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Information extraction 
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Gernot Reishofer 4,5*

Recent advances in deep learning and natural language processing (NLP) have opened many new 
opportunities for automatic text understanding and text processing in the medical field. This is 
of great benefit as many clinical downstream tasks rely on information from unstructured clinical 
documents. However, for low-resource languages like German, the use of modern text processing 
applications that require a large amount of training data proves to be difficult, as only few data sets 
are available mainly due to legal restrictions. In this study, we present an information extraction 
framework that was initially pre-trained on real-world computed tomographic (CT) reports of 
head examinations, followed by domain adaptive fine-tuning on reports from different imaging 
examinations. We show that in the pre-training phase, the semantic and contextual meaning of 
one clinical reporting domain can be captured and effectively transferred to foreign clinical imaging 
examinations. Moreover, we introduce an active learning approach with an intrinsic strategic sampling 
method to generate highly informative training data with low human annotation cost. We see that 
the model performance can be significantly improved by an appropriate selection of the data to 
be annotated, without the need to train the model on a specific downstream task. With a general 
annotation scheme that can be used not only in the radiology field but also in a broader clinical 
setting, we contribute to a more consistent labeling and annotation process that also facilitates the 
verification and evaluation of language models in the German clinical setting.

With the wide application of artificial intelligence in medicine, there is an increasing need for the analysis of 
medical  texts1–4. Structured text data form the basis for many information retrieval use  cases5–11 like Clinical 
Decision Support (CDS), diagnostic surveillance, cohort building for epidemiological studies, or query-based 
case retrieval. However, extracting structured and normalized information from clinical documents is a chal-
lenging task due to the lack of consistent language and standardized reports. Clinical documents, especially 
radiological reports, differ greatly in writing style from general medical documents such as scientific papers and 
articles. Due to time constraints, these documents/reports written by clinical staff are brief and concise and cover 
only important medical information (telegram style) with a subordinate focus on grammatical correctness. This 
leads to a pronounced divergence in semantics as well as syntax to common language.

[Editor1.1] Recently, deep language models, like bidirectional encoder representations from transformers 
(BERT)12, have shown an impressive performance boost for various NLP downstream tasks in the German clinical 
domain, such as (i) information extraction from radiological  reports13–16, (ii) free-text report  classification17,18 and 
(iii) oncology report  summarization19. However, training large language models requires a significant amount 
of well-annotated training and testing data. Although hospitals already collect a vast amount of valuable digital 
free-text data (discharge reports, radiological reports, etc.) every day, they cannot be made accessible for exter-
nal research due to privacy concerns and local legal restrictions. The situation is even worse for low-resource 
languages like German and hampers the development of modern healthcare applications in this field.
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There are several initiatives for information extraction in German clinical documents derived from different 
medical fields. Roller et al.13 introduced a workbench for information extraction on German nephrology reports. 
Others focus on data from echocardiography reports 14, mental health  records15 or self-generate synthetic clinical 
 data16. However, these studies focus on a specific medical dataset, and may not allow validation of their approach 
in a broader clinical setting. In addition, there is a lack of a commonly agreed annotation, which makes com-
parison and validation with others difficult. Biased language models are one of the main resulting  drawbacks20,21.

In this work, we contribute to an emerging field of research that emphasizes the role of information extraction 
techniques in the medical domain for low-resource languages like German. Our goal is to provide a universal 
German radiological language model that can be transferred to other clinical fields with minor adaptations (see 
Fig. 1). This allows other research teams to fine-tune the model on local datasets for specific clinical use cases 
without the need for expensive computing and human resources. These clinical applications cover (i) predictive 
clinical tasks, (ii) the generation of research cohorts, or (iii) the generation of image labels for upcoming AI-
based medical imaging tasks.

In this paper, we pay attention to radiological reports due to their lower syntactic complexity compared to 
other clinical documents. Unlike clinical documents such as discharge letters or surgery reports, imaging reports 
focus on specific anatomical regions and consequently specific pathologies and observations. This reduces the 
amount of potential clinical and medical information. Therefore, radiological reports are a good starting point 
for the development of a German clinical language model. In order to train this language model, we introduce 
active learning along with a strategic sampling method to generate highly informative labeled training data 
(Fig. 1). This process of data labeling is particularly challenging in the clinical setting, as the complexity of clini-
cal texts requires the involvement of medical experts in the labeling process. As a final step, we present a general 
annotation scheme for named entity recognition (NER) and relation extraction (RE) that not only considers the 
radiological domain but a broader clinical setting.

