1, 
2 & 5 depicts GG genotypes as uncut (340 bp) fragments and Lane 4 depicts GT genotype with 340 bp, 231 bp, 
109 bp. A representative chromatogram for heterozygous peak is also provided for each rSNP.
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95% CI = 1.49–5.01, p = 0.0012**) subgroups with risk of lung cancer in the additive model. The rSNP, rs3748523 
of RAD52, showed significant association only in low pack-years (< 47 mean py) (OR: 1.92, 95% CI = 1.20–3.06, 
p = 0.0062*) subgroup in the additive model. None of the rSNPs was found to show any significant (p < 0.05) 
effect modification on lung cancer risk based on smoking (Supplementary Material, Table S23). None of the 
other covariates revealed any significant effect on the association of the polymorphic variants with lung cancer 
(Supplementary Material, Table S24).

The combined effect of the polymorphic regulatory variants on lung cancer risk. The association between lung 
cancer and possible combinations of rs3764821 and rs3748523 was assessed by genotype-genotype combination 
analysis. Interestingly, we found a significant association between the heterozygous genotypes of rs3764821 and 
rs3748523 (AG + CG: OR = 2.79, 95% CI = 1.14–6.47, p = 0.013) with lung cancer risk (Supplementary Material, 
Table S25).

Association of the polymorphic regulatory variants and the overall survival (OS) of lung cancer patients. We 
performed a survival analysis for 96 lung cancer patients (Table 4) and assessed the association between overall 
survival (OS) and the variants rs3764821 and rs3748523, using a univariate analysis expressed in Kaplan–Meier 
(KM) plots and log-rank test. In addition, we followed a multivariate Cox regression model to adjust various 
covariates like age, sex, pack-years of smoking, histological subtypes, and TNM stage (Table 4). In this sub-
set of lung cancer patients, the genotypic distribution of rs3764821 (χ2 = 0.24; df = 2; p = 0.89) and rs3748523 
(χ2 = 0.47; df = 2; p = 0.79) was in HWE.

Individuals with the combined heterozygous and homozygous risk genotypes of both variants have a median 
survival time (MST) of 7 months compared to 9 months for the wild-type genotypes. We found a significant 
association of rs3764821 (AA vs. AG + GG: hazard ratio [HR] = 2.07; 95% CI = 1.13–3.79; log-rank p = 0.02) and 
rs3748523 (CC vs. CG + GG: hazard ratio [HR] = 2.19; 95% CI = 1.25–3.87; log-rank p = 0.004) (Fig. 3; Table 4) 
with the low OS of lung cancer patients using KM survival analysis and univariate Cox regression model. Mul-
tivariate Cox regression analysis revealed a lower OS in lung cancer patients for rs3764821 (AA vs. AG + GG: 
HR = 2.12; 95% C.I. = 1.16–3.89; p = 0.015) and rs3748523 (CC vs. CG + GG: hazard ratio [HR] = 2.32; 95% 
CI = 1.30–4.12; p = 0.004) adjusted for age, sex and pack year of smoking (Table 4). 

The effect of the rSNPs on the OS of patients with a specific subtype of lung cancer was also evaluated by a 
multivariate Cox regression model adjusted for age, sex, and pack-years of smoking. The variant rs3748523 was 
significantly associated with a lower OS of patients with squamous cell carcinoma (N = 36; CC vs. CG + GG: 
hazard ratio [HR] = 5.64; 95% CI = 1.76–18.1; p = 0.003) adjusted for age, sex, and pack-years of smoking. No 

Table 3.  Association of 3 promoter cis-eQTLs belonging to Xenobiotic metabolism and DNA repair pathway. 
Pearson’s chi-square test was done to determine allelic association with lung cancer, and multivariate logistic 
regression was done in additive, dominant and recessive models to ascertain genotypic association with lung 
cancer. aUnadjusted association with crude odds ratio and 95% confidence interval and p-value. bAdjusted for 
age, sex, pack-years, alcohol consumption, tobacco chewing, betel quid chewing, wood smoke, coal smoke, 
asbestos, and pesticide exposures; CI: Confidence interval, OR: Odds ratio, Significance levels: p < 0.001 ‘***,’ 
0.01 ‘**,’ 0.05 ‘*.’ n = number of cases and controls. Significant values are in bold and italics.

