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First principles and mean field 
study on the magnetocaloric effect 
of YFe3 and HoFe3 compounds
Mohammed Said Mohammed Abu‑Elmagd 1*, Tarek Hammad 2, Ahmed Abdel‑Kader 2, 
Nesreen El‑Shamy 3,4, Sherif Yehia 2, Samy H. Aly 5 & Fatema Z. Mohammad 5

In this work, the magnetothermal characteristics and magnetocaloric effect in YFe3 and HoFe3 
compounds are calculated as function of temperature and magnetic field. These properties were 
investigated using the two-sublattice mean field model and the first-principles DFT calculation using 
the WIEN2k code. The two-sublattice model of the mean-field theory was used to calculate the 
temperature and field-dependences of magnetization, magnetic heat capacity, magnetic entropy, and 
the isothermal change in entropy ∆Sm. We used the WIEN2k code to determine the elastic constants 
and, subsequently, the bulk and shear moduli, the Debye temperature, and the density-of-states 
at Ef. According to the Hill prediction, YFe3 has bulk and shear moduli of roughly 99.3 and 101.2 GPa 
respectively. The Debye temperature is ≈ 500 K, and the average sound speed is ≈ 4167 m/s. In fields 
up to 60 kOe and at temperatures up to and above the Curie point for both substances, the trapezoidal 
method was used to determine ∆Sm. For instance, the highest ∆Sm values for YFe3 and HoFe3 in 30 
kOe are approximately 0.8 and 0.12 J/mol. K, respectively. For the Y and Ho systems, respectively, 
the adiabatic temperature change in a 3 T field decreases at a rate of around 1.3 and 0.4 K/T. The 
ferro (or ferrimagnetic) to paramagnetic phase change in these two compounds, as indicated by the 
temperature and field dependences of the magnetothermal and magnetocaloric properties, ∆Sm 
and ∆Tad, is a second-order phase transition. The Arrott plots and the universal curve for YFe3 were 
also calculated and their features give an additional support to the second order nature of the phase 
transition.

The magneto-caloric effect (MCE) is a well-known interesting phenomenon that involves a change in the tem-
perature upon applying/removing an external magnetic field. Its physics and applications are of continuous 
interest to researchers worldwide. [e.g.,1,2].

Some of the intermetallic compounds that exist in the rare-earth-iron system are, for example, RFe2, RFe3, 
R6Fe23 and R2Fe17

3–5. Much work has been dedicated to the magnetic properties of those compounds. The RT2 
compounds, where T = Fe, Co, have been also investigated6–9. Roe et al.10 determined the magnetic structure of 
the iron-holmium binary system. Hoffer and Salmans11 measured the magnetization of the RFe3 compounds 
as function of temperature. On the application side, magnetic refrigerators, in particular those operating close 
to room temperature are a subject of extensive research. One of the reasons of such interest in the magnetoca-
loric-based refrigerators are the relatively higher efficiency and the lower impact on environment as compared 
to the conventional ones12,13. Rare-earth intermetallic compounds were a subject of many works due to their 
distinguished electronic, magnetic and magnetocaloric properties14–18. The RFe3 compounds, in particular, are 
of interest for both their magnetostrictive and magnetic properties19–21, however not much investigations were 
done on their magnetocaloric properties.

Our motivation, in this paper, is studying the magnetothermal and the magnetocaloric effect in YFe3 and 
HoFe3, using both ab initio calculation and the molecular field theory, in the two-sublattice model22–24. We report 
on both temperature and magnetic field dependences of magnetization, magnetic specific heat magnetic entropy, 
isothermal change in entropy and adiabatic change in temperature in the temperature interval of 0–800 K. We 
report on new calculation of the elastic constants, the bulk, the shear moduli and the electronic and lattice 
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contributions to the total heat capacity and entropy using the well-known WIEN2k code package25–29. Another 
motivation of the present work is studying the order of the phase transition in these compounds in the light of 
the dependence of their properties on both temperature and field.

To calculate the elastic moduli of YFe3 we used the linear augmented plane-wave (LAPW) method by 
WIEN2K code30. This Package uses the energy approach calculation 31 that calculates the elastic constants by 
second-order derivative. The results of these calculations are then used to calculate the Debye temperature and 
the electronic heat capacity coefficient for YFe3 . These two parameters for HoFe3 are obtained from available 
published data (Persson, the materials project)32.