We make the following contributions to the interdisciplinary field of natural language processing and clini-
cal research:

• We provide a transformer-based language model that has been trained on German radiological reports 
for the tasks of (i) NER and (ii) RE. We emphasize, that our language model provides a significant boost 
in performance for medical predictive studies. To the best of our knowledge, this work is the first German 
radiological language model which can be used as a starting point for many clinical downstream tasks.

• By implementing active learning along with strategic sampling, we present an efficient method to generate 
consistently labeled training data with little annotation effort. We show that this method, in combination 
with a pre-trained language model, has great potential for general knowledge acquisition across different 
imaging domains.

• We present a general annotation scheme that includes supervision from radiologists, incorporation of medical 
ontologies (RadLex, MesH) and previous  work22,23 that can be used not only in the radiological field but also 
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Figure 1.  Domain adaptation with active learning leveraging a strategic sampling strategy.
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in a broader clinical setting. We therefore contribute to a more consistent labeling and annotation process, 
which is also beneficial in verifying and comparing modeling approaches in the German clinical domain.

Results
Experimental setup. For this study, we obtained radiological reports from three different imaging modali-
ties from our institution. Table 1 gives an overview of the different training and test sets. Sentence count states 
the number of unique sentences per dataset. Based on the schemata from Tables 4, 5, clinical entities (Named 
Entity) and relationships (Relationship+ and Relationship− ) between those entities were extracted from the 
reports, using an active learning approach. Relationship+ refers to actual relations of entities while entities that 
have no relationship with each other within a sentence (Relationship− ) are automatically labeled as no relation.

A pre-trained BERT language model is fine-tuned for (i) NER and (ii) RE. Following the masked language 
modeling method, 15% of the words in the CT Head (CTH) dataset were randomly masked and used for 
self-supervised pre-training. The pre-trained model serves as a basis for further fine-tuning in the following 
experiments. A more detailed description of the active learning procedure can be found in the “Material and 
Methods” section.

Results for CT Head reports (source domain). 
In this first experiment, the language model is fine-tuned on labeled data derived from the CTH dataset. Initially, 
268 randomly selected sentences were annotated by two clinical experts. During the first seven learning cycles, 
100 additional randomly selected samples were chosen from the pool of unlabeled sentences per iteration and 
proposed to the clinical experts for annotation.[Rev1.1] During the random sampling iterations, a subset of 20% 
of the sentences per iteration was annotated by both clinical experts. In addition, 10% of all sentences were anno-
tated by both clinical experts during the strategic sampling iterations. Based on these expert reviews, an inter-
annotator agreement was estimated separately for both the random sampling phase and the strategic sampling 
phase. The Cohen’s kappa values of 0.74 (random sampling) and 0.83 (strategic sampling) show a substantial as 
well as a near perfect agreement between the annotators. Inspired by Ramponi and  Plank24 as well as Salhofer 
et al.25 we intervene at iteration 8 with a strategic sampling approach that favors longer sentences/samples with 
a higher perplexity score (Eq. 1). In order to ignore outliers but still select highly informative training samples, 
we select samples (sentences) in the upper 75% to 90% percentile of the perplexity scores and sentence lengths. 
Examples of sentences with different lengths and perplexity scores are stated in Table 2. It can be observed that 
sentences containing medical entities such as diseases that are more common in reports (e.g., regular sinus ven-
tilation) lead to low perplexity values. Sentences containing rare diseases (or medical conditions), like “calcified 

Table 1.  Dataset overview. Number of unique records per dataset as well as number of extracted (clinical) 
named entities and relationships.

Dataset Sentence count

Entity count

Named entity Relationship+ Relationship−

Training

 CT Head (CTH) 1398 6174 16,780 28,916

 MRI Head (MRIH) 512 2878 3156 20,732

 Xray pediatric (XPED) 512 4485 4138 34,588

Test

 CT Head (CTH) 1074 3992 4381 25,004

 MRI Head (MRIH) 423 1852 1901 9230

 Xray pediatric (XPED) 213 1012 701 6578

Table 2.  Comparison of sentences with different perplexity scores (pps) and lengths.