Gene-
polymorphism Genotypes/alleles

Smoker lung 
cancer cases; 
n = 101 (%)

Healthy smoker 
controls; n = 401 
(%) Model Comparisons OR (95% CI)a p-valuea

Adjusted OR 
(95% CI)b p-valueb

ALDH3B1‑
rs3764821 A > G

AA 71 (70.3) 345 (86) Additive AA vs. AG vs. GG 2.64 (1.63–4.29) 0.00009*** 2.51 (1.42–4.67) 0.002**

AG 28 (27.7) 53 (13.2) Dominant (AG + GG) vs. AA 2.69 (1.61–4.50) 0.0002*** 2.49 (1.35–4.59) 0.003**

GG 2 (1.9) 1 (0.3) Recessive GG vs. (AA + AG) 8.04 (0.72–89.57) 0.09 13.98 (0.85–
228.81) 0.06

Alleles Alleles

A 170 (84.2) 743 (92.6) A –

G 32 (15.8) 55 (6.9) G 2.54 (1.55–4.15) 0.00022*** – –

RAD52‑rs3748523 
C > G

CC 54 (53.5) 269 (67.1) Additive CC vs. CG vs. GG 1.69 (1.17–2.47) 0.006** 1.83 (1.15–2.92) 0.016*

CG 41 (40.6) 122 (30.4) Dominant (CG + GG) vs. CC 1.77 (1.14–2.76) 0.01* 1.73 (1.03–2.92) 0.04*

GG 6 (5.9) 10 (2.5) Recessive GG vs. (CC + CG) 2.47 (0.88–6.96) 0.09 5.39 (1.35–21.54) 0.02*

Alleles Alleles

C 149 (73.8) 660 (82.3) C –

G 53 (26.2) 142 (17.7) G 1.65 (1.13–2.41) 0.01* – –

PMS1‑rs5742926 
G > T

GG 94 (93.1) 346 (86.3) Additive GG vs. GT 0.51 (0.22–1.15) 0.10 0.52 (0.21–1.31) 0.17

GT 7 (6.9) 51 (12.7) Dominant – – – – –

TT 0 (0) 0 (0) Recessive – – – – –

Alleles Alleles

G 195 (96.5) 743 (92.65) T –

T 07 (3.5) 51 (6.4) G 1.91 (0.82–4.69) 0.13 – –



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4019  | https://doi.org/10.1038/s41598-023-30962-9

www.nature.com/scientificreports/

significant association was observed for the other two lung cancer histological subtypes. The variant rs3748523 
(RAD52) was found to be significantly associated with lower OS (CC vs. CG + GG: hazard ratio [HR] = 2.32; 95% 
CI = 1.24–4.31; p = 0.008) in lung cancer patients of later stages (stage III and stage IV) adjusted for age, sex and 
pack-years of smoking (Table 4).

Effect of polymorphic regulatory variants on the overall survival of lung cancer patients stratified by chemotherapy 
regimens with different drug combinations. The association of the polymorphic regulatory variants rs3764821 
and rs3748523 with the OS of lung cancer patients stratified by chemotherapy regimens with different drug 
combinations in the dominant model is summarized in a table (Table 5). For some non-responders to the first 
chemotherapy regimen, treatment was extended up to three chemotherapy regimens with different combina-
tions of drugs.

For the variant rs3764821 (ALDH3B1), lung cancer patient treated with paclitaxel-cis/carboplatin showed 
a significantly low OS (AA vs. AG + GG: hazard ratio [HR] = 3.62, 95% CI = 1.03–12.71, p = 0.044) in our study 
population, adjusted for age, sex and pack-years of smoking using a multivariate Cox regression model. Lung 
cancer patients treated with gemcitabine-cis/carboplatin in the second chemotherapy regimen and paclitaxel-cis/
carboplatin (AA vs. AG + GG: hazard ratio [HR] = 4.16, 95% CI = 1.34–12.89, p = 0.014) in the first chemotherapy 
regimen showed a significant lower OS compared to the wild type, adjusted for age, sex and pack-years of smok-
ing using a multivariate Cox regression model (Table 5). Using a KM survival analysis, lung cancer patients 
treated with gemcitabine-cis/carboplatin in the second chemotherapy regimen and paclitaxel-cis/carboplatin 
(AA vs. AG + GG: hazard ratio [HR] = 3.02, 95% CI = 1.09–8.39, log-rank p = 0.03) in the first chemotherapy 
regimen showed a significant lower OS compared to the wild type (Fig. 4, Table 5).