Computational methods
DFT.  The Wien2K electronic structure code is based on the Density Functional Theory (DFT)33. It employs 
the Full-Potential Linearized Augmented Plane Wave (FPLAPW)34. For correlation and exchange potentials, the 
Wien2k code30 employs the Local Density Approximation (LDA) of Perdew and Wang35 and the Generalized 
Gradient Approximation (GGA) of Perdew, Burke, and Ernzerhof36. Core and valence states are calculated in 
a self-consistent manner. For the spherical part of the potential, the core states are treated fully relativistically, 
while the valence states are treated using the full potential. To reduce linearization errors in R and Fe spheres, 
local orbital extensions37 with a converged basis of approximately 1000 basis functions are used. For the self-
consistent band structure calculations, we used the modified tetrahedron method for Brillouin zone integration. 
Self-consistent calculations were performed, and convergence was checked by varying the number of k points in 
the irreducible Brillouin zone up to 64 points The ab initio calculated elastic properties of different systems have 
been reported, e.g. for YFe5

38, PrX2 (X = Fe, Mn, Co) compounds39, Cr-based full-Heusler alloys40 and GdFe2
41. 

Also ab initio calculation on the effect of applying pressure on PtXSb and GdN systems were reported, respec-
tively by Habbak et al.42 and Reham Shabara et al.43. Magnetic properties and electronic structure of ThCo4B 
were reported by Abu-Elmagd et al.44 and Sherif Yehia et al.45 have reported on the spin and charge density maps 
of SmCo5.

Elastic properties.  The Lagrangian theory of elasticity is used to describe the elastic properties. Accord-
ing to this theory, a solid is a homogeneous and anisotropic elastic medium. As a result, strains (defined as the 
fractional change in length) are homogeneous and can be represented using symmetric second rank tensors.

where ∂ is the Lagrangian strain and εij are homogeneous strain parameters and i and j indicate Cartesian 
components44.

When we cast a crystal structure’s Bravais lattice vectors, under an isotropic pressure, in a matrix form (R), 
the small homogeneous deformation (strain) distorts the Bravais lattice vectors of this crystal and hence cause 
a distortion of the lattice (R’) expressed by multiplying with a symmetric deformation matrix i.e. (R’ = R*D), 
where D is:

where I is a unique matrix that represents the symmetric strain tensor.
Now, we express the total energy of a crystal (R’), under strain in terms of a power series of the Lagrangian 

strain (∂):

where E (E0) is the energy and V (V0) is the volume of strained system.
The current RFe3 compounds (R = rare earth) crystallize in the PuNi3-type structure, with space group 194-

P63/mmc (Hexagonal).
C11, C12, C13, C33, and C55 are the five independent elastic constants for a hexagonal symmetry. We need five 

different strains to determine these elastic constants because we have five independent elastic constants. The five 
distortions are discussed further below. The first distortion46 is as follows:

and it modifies the basal plane while keeping the z-axis constant. As a result, the symmetry of the strained lattice 
remains hexagonal, and the energy for this distortion can be calculated as follows:

The second type of distortion is a volume-conserved distortion and lead to orthorhombic symmetry and 
written as:
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and the energy for this distortion can be obtained as:

The third strain we have used is given by:

This strain changes C lattice parameter and keeps the strained lattice’s symmetry hexagonal, and the energy 
for this distortion can be obtained by

The fourth elastic constant, C55, is determined by a lattice deformation that results in a low-symmetry object. 
The deformation is written as follows:

and it leads to triclinic symmetry and the energy for this deformation can be written as:

Finally, the last strain we have used is volume-conserved, keeps the symmetry of the strained lattice hexagonal, 
and can be written as:

and the energy for this strain is given by

and

Isotropic elastic constants such as the bulk, shear, and Young moduli can be determined using appropriate 
averaging procedures. All the previous parameters including the Young modulus, E, and the Poisson ratio, ν, 
the bulk modulus, B, and the shear modulus, G are calculated by IRelast Package47 as available in the Wien2k 
Package48. As for the crystal structure of the two compounds: YFe3 crystallizes in the hexagonal structure with 
space group P63/mmc and HoFe3 crystallizes in the trigonal structure with R3m space group. All the informa-
tion about the lattice parameters and the locations of the Y or Ho and Fe atoms in the unit cells is available32.