Strategy Sentence

Short sentence with low pps Keine rezente Blutung
(No recent bleeding)

Long sentence with low pps
Geringgradige randständige Schleimhautschwellung im Sinus frontalis, sowie im Sinus maxillaris rechts-
seitig, im Übrigen regelrechte Belüftung der Nasennebenhöhlen und des Mastoidzellsystems beidseits
(Minor borderline swelling of the mucous membrane in the frontal sinus and in the maxillary sinus on the 
right side, otherwise normal ventilation of the paranasal sinuses and the mastoid cell system on both sides)

Short sentence with high pps Mikrophtalmie rechts mit verkalktem Bulbus oculi
(Microphtalmia on the right with calcified bulbus oculi)

Long sentence with high pps
Im Wesentlichen unveränderte postoperative Verhältnisse in der hinteren Schädelgrube bei Zustand nach 
Teilentfernung eines Vestibularisschwannoms am Kleinhirnbrückenwinkel rechts
(Essentially unchanged postoperative conditions in the posterior fossa after partial removal of a vestibular 
schwannoma at the right cerebellopontine angle)
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bulbus oculi”, are much more surprising to the model and lead to higher perplexity scores. We conclude that 
drawing longer sentences with a higher perplexity score leads to samples with a higher number of named entities 
and, implicitly, more relationships compared to the random sampling strategy. The values in Table 3 support 
this conclusion. The second advantage of this strategic sampling approach is that entity and relationship classes 
are more uniformly distributed in the training set. Figure 2 shows that the distributions are much more skewed 
toward the minor classes in the strategic sampling method.

As the vast majority of relationships correspond to the None relations (Relationship− ), the positive relations 
(Relationship+ ) were oversampled four times to avoid strong class imbalance during training. Since the model 
is to be evaluated based on the actual distribution of relationship classes, no oversampling is performed for the 
test set. To confirm the performance of the language model in terms of NER and RE within (i) the same imaging 
modality and (ii) the same anatomical region, the evaluation is based on the CTH test set. Since we assume that 
each entity and relationship class is equally important, the macro F1-score is used as an evaluation measure-
ment. In Fig. 3, the main results are reported. The score slightly increases during the iterations where random 
sampling is applied. At iteration 8, when we intervene with the strategic sampling approach, the score increases 
dramatically until it reaches a saturation range. There are two reasons for this increase in performance: (i) the 
training set contains many more sentences with a larger number of clinical entities and relationships, and (ii) 
the distribution of the different classes in the training set when strategic sampling is applied is more uniform 
than in the training set when random sampling is applied (Fig. 2). Figure 4 visualizes the entity classes, which 
benefit the most from the intervention with strategic sampling. Again, the saturation range is reached quite fast 
after the intervention.

Transfer to another clinical domain (domain adaptation). Medical entities as well as the writing 
style may differ between clinical reports due to (i) the type of clinical examination (ii) the anatomical region and 
(iii) the individual preferences of the medical experts. Although a pre-trained language model is biased toward 
a specific clinical domain, we want to emphasize that it is still beneficial to fine-tune it for a foreign clinical 
domain. This is especially true when only a small training dataset is available.

Current research in the field of domain adaptation can be categorized into model-centric, data-centric and 
hybrid as described in the work of Ramponi and  Plank24. Since we already use active learning and strategic 
sampling for model training in the first experiment, and large unlabeled datasets are available in the foreign 
domains, we continue with this data-centric data selection approach for domain adaptation.

Results for MRI Head reports. In a second experiment, we validate a fine-tuned NER and RE model adapted to 
a foreign imaging domain (Magnetic Resonance Imaging). Hence, we compare the models that were (a) previ-
ously trained on the CTH dataset and now fine-tuned on the MRI Head (MRIH) training set ( BERTct,mr and 
RBERTct,mr ) with those that were (b) trained on the MRIH dataset only ( BERTmr and RBERTmr ). After several 
active learning iterations with strategic sampling on the MRIH training set, we see that the BERTct,mr model 
outperforms the BERTmr model (Fig. 5). The same applies to the RE task. This is especially true for the very early 
stages where the amount of training data is quite small.