Table 4.  Relationship of the regulatory polymorphisms with the overall survival (OS) of lung cancer patients, 
its subtypes, and TNM stages. p-value < 0.05*, 0.01**, 0.001***. Hazard ratios, 95% CI, and their corresponding 
p-values were calculated by Kaplan–Meier survival analysis after adjusting for remission and survival in 
months, and #adjusted hazard ratios, 95% CIs and their corresponding p-values were calculated by Cox 
regression models adjusted for age, sex, and pack-years of smoking. Significant values are in bold and italics.

Regulatory 
polymorphisms Genotypes Dead Alive

Median OS 
(Months)

Crude HR (95% 
CI)

Log-rank 
p-value*

Adjusted  HR# 
(95% CI) p-value*

[A] Overall Lung Cancer

 ALDH3B1‑
rs3764821A > G

AA 36 31 24 1 (Reference)

AG + GG 19 10 9 2.07 (1.13–3.79) 0.02* 2.12 (1.16–3.89) 0.015*

 RAD52‑
rs3748523C > G

CC 25 31 24 1 (Reference)

CG + GG 29 11 7 2.19 (1.25–3.87) 0.004** 2.32 (1.30–4.12) 0.004**

[B] Adenocarcinoma

 ALDH3B1‑
rs3764821A > G

AA 18 14 24 1 (Reference)

AG + GG 10 6 8.9 2.18 (0.93–5.15) 0.074 2.35 (0.99–5.59) 0.053

 RAD52‑
rs3748523C > G

CC 15 14 24 1 (Reference)

CG + GG 13 6 12 1.47 (0.67–3.21) 0.33 1.48 (0.68–3.22) 0.33

[C] Squamous Carcinoma

 ALDH3B1‑
rs3764821A > G

AA 16 16 24 1 (Reference)

AG + GG 4 3 8 1.33 (0.43–4.16) 0.6 1.25 (0.39–3.97) 0.71

 RAD52‑
rs3748523C > G

CC 6 14 24 1 (Reference)

CG + GG 14 2 6 5.25 (1.69–16.21) 0.001** 5.64 (1.76–18.1) 0.003**

[D] SCLC

 ALDH3B1‑
rs3764821A > G

AA 1 3 27 1 (Reference)

AG + GG 5 2 9 The sample size is insufficient

 RAD52‑
rs3748523C > G

CC 4 3 11 1 (Reference)

CG + GG 2 3 9 0.94 (0.15–5.66) 0.94 1.10 (0.17–7.17) 0.92

[E] Stage I + II (Early Stages)

 ALDH3B1‑
rs3764821A > G

AA 3 8 7 1 (Reference)

AG + GG 1 3 4.5 10.06 (1.04–
96.66) 0.01* 2.78 (0.08–

99,500,000) 0.14

 RAD52‑
rs3748523C > G

CC 2 8 12 1 (Reference)

CG + GG 4 1 6.5 5.73 (0.58–56.38) 0.09 219.87 (0.19–
246,200) 0.83

[F] Stage III + IV (Late Stages)

 ALDH3B1‑
rs3764821A > G

AA 32 23 13 1 (Reference)

AG + GG 16 10 11 1.64 (0.84–3.18) 0.1 1.65 (0.84–3.85) 0.14

 RAD52‑
rs3748523C > G

CC 23 23 9 1 (Reference)