Thermomagnetic properties.  The total effective fields of the R and Fe sublattices are expressed as follows 
by molecular field theory (MFT):

In these equations H represents the applied field, µF the magnetic moment per Fe ion at temperature T in 
units of the Bohr magneton ( µB ), and µR the magnetic moment per rare-earth ion. The factor d converts the 
moment per RFe3 unit from µB to gauss:

where NA is Avogadro’s number, ρ the density in g/cm3 , and A is the RFe3 formula weight in g/mol. With these 
definitions the fields: H,HR and HF are specified in gauss, and the molecular field coefficients nRR,nRF and nFF 
respectively, describing the R-R, R-Fe, and Fe–Fe magnetic interactions, are dimensionless.

(6)









�

1+δ
1−δ

�1/2
0 0

0
�

1−δ
1+δ

�1/2

0

0 0 1









(7)E(V , δ) = E(V0, 0)+ V0

[

(C11 + C12)δ
2 + O

(

δ3
)]

(8)

(

1 0 0
0 1 0
0 0 1+ δ

)

(9)E(V , δ) = E(V0, 0)+ V0δ(τ3)+ V0

[

(C33)
δ2

2
+ O

(

δ3
)

]

(10)

(

1 0 δ

0 1 0
δ 0 1

)

(11)E(V , δ) = E(V0, 0)+ V0δ(τ5)+ V0

[

(2C55)δ
2 + O

(

δ3
)]

(12)





(1+ δ)−1/3 0 0

0 (1+ δ)−1/3 0

0 0 (1+ δ)2/3





(13)E(V , δ) = E(V0, 0)+ V0

[

(Czz)
δ2

9
+ O

(

δ3
)

]

(14)CZZ = C11 + C12 + 2C33 − 4C13

(15)HR(T) = H+ d[nRRµR(T)+ 3nRFµF(T)]

(16)HF(T) = H+ d[3nFFµF(T)+ nRFµR(T)]

(17)d ≡
NAµBρ

A



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2876  | https://doi.org/10.1038/s41598-023-29676-9

www.nature.com/scientificreports/

We begin with the magnetic energy of a binary magnetic compound to calculate the magnetic specific heat.

The magnetic specific heat is calculated as follows:

The magnetic entropy is calculated from the numerical integration of the magnetic heat capacity as follows:

The total heat capacity Ctotal is made up of three contributions: the lattice heat capacity Cl , the electronic heat 
capacity Ce and the magnetic heat capacity Cm:

The lattice heat capacity is expressed as:

where x = θD/T and θD is Debye temperature, which can be calculated using Eq. (23)49

where h is the Planck’s constant, kB is the Boltzmann constant,vm is the average sound velocity, and n is the 
number of atoms per formula unit50. Equation (24) gives the average sound velocity in a polycrystalline material:

where vl and vs are, respectively, the longitudinal and transverse sound velocities, which can be calculated using 
the shear and the bulk moduli G and B, from Navier’s equation51:

The electronic heat capacity is given by:

where γe =
π2k2BD(EF)

3  represents the electronic heat-capacity coefficient, and D(EF) represents the electron density 
of states at the Fermi energy EF.

A magnetic conducting material’s total entropy includes three contributions: lattice ( Sl ), electronic ( Sel ) and 
magnetic entropy ( Sm ). The total entropy can be calculated by numerically integrating the total heat capacity:

The lattice entropy is given by:

The electronic entropy is given, like the electronic heat capacity, by Eq. (26).

Magnetocaloric effect.  The MCE is inherent in all magnetic materials and is induced by the magnetic 
lattice coupling with the applied magnetic field. The MCE is distinguished by two parameters: the adiabatic 
temperature change ΔTad (T, ΔH) and the isothermal entropy change �Sm(T, ΔH). In an isothermal process, the 
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entropy change caused by a magnetic field variation from H1 to H2, in compounds undergoing a second order 
phase transition, is calculated using the following Maxwell relation52:

The adiabatic temperature change �Tad is calculated from the following equation:

It is clear from Eq. (31) that the total heat capacity is applied field-dependent. However if C(T,HF) has a weak 
field dependence, we can rewrite Eq. (31) as follows53:

Results and discussion
Density of states.  The Wien2K electronic structure code calculated the total DOS (density of states) for 
YFe3 and HoFe3 as shown in Figs. 1 and 2 respectively.

The total DOS, at Ef  for these two compounds are 10.915 and 24.461 states/eV, respectively. Therefore the 
electronic heat capacity coefficients, as calculated from Eq. 26, are 0.0256 and 0.0575 J/mol. K2 respectively. The 
DOS of both compounds show that these two systems are metallic with fairly large density of states, at Fermi 
energy, in both the spin up and spin down configuration. This, of course, demands taking the electronic contri-
bution to the heat capacity into consideration as we pointed out (Eq. 26).