Results for Xray pediatric reports. In the third experiment, we do not only switch to another imaging modal-
ity but also to a different anatomical region where the examination is performed. Like in the experiment before 
we compare the models previously trained on the CTH reports and fine-tuned on the Xray pediatric (XPED) 
dataset and the models trained on the XPED reports set only. It is shown that although the performance of 

Table 3.  Overview CT Head training sets per active learning iteration. By starting with an initial amount 
268 labeled sentences, in each iteration additional sentences have been annotated and added to the training 
set. Using strategic sampling increases the number of occurrences of named entities and relationships within 
sentences compared to random sampling.

Sampling strategy
Number of 
sentences

Avg. sentence 
length

Avg. perplexity 
score

Avg. number of entities per sentence

Named entity Relationship+ Relationship−

Random sampling

[Rev1.2] 268 45 1.25 2.60 13.3 9.40

100 44 1.27 3.68 11.56 10.92

100 38 1.12 3.64 6.84 7.64

100 41 1.22 3.75 8.16 12.82

100 39 1.25 3.20 7.16 7.64

100 37 1.26 3.20 7.72 8.70

100 47 1.19 3.19 4.08 4.42

100 44 1.20 3.67 2.36 2.72

Strategic sampling

100 90 3.41 10.70 27.14 90.30

100 77 2.72 8.50 17.00 39.34

100 62 2.21 4.70 14.24 20.44

100 56 1.96 4.22 15.04 19.50
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the BERTxray and RBERTxray increases with growing training set, the multi-domain models BERTct,xray and 
RBERTct,xray are dominating (Fig. 5).

Discussion
In this work, we present a pre-trained and fined-tuned German language model (BERT and RBERT) for the task 
of information extraction (NER and RE) in the radiological domain. This model was trained on clinical reports 
derived from three different types of imaging examinations (CT, MRI, radiograph). In order to standardize and 
support further research in this area, we introduced a general annotation scheme that was developed together 
with clinical experts based on previous research and common medical ontologies. Recent work from Irvin et al.22 
and Jain et al.23 introduced annotation schemata for the classification of radiology reports. They mainly focus on 
the classification of reports based on pathologies and/or anatomical regions which can be used as image labels for 
further research in the field of AI-based medical imaging. In contrast, our annotation scheme extends their work 
in a way that allows for more general clinical knowledge acquisition from documents since radiology reports 
contain not only pathologies and anatomical entities, but more detailed clinical information. For example, the 
medical reason why a patient is requested to undergo an imaging examination or the possible diagnosis given 
by the radiologist. Considering this additional clinical information, a model trained on our schema enables a 

)b()a(

)d()c(

Figure 2.  Distribution of named entity classes (a) in the random sampled and (b) in the strategic sampled 
training set as well as the relationship classes (c) in the random sampled and (d) in the strategic sampled 
training set (CTH training data set).
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broader range of clinical research tasks. For example, not only (i) classifications tasks (e.g. aneurysm: yes/no) 
but also (ii) query-based case retrieval for cohort building studies (e.g. from all medical records, return patients 
with one or more aneurysms >7mm of the A. cerebri media (ACM)) or (iii) diagnostic surveillance (e.g has the 
aneurysm increased/decreased in size or remained the same compared to the previous examination?). Various 
clinical downstream tasks can be dynamically defined and formulated in a post-processing step based on the 
annotation schema without the need to train separate models. We are aware that not all classes are required for 
every clinical downstream task. Therefore, decisions about relevant entity and relationship classes must be made 
in collaboration between medical experts and data scientists prior to annotation. These decisions depend heavily 
on the (i) medical data and (ii) the clinical use case. Active learning in combination with strategic sampling based 
on intrinsic measurements allow us to efficiently generate highly informative labeled training data at low cost. 
A major advantage of intrinsic measurements over extrinsic measurements is that they do not rely on language 
models trained on a specific downstream task (like NER or RE) and therefore do not require labeled samples. 
Instead, a self-supervised, pre-trained model forms the basis for these sampling strategies without the need for 
expensive, human-annotated data. However, the most popular strategies like uncertainty  sampling26 or margin-
based sampling  techniques27,28 rely on extrinsic measurements. These sampling techniques have a major drawback 
when the annotation scheme (entities and relationship classes) changes, for example, due to domain adaptation. 
In this case, the sampling strategy must be manually adapted to the new entity and relationship classes. Our 
intrinsic strategic sampling technique removes this drawback and provides a more general approach based only 
on raw report texts. Moreover, we conducted experiments based on two intrinsic sampling strategies (i) random 
sampling and (ii) strategic sampling based on the length and the perplexity score of a sentence. In our study, we 
found that strategic sampling outperformed our baseline random sampling method. Strategic sampling favors 
longer sentences with a high perplexity score. Since annotation is mostly performed by medical experts due to the 

Figure 3.  Macro F1-score over the different active learning cycle iterations for both tasks (i) named entity 
recognition and (ii) relation extraction evaluated on the CTH test set. The vertical line at iteration 8 marks the 
change from random sampling to a strategic sampling approach.