CG + GG 24 10 7 2.07 (1.13–3.79) 0.02* 2.32 (1.24–4.31) 0.008**
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In the case of rs3748523 (RAD52), lung cancer patients treated with an etoposide-cis/carboplatin regimen 
showed a higher overall survival (OS) in the study population (CC vs. CG + GG: hazard ratio [HR] = 0.78, 95% 
CI = 0.10–5.9, p = 0.82) adjusted for age, sex and pack-years of smoking using a multivariate Cox regression model 
but is not statistically significant. However, lung cancer patients treated with paclitaxel-cis/carboplatin showed 
significantly lower OS (CC vs. CG + GG: hazard ratio [HR] = 2.79, 95% CI = 1.09–7.15, log-rank p = 0.03) (Fig. 4) 
in our study population using KM survival analysis. Patients treated with gemcitabine-cis/carboplatin in the 
second regimen and pemetrexed-cis/carboplatin (CC vs. CG + GG: hazard ratio [HR] = 3.83, 95% CI = 1.39–10.53, 
p = 0.01) or nanopaclitaxel-cis/carboplatin (CC vs. CG + GG: hazard ratio [HR] = 8.66, 95% CI = 1.33–56.17, 
p = 0.02) in the first regimen showed a significant lower OS, adjusted for age, sex and pack-years of smoking 
(Table 5). We also compared the differences in the responses to various drugs in the presence and absence of 
rs3764821 (ALDH3B1) and rs3748523 (RAD52) for first-line chemotherapy only. We found that the presence 
of the variants rs3764821 and rs3748523 showed poor response to Pemetrexed-cis/carboplatin, Etoposide-cis/
carboplatin, Paclitaxel-cis/carboplatin and Nanopaclitaxel-cis/carboplatin (Supplementary material Table S26).

Figure 3.  Kaplan–Meier curves depict the association between overall survival in lung cancer patients 
and the cis-regulatory polymorphic variants in the eastern Indian population. It shows significantly lower 
overall survival in lung cancer patients with (A) rs3764821 (ALDH3B1); a combination of heterozygous and 
homozygous variant genotypes (AG + GG), and (B) rs3748523 (RAD52); the combination of heterozygous and 
homozygous variant genotypes (CG + GG). Significance at log-rank p < 0.05*.

Regulatory polymorphisms Genotypes Crude HR (95% CI) Log-rank p Adjusted  HR† (95% CI) p-value†

Regimen 1—Docetaxel cis/carboplatin

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG 2.51 (0.35–18.17) 0.3 26.29 (0.18–3762.41) 0.19

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 0.47 (0.04–5.16) 0.5 1.55 (0.03–90.37) 0.83

Regimen 1—Pemetrexed cis/carboplatin

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG 1.28 (0.39–4.15) 0.7 1.8 (0.39–8.19) 0.49

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 2.42 (0.78–7.47) 0.1 1.33 (0.29–5.89) 0.71

Regimen 1– Paclitaxel cis/carboplatin

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG 2.67 (0.93–8.39) 0.06 3.62 (1.03–12.71) 0.044*

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 3.19 (1.10–9.27) 0.02* 1.95 (0.58–6.58) 0.28

Regimen 1– Nanopaclitaxel cis/carboplatin

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG 1.15 (0.19–6.98) 0.9 3.37 (0.24–47.98) 0.37

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 7.95 (0.89–71.16) 0.03* 11.32 (0.18–698.64) 0.25

Regimen 1—Etoposide cis/carboplatin

Continued
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Regulatory polymorphisms Genotypes Crude HR (95% CI) Log-rank p Adjusted  HR† (95% CI) p-value†

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG The sample size is insufficient

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 1.01 (0.20–5.08) 0.99 0.78 (0.10–5.97) 0.82

Combination Drug Regimen: Docetaxel cis/carboplatin (2nd) * Nanopaclitaxel cis/carboplatin (1st)

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG 1.15 (0.19–6.98) 0.9 2.05 (0.25–16.55) 0.5

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 7.15 (0.74–69.03) 0.05 16.75 (0.38–734.18) 0.14

Combination Drug Regimen: Nanopaclitaxel cis/carboplatin (2nd) * Pemetrexed cis/carboplatin (1st)

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG 1.40 (0.38–5.10) 0.6 1.39 (0.39–5.31) 0.62

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 2.27 (0.75–6.84) 0.1 2.35 (0.75–7.37) 0.14

Combination Drug Regimen: Pemetrexed cis/carboplatin (2nd) * Paclitaxel cis/carboplatin (1st)

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG 2.47 (0.78–7.84) 0.1 3.25 (0.88–12.06) 0.08

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 2.97 (1.01–8.76) 0.05 1.75 (0.51–6.07) 0.38

Combination Drug Regimen: Paclitaxel cis/carboplatin (2nd) * Pemetrexed cis/carboplatin (1st)

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG 1.18 (0.32–4.28) 0.8 1.21 (0.33–4.48) 0.78