Magnetization.  Using the two-sublattice molecular field theory, the temperature dependence of magneti-
zation of the rare earth and Fe sublattices, as well as total magnetization for YFe3 and HoFe3 , are calculated. 
Total magnetic moments for YFe3 and HoFe3 ,calculated using the ab initio method are 4.8 µB/f.u and 4.4 µB 
/f.u, respectively, which are in good agreement with available experimental values, i.e. 4.88 and 4.59 µB /f.u as 
reported by J. F. Herbst et al.22. Table 1 displays the magnetic moments calculated in the present work and those 
by Ref.22. Figures 3 and 4a display mean-field- calculated temperature-dependence of magnetization, in zero 
field for YFe3 and HoFe3respectively . The total magnetic moments of these two compounds, at very low tem-
peratures, are in excellent agreement with the values referred to in Table 1. In addition we displayed, in Figs. 3 
and 4b, both our mean field calculated magnetization and the experimental data extracted from Ref.22.

Ferromagnetic order for YFe3 is evident from Fig. 3 and the magnetic moment per Fe atom is about 1.6 
µB in agreement with the value in Fig. 1 in Herbst work22. On the other hand, a ferrimagnetic order with a 
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Figure 1.   The spin-up and spin-down electronic density of states (DOS) for YFe3.
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compensation point is found for HoFe3. As the magnetic moments of the Fe and Ho sublattices become equal 
and antiparallel, a cancellation of the total moment takes place close to 400 K. The continuous decrease in mag-
netization at Tc is a well-known feature of SOPT materials54.

The temperature dependence of the magnetization, in 1, 3, 5 and 7 T fields, for HoFe3 , is shown in Fig. 5. an 
increase in the Curie temperature and a decrease in the compensation temperature is evident, with increasing 
the field. This behavior is consistent with that found in ferrimagnetic compounds, as reported for example, by P. 
von Ranke55. We may notice that even as the field increases the magnetization still has a continuous drop at Tc. 
Again, this confirms the SOPT nature of the studied compounds.

Heat capacity and entropy.  As previously stated, three contributions must be calculated to determine 
the total heat capacity of these materials. Figures 6 and 7 show, respectively, the magnetic heat capacity for YFe3 
and HoFe3 in different applied fields. The features of these two figures, at the Curie temperature, show that the 
transition is a second order phase transition. In contrast, in the FOPT case, the peak in the heat capacity shifts to 
higher temperatures as the field increases53.

Figure 2.   The spin-up and spin-down electronic density of states (DOS) for HoFe3.

Table 1.   Magnetic moments at very low temperature (~ 0 K) using our calculation, in comparison to 
experimental data.

Method YFe3 (µB) HoFe3 (µB) Reference

Ab initio 4.8 4.4 Present work

Experimental 4.88 4.59 22

Mean-field 4.8 4.6 Present work

Figure 3.   Total magnetization of YFe3 in zero field vs. temperature.
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The calculated magnetic entropy, in fields in the range 0–6 T, is shown in Figs. 8 and 9 for YFe3 and HoFe3 
respectively. The entropy saturates to its maximum at Tc and above, and is reduced by increasing the field. The 
maximum values of the calculated magnetic entropy are about 27.3 and 50.9 J/mol. K for YFe3 and HoFe3, 
respectively. These values are calculated using the equation:

where Jr and JFe are the total angular momenta for the rare earth and Fe atoms, respectively. The molecular-field 
results of the maximum magnetic entropy is in very good agreement with the results of the equation shown above. 

Smax = R [ln (2 Jr + 1)+ 3 ln (2 JFe + 1)],

Figure 4.   (a) Mean-field calculated total and sublattice magnetization of HoFe3, in zero field, vs. temperature. 
(b) Total magnetization of HoFe3 vs. temperature.

Figure 5.   Total magnetization of HoFe3 in different applied fields 1, 3, 5 and 7 T vs. temperature.
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The gradual increase of the magnetic entropy with temperature until it saturates at T ≥ Tc instead of the sudden 
increase found in FOPT materials show that the transition in these two compounds is a SOPT one.

Elastic properties of YFe
3
.  The elastic properties of YFe3 are calculated by using IRelast Package as avail-

able in the Wien2k Package47, the output of the program is shown in Table 2.

Figure 6.   Magnetic heat capacity of YFe3 , in different fields, vs. temperature.

Figure 7.   Magnetic heat capacity of HoFe3 in different fields, vs. temperature.

Figure 8.   The calculated magnetic entropy of YFe3 in two different fields vs. temperature.
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The Debye temperature is calculated from the mean sound velocity. The bulk and shear moduli of YFe3 , 
using the Hill model, are 99.337 and 101.211 GPa, respectively. The calculated θD for YFe3 is 500.5 K. For the 
HoFe3 compound, the Debye temperature is 357.85 as reported by the Materials Project site (Kristin Persson)32.

Figure 9.   The calculated magnetic entropy of HoFe3 in different fields vs. temperature.

Table 2.   The Elastic properties of YFe3 as obtained from IRelast Package.

a. C11, C12, C13, C33, and C55 are the five independent elastic constants for a hexagonal symmetry as calculated from IRelast Package

Final elastic constants of YFe3 for a volume = 2466.7026 (Bohr radius)3

C11 = 195.3216 GPa C12 = 27.0896 GPa 
C13 = 61.1885 GPa C33 = 210.5720 GPa
C55 = 149.9924 GPa

b. The bulk, shear, and Young modulus along with the Poisson’s coefficient as calculated from IRelast package

VOIGT model Prediction REUSS model Prediction HILL model Prediction

Bulk modulus 100.016 (GPa) 98.659 (GPa) 99.337 (GPa)

Shear modulus 106.936 (GPa) 95.487 (GPa) 101.211 (GPa)

Young modulus 236.514 (GPa) 216.586 (GPa) 226.655 (GPa)

Poisson’s coefficient 0.105 0.134 0.119

c. Transverse, longitudinal, and average elastic sound wave velocity along with the Debye temperature as calculated from IRelast 
package

By using HILL data:
Transverse elastic wave velocity = 3805.19 (m/s)
Longitudinal elastic wave velocity = 5789.42 (m/s)
The average wave velocity = 4167.31 (m/s)

Debye temperature = 500.5(K)

Figure 10.   Temperature dependence of isothermal change in entropy for YFe3 in fields: 2, 3, 4, 5 and 6 T.
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Magnetocaloric effect.  Isothermal entropy change.  Figures  10 and 11 show the isothermal entropy 
change, for different magnetic fields, for YFe3 and HoFe3 respectively. The �Sm curve for HoFe3 exhibits two 
peaks: the first is a broad peak below the compensation temperature, and the second, smaller peak, has its 
maximum at the ferrimagnetic-paramagnetic phase transition at TC = 590K . These two features correspond to 
the inverse and direct MCE effects, respectively. For ferromagnetic YFe3 there is only one peak at a temperature 
around its Tc (545 K). The temperature and field dependences of ∆Sm are those of SOPT materials. In particular, 

Figure 11.   Temperature dependence of isothermal change in entropy for HoFe3 in fields of 1, 2 and 3 T.

Figure 12.   The field-dependence of the adiabatic change in temperature vs. temperature for YFe3.

Figure 13.   The field-dependence of the adiabatic change in temperature vs. temperature for HoFe3.
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the curves at different fields have their maxima at Tc. In FOPT materials, the peak shifts to higher temperatures 
as the field increases53.

Adiabatic change in temperature.  We have calculated the adiabatic change in temperature for different field 
changes, as shown in Figs. 12 and 13, for YFe3 and HoFe3 systems, respectively. It is clear that the former com-
pound has a higher cooling rate than the latter in agreement with reported literature56. For example, cooling rates 
about 1.3 and 0.4 K/T are achieved for these two compounds respectively for a field change of 3 T. The curves 
in each of Figs. 12 and 13 have their maxima centred at the Curie temperature. This is a known feature of com-
pounds exhibiting second order phase transition and treated via the mean-field theory53.

The relative cooling power RCP (T).  The RCP is a figure-of-merit for MCE materials (e.g.56). It is defined as RCP 
(T) = ∆Tad (max) × δTFWHM. Table 3 displays the RCP (T) for benchmark materials e.g. Gd, Gd-based compounds 
and FeRh system. From this data, we may conclude that the RCP of YFe3 is comparable with those of well-known 
materials.