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 3.10 (0.95–10.16) 0.05 3.41 (0.99–11.81) 0.05

Combination Drug Regimen: Gemcitabine cis/carboplatin (2nd) * Paclitaxel cis/carboplatin (1st)

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG 3.02 (1.09–8.39) 0.03* 4.16 (1.34–12.89) 0.014*

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 2.79 (1.09–7.15) 0.03* 2.12 (0.74–6.11) 0.16

Combination Drug Regimen: Gemcitabine cis/carboplatin (2nd) * Pemetrexed cis/carboplatin (1st)

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG 1.89 (0.74–4.85) 0.2 1.86 (0.70–4.91) 0.21

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 2.21 (0.88–5.51) 0.08 2.50 (0.94–6.68) 0.07

Combination Drug Regimen: Gemcitabine cis/carboplatin (2nd) * Nanopaclitaxel cis/carboplatin (1st)

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG 3.03 (0.78–11.8) 0.09 3.63 (0.93–14.08) 0.06

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 3.28 (0.92–11.67) 0.05 3.38 (0.51–22.24) 0.21

Combination Drug Regimen: Eribulin cis/carboplatin (3rd) * Nanopaclitaxel cis/carboplatin (2nd) * Pemetrexed cis/
carboplatin (1st)

 ALDH3B1‑rs3764821A > G
AA 1 (Reference)

AG + GG 1.40 (0.38–5.10) 0.6 1.39 (0.37–5.31) 0.62

 RAD52‑rs3748523C > G
CC 1 (Reference)

CG + GG 2.26 (0.75–6.84) 0.1 2.35 (0.75–7.37) 0.14

Table 5.  Association of regulatory polymorphisms and overall survival according to the chemotherapy 
regimen. p-value < 0.05*, 0.01**, 0.001***. Hazard ratios, 95% CI, and their corresponding p-values were 
calculated by Kaplan–Meier survival analysis after adjusting for remission and survival in months, and 
#adjusted hazard ratios, 95% CIs and their corresponding p-values were calculated by Cox regression models 
adjusted for age, sex, and pack-years of smoking. Significant values are in bold and italics.
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Furthermore, we observed a poor response and decreased OS of the lung cancer patients with the variants 
rs3764821 (ALDH3B1) and rs3748523 (RAD52) for both first- and second-line chemotherapy. Thus, it reflects 
the sample population as poor or non-responders to the standard chemotherapy drugs administered to treat 
advanced lung cancer. In addition, we found rs3748523 (RAD52) to decrease OS significantly and showed poor 
response to first-line Pemetrexed-cis/carboplatin chemotherapy (HR: 3.48, 95% CI = 1.06–11.4, p = 0.039*) (Sup-
plementary material Table S27).

Discussion
Although several studies have implicated many genes and variants with lung carcinogenesis in tobacco smokers, 
the precise heritable genetic risk signature(s) or prognostic marker(s) is still obscure. Differential gene expression 
between lung cancer patients with a smoking history and healthy smokers is considered a significant player in 
lung cancer pathogenesis, particularly for xenobiotic metabolism and DNA repair genes. These two pathways act 
synergistically to determine the level of carcinogenic load within the lung cells and the capacity to repair DNA 
damage induced by such carcinogens. We hypothesized that the variants in certain genomic elements regulate 
such differential gene expression between patients and controls. Therefore, based on this hypothesis, we used 
the ENCODE data to curate the gene expression-correlated DHS. Such candidate genomic elements could have 
a cis-regulatory role in gene transcription. The variations within such genomic elements could be the potential 
modulators of gene expression and need to be characterized to understand the gene regulatory network confer-
ring individual susceptibility to lung carcinogenesis among smokers.

We have designed a workflow to identify, annotate and prioritize such variants within the DHS of genes as 
risk signatures of lung cancer. We have integrated and interpreted various omics datasets of ENCODE, GTEx, 
Roadmap Epigenomics, and TCGA datasets through specific web tools to identify, annotate, and prioritize such 
genetic variants. Out of the 2984 DHS-SNVs in our candidate gene set, only 22 were cis-regulatory in function 
in lung tissue by integrating and interpreting various omics datasets of ENCODE, GTEx, Roadmap Epigenom-
ics, and TCGA. Transcriptional regulation by genomic elements is tissue-specific36,65 and follows a distinctive 
pattern across the tissues with some conserved elements, while the rest are unique to the cell type. Our study has 
distinctively identified lung tissue-specific genetic loci responsible for genotype-specific regulation of candidate 
xenobiotic metabolism and DNA repair gene expression through the analysis of cis-eQTL mapped data. The cat-
egorization of rSNPs by the epigenomic signatures into functional gene regulatory chromatin domains provided 
an insight into the basis of cis-regulatory mechanisms of the genomic elements on their target gene expression. 
Out of our 22 prioritized cis-eQTLs, we found only 4 significant cis-QTLs in lung cancer from the analysis of 
TCGA lung cancer datasets harbored in the web tool GEPIA. It further affirmed our workflow’s predictive accu-
racy and precision as the predicted risk alleles through the pipeline match the reported risk alleles in lung cancer.

Both genome-wide and candidate association studies often reveal unexplained genetic associations with 
disease/trait, especially for the intronic and intergenic SNPs. We observed nominal associations (p < 0.05) of 
three rSNVs, such as rs35568625 (MAFG), rs3760091 (SULT1A2), and rs743590 (SULT1A1), with lung cancer 
in 1655 cases and 450,609 controls of all white British origin samples from the UK Biobank GWAS dataset C34 
Malignant neoplasm of bronchus and lung, hosted by the Gene Atlas webserver (http:// genea tlas. roslin. ed. ac. uk/ 
search/), which further strengthened our variant prioritization procedure. Interestingly, the predicted risk alleles 
of these three rSNVs match the GWAS data, which strengthens our hypothesis and prioritization procedure. 
However, in an attempt to independently replicate the three rSNVs rs3764821 (ALDH3B1), rs3748523 (RAD52), 

Figure 4.  Kaplan–Meier curves depict the association between the polymorphic cis-regulatory variants and 
overall survival in lung cancer patients treated with different chemotherapy regimens in the eastern Indian 
population. It shows significantly lower overall survival in lung cancer patients with (A) rs3764821 (ALDH3B1); 
treated with gemcitabine-cis/carboplatin in the second regimen and paclitaxel-cis/carboplatin in the first 
regimen, and (B) rs3748523 (RAD52); treated with paclitaxel-cis/carboplatin in the first regimen. Significance at 
log-rank p < 0.05*.

http://geneatlas.roslin.ed.ac.uk/search/
http://geneatlas.roslin.ed.ac.uk/search/
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and rs5742926 (PMS1) from our case–control association study, we failed to find any significant association of 
the variants with lung cancer in the white British population, which differs from our finding in the east Indian 
population. The reason for this could be the differences in the population-specific allelic distribution of the 
variants and the fact that the current study was focused only on smokers. In addition, most of the available lung 
cancer GWAS datasets represent the Caucasian and East Asian populations, and no such dataset is available on 
the Indian population.

With the advent of ENCODE and related datasets, scientists are trying to assess if these innocuous loci have 
any cis-regulatory role on their target genes or are in LD with a cis-regulatory variant that has not been included 
or filtered out from the specific association study. Detailed analysis indicates that by being in LD, 11 cancer-
associated SNPs (5 LD SNPs in lung cancer and other types of cancer, 6 LD SNPs exclusively for different kinds 
of cancer) might act as surrogates for 8 prioritized rSNVs (3 rSNVs common in lung cancer and non-lung cancer 
dataset, 1 only in lung cancer dataset and 3 in other cancers). Thus, the finding strengthened our workflow where 
5 prioritized cis-regulatory variants are in strong LD with 5 reported lung cancer-associated SNPs. Therefore, it 
provides transitive evidence of association of the prioritized rSNVs with lung cancer by being in strong LD with 
reported associations. Again, our revelation of the combination of damaging coding alleles with regulatory risk 
alleles could result in a significant loss of gene function and thereby have a higher risk modulatory effect in lung 
carcinogenesis. This could lead to a practical interpretation of the combinatorial role of alleles in a personalized 
genome  approach40 for designing therapeutic strategies with precision medicine.