The Arrott plots and universal curve.  The Arrott plots for YFe3 are shown, in a temperature range around Tc, 
in Fig. 14. The positive slopes at those temperatures, below and above Tc, are indicative of second order phase 
transition. First order transitions exhibit negative or s-shaped slopes57,58. The straight line starting near the origin 
is calculated at a temperature close to Tc (Fig. 3). The features of the universal curve, described below, supports 
the presence of SOPT as well.

The universal curves59, for YFe3, are shown in Fig. 15 for field changes of 3, 4, 5 and 6 T. The curves are col-
lapsed on each other especially at high temperatures i.e. θ > 0. The parameter θ is given by: θ = (T − Tc) / (Tr − Tc), 
where Tr is a reference temperature defined as the temperature at which the following condition holds: ∆SM 
(Tr) = 0.7 (∆SM)peak. The collapse of the ΔSM curves is also indicative of second order phase transition, which is 
different from the features encountered in first order phase transitions60.

It would be of interest to support our finding that the mean field theory is suitable for explaining the physical 
properties. Therefore, calculating some of the critical exponents61–65 would be beneficial. We have calculated the 
exponent n in the relation:

Table 3.   The Relative Cooling Power RCP (T), using our calculation, in comparison to experimental data.

Material ∆H(T) RCP(T)/∆H (K2/T) Reference

Gd 6 161.2 56

Fe 3 95

Co 2.32 78.4

Gd5Ge4 5 50.4

Gd5Si4 5 109

Gd 0.2 Er 0.8 Ni Al 5 75.9

FeRh 2.5 −66.4

YFe3 1.58 34.2

HoFe3 1.58 3.5

YFe3 3 85 Present work

HoFe3 3 15 Present work

T = 500 K

T = 505 K

T = 510 K

T = 515 K

T = 520 K

T = 530 K

T = 540 K

T = 543 K

T = 550 K

Figure 14.   The Arrott plots, at different temperatures, for YFe3.
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from the field dependence of ΔSm close to Tc. The relation between n, β and γ is:
n = 1 + (β−1)/(β + γ) [e.g. 65, which can be used to evaluate γ if β is calculated from the relation:

or calculate β, if γ is calculated from:χT ∼ t−γ ,H = 0,T > Tc , where t = (T−Tc)/T. We have calculated β for 
YFe3 from its M-T data, in zero field, by taking the logarithm of M ~ (−t)β and performing the calculation for 
temperatures lower than Tc. We have obtained β around 0.52 for this compound. Therefore, the percentage error 
between our result and the value 0.5 of the mean-field is around 4%. The factor γ turned out to be around 0.92 
for YFe3. In addition, we have calculated the critical exponent δ from the relation: δ = 1 + γ/β66 and found that 
δ = 2.8, which is close to the MFT value of 3. From the above analysis, we conclude that mean-field theory has 
fairly produced the critical exponents for YFe3. We would also emphasize the fact that the mean-field theory has 
its own limitations near Tc.

We should mention that other models e.g. 3D-Heisnberg, 3D- Ising and Tri-critical mean field model [e.g.67] 
may be used to study the critical exponents, however a future experimental and/or theoretical work, dedicated 
to this task, may shed more light on the most proper model.

Conclusions
The two-sublattice molecular field model was used for calculating the thermomagnetic properties for YFe3 and 
HoFe3 . The temperature dependence of magnetization shows that YFe3 is ferromagnetic with a Curie temperature 
close to 537 K, while HoFe3 is a ferrimagnetic compound with a compensation point around 389 K and a Curie 
temperature close to 565 K. The bulk and shear moduli are calculated using the WIEN2K ab-initio electronic code 
for YFe3 system. Those moduli were used to calculate its Debye temperature (500.53 K). The Debye temperature 
of HoFe3 is obtained from the Materials Project site. Using the calculated DOS, at Fermi energy, the electronic 
heat capacity coefficient γe was found to be 0.0256 and 0.0575 J/K2 mole, for YFe3 and HoFe3 respectively. The 
isothermal change in entropy ∆Sm, for a field change of 3 T, is about 0.8 and 0.12 J/mole. K for these systems, 
respectively. The Y-system exhibits a larger adiabatic drop in temperature (1.3 K/T), for a 3 T field change, than 
the Ho-system (0.4 K/T). The relative cooling power RCP(T) of YFe3 is comparable to well-known MCE mate-
rials The temperature and field dependences of the magnetization, magnetic heat capacity, entropy, the MCE 
quantities together with the Arrott plots and universal curve, are all indicative of SOPT.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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