As revealed from our study, the expanded interactome analysis showed strong associations between our 
prioritized protein-coding genes that provide insight into their probable synergistic influence in mitigating 
tobacco smoke-induced damage. Interaction of critical proteins, such as TP53, has been found to interact with 
the NFE2L2 pathway indicating a vital relationship between the xenobiotic metabolism and cellular transforma-
tion pathways that paved the way for future investigations on cytoprotection and tumorigenesis. The cross-talk 
of the detoxification and DNA repair pathway with cytoskeletal remodeling, metastasis, apoptosis, and cell 
cycle regulatory pathways provides an insight into the carcinogen-induced gene regulatory mechanisms in lung 
carcinogenesis among smokers.

The prioritized genes have diverse functions related to the metabolism of tobacco smoke components and 
repairing oxidative DNA lesions induced by smoke carcinogens that form the basis of risk allele determination. 
We have summarized the probable impact of the risk alleles on the gene function contributing toward lung 
carcinogenesis among smokers (Supplementary Material, Table S28).

Earlier genome-wide association studies (GWAS) have shown rs10849605 of RAD52 significantly associated 
with an increased risk of lung  cancer66. Our data found a significant association of rs3748523 of RAD52 with an 
increased risk of lung cancer, implicating collinearity in the studies for gene function in lung cancer. This is the 
first report on the regulatory polymorphism of ALDH3B1, significantly altering lung cancer risk by regulating 
the detoxification potential of the enzyme. However, the PMS1 gene shows an association with lung  cancer63 in 
Caucasians. However, the lack of association of rs5742926 of PMS1 in our study could be attributed to the sample 
size due to low minor allele frequency in the eastern Indian population. It is worth mentioning that rs3748523 
of the RAD52 gene is associated with lung cancer in low smokers of a young age. This indicates the potential 
role of the variant in reducing the expression of the DNA repair gene, conferring the early risk of lung cancer in 
individuals with low to medium smoking intensity. Earlier reports have indicated an association between tobacco 
and betel quid chewing and lung  cancer67,68.

Interestingly, rs3764821 of ALDH3B1 and rs3748523 of RAD52 were associated with lung cancer in tobacco 
and betel quid chewers. The risk genotype of both polymorphisms would cause ineffective metabolism of the 
xenobiotics from tobacco and betel quid and sub-optimal DNA repair of DNA damages caused by the constant 
xenobiotic load. Thus, the combinatorial inheritance of risk alleles of the SNPs would confer a higher risk of 
developing lung cancer, and stratifying the genotypes based on tumor subtypes and TNM staging improved risk 
assessment. Prediction of the risk for specific tumor subtypes and cancer stages leads to the design of targeted 
early detection and prevention strategies. Moreover, identifying histotype-associated SNPs may define the mecha-
nism underlying the unknown origins of morphological variations and contribute to a personalized treatment 
approach for subtype-specific lung cancer  cases69.

In the present study, we have also evaluated the role of two lung cancer-associated regulatory polymorphic 
variants in the survival of lung cancer patients treated with platinum-based chemotherapy. None of the vari-
ants showed any improvement in the overall survival of patients post-treatment with standard platinum-based 
chemotherapy. However, the risk alleles of the polymorphic variants were found to significantly lower the overall 
survival of lung cancer patients post platinum-based chemotherapy, adjusted for covariates like age, sex, and 
pack-years of smoking. We found a significant reduction in OS in patients with the risk allele of rs3764821 
(ALDH3B1), treated with gemcitabine-cis/carboplatin as a second line of treatment after paclitaxel-cis/carbo-
platin. This could be due to the lower expression of ALDH3B1 that causes an inadequate response to platinum-
based chemotherapy leading to higher systemic toxicity and increased mortality among the advanced-stage 
(IIIB and IV) NSCLC patients in our sample population. To the best of our knowledge, this is the first study that 
reports the role of cis-regulatory polymorphic variants in modulating the overall survival in eastern India lung 
cancer patients post-treatment with standard chemotherapy. Therefore, ALDH3B1 and RAD52 play a pivotal 
role in tobacco smoke-induced lung carcinogenesis and platinum-based standard chemotherapy, which could 
be critical prognostic markers of the disease and predictors of chemotherapy responses. Aldehyde dehydroge-
nase, including ALDH3B1, is involved in the detoxification and clearance of chemotherapeutic drugs, leading 
to chemotherapy  resistance70,71. Similarly, the RAD52 is a DNA-binding protein that repairs single-strand DNA 
breaks introduced by the genotoxic compounds in tobacco  smoke72,73. A lower expression of both genes would 
imply impaired detoxification of tobacco smoke metabolites and the repair of DNA damage introduced by the 
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same tobacco smoke metabolites, influencing overall survival and the efficacy of chemotherapy regimens with 
different drug combinations.

A limitation of this approach is the difficulty of getting the necessary sample sizes, given the relative rarity 
of many such histological subtypes or the lack of proper clinical records. However, our data mining approach 
with prior knowledge of the disease etiology helped prioritize the most relevant SNVs for replication, even in a 
small sample size. Furthermore, due to the lack of high-resolution HiC and ChIA-PET datasets on lung tissue, 
a more detailed analysis of the physical interaction of cis-elements, particularly promoter-enhancer/repressors, 
could not be done.

The co-occurrence of risk alleles and estimation of unweighted genetic risk scores (uGRS) of 22 prioritized 
rSNPs provided insight into individual and population-specific tobacco-dependent lung cancer. The preponder-
ance of the risk alleles stratified by sub-populations of 1000 Genome data predicted the Gambians in Western 
Gambia (GWD) to be at risk while the Americans of African Ancestry in South West USA (ASW) to be at least 
risk. Traditionally, insufficient epidemiological studies on lung cancer incidences in the African population led 
to inconclusive risk assessment a priori. A recent development in maintaining nationwide cancer registries in 
different countries of the continent increased the coverage to 13% of the population, which is a deviation from 
the earlier notion of Africans being the most protected population against tobacco smoking-related lung can-
cer. The increase in lung cancer incidences throughout the African continent, mainly in West Gambia and the 
sub-Saharan region, could be attributed to the increase in tobacco smoking and the aging of the predisposed 
 population74. However, on stratification based on the larger geospatial population of 1000 Genome data, Euro-
peans were at high risk of tobacco smoke-dependent lung carcinogenesis, substantiated by epidemiological 
 reports74. Lung cancer rates showed a 20-fold variation stratified by region, which predominantly reflects the 
decrease in patterns of tobacco exposure, including intensity and duration of smoking, type of cigarettes, and 
degree of inhalation in the developed world. A diminution in smoking prevalence among men caused a decline 
in lung cancer rates in several high-income countries where smoking was first established, including the United 
Kingdom, Finland, the United States, the Netherlands, Australia, New Zealand, Singapore, Germany, and Uru-
guay. Recent reports in 26 European countries revealed a decline in age-standardized (35–64 years) incidences of 
lung cancer, with Bulgaria as an  exception55. Therefore, being susceptible to tobacco-dependent lung cancer, the 
Europeans probably managed to reduce the disease load by changing their lifestyle  habits75. All of these showcase 
the importance of this work towards identifying risk populations and designing effective tobacco control policies 
to reduce lung cancer incidences. Epidemiological  reports76,77 corroborate our finding that Latinos/Non-white 
Hispanics are at the lowest risk of tobacco smoke-dependent lung cancer among all the other populations of the 
1000 Genome data, followed by the Africans. Despite high smoking rates, lung cancer incidences are pretty low 
in the Central and South American Latinos/ Non-white Hispanic  population76,77. In future studies, we would 
try to corroborate the weighted genetic risk score of the variants with the epidemiological data of lung cancer 
from the global lung cancer datasets.

The study has implied a pathway-based approach to identify 22 cis-regulatory variants of 14 genes (XMGs 
and DRGs) through integrating and interpreting various freely available omics data. The cross-validation of the 
statistical association of the identified rSNVs with lung cancer by their LD-SNPs and the precise match of the 
risk alleles of the cis-eQTLs in lung cancer to normal tissue shows the success of our prioritization pipeline. The 
case–control replication following the in silico prioritization provides population-specific risk markers of lung 
carcinogenesis. Incorporating more genes of critical lung cancer regulatory pathways would enable us to con-
struct a comprehensive, personalized genomic map of individuals across different populations for assessing their 
lung cancer risk profiles to design personalized therapy based on precision medicine and formulating effective 
tobacco control policies and genetic counseling for the containment of the disease. We opine that the method 
followed in this study for identifying cis-regulatory risk markers of lung carcinogenesis among smokers could 
be implied to other complex diseases or traits.
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