)b()a(

Figure 4.  Improvements for (a) named entity classification and (b) relationship classification on the CT Head 
test data set after applying strategic sampling for active learning. The vertical line at iteration 8 marks the change 
from random sampling to a strategic sampling approach.
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complexity of clinical documents, our sampling approach in combination with active learning provides a highly 
efficient and time-saving framework for creating training datasets. For the task of information extraction from 
clinical records (i) the German-MedBERT29 and (ii) R-BERT30 models were used as a starting point for named 
entity recognition and relation extraction, respectively. To gain a linguistic understanding of clinical documents 
and to account for their specific writing style, the models were pre-trained using masked language modelling 
on a German clinical corpus. Multiple studies have demonstrated the advantage of adaptive pre-training under 
both high- and low-resource  settings31,32. In the first experiment, we fine-tuned and evaluated the NER and RE 
models on labeled samples from the CTH dataset. We found that by applying active learning with strategic sam-
pling, our method achieved improved results for the NER and the RE task, respectively, considering the amount 
of available labeled training data. Underrepresented classes in particular benefit from this training setup, as the 
representation in the training set is much more balanced (Fig. 2) which further improves the overall performance 
of the model, as visualized in Fig. 3.

As we observed in further experiments, the performance of the language models highly depends on the train-
ing set size. Since many research institutions lack sufficient clinical data to train deep-learning language models 
from scratch, transferring knowledge from trained models from a foreign clinical domain mitigates the problem 
of poor model performance and overfitting. In terms of domain adaptation in the clinical sense, we distinguish 
two different scenarios in these experiments: (i) change in the type of radiological examination (from CT scans 
of the head to MRI scans of the head) and (ii) change in the type of radiological examination and the anatomical 
region for which the examination is performed (from head-specific examinations to whole-body examinations). 
For both scenarios, the pre-trained model, fine-tuned on the respective foreign dataset, outperforms the language 
model trained from scratch. Especially for smaller foreign datasets, differences in performance become even 
more apparent (Fig. 5).

A closer look shows that the overall performance of the models trained on the MRIH dataset (Fig. 5a,b) with 
86% for Bertct,mr and 80% for RBERTct,mr ) is much higher than those of the models trained on the XPED dataset 
(Fig. 5c,d) with 74% Bertct,xray and 60% RBERTct,xray ) considering the same amount of training data. This is due 
to the fact that the CTH and MRIH datasets share similar entity distributions. Although the imaging modalities 
are different, essential parts such as anatomical entities (cranium, ventricle, basal ganglia), medical conditions 

)b()a(

)d()c(

Figure 5.  Performance of (a) NER and (b) RE models on the MRIH dataset as well as the performance of the 
(c) NER and (d) RE models on the XPED set. Domain adapted models, prior trained on a dataset from a foreign 
clinical domain, result in improved performance compared to models trained on a small dataset from a single 
domain.
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(acute sinusitis, territorial ischemia, Basal ganglia calcification) as well as the writing style itself are similar 
according to the experts. The main reasons for this are that (i) CT and MRI scans of the head are performed by 
the same radiological department (neuroradiology) so that the same anatomic region and anatomic structures 
are examined, and (ii) MRIs are often performed as a follow-up to a CT scan, for example in an emergency 
case. Therefore, we observe dependencies/overlaps between reports of these imaging modalities, which in turn 
facilitate the domain adaption process.

In contrast, the CT head dataset and the pediatric radiograph dataset differ both in writing style and in the 
medical information included. This is because (i) the imaging study focuses on different anatomical regions 
and pathologies (ii) the clinical questions differ from each other and ultimately (ii) due to the different imaging 
modalities. The work of Casey, Alene et al.33 and Zech et al.34 support our findings in that the highly specialized 
nature of each imaging modality lends itself to the creation of sublanguages. These different writing styles across 
imaging modalities pose an additional challenge for a language model. Moreover, pediatric radiographs have a 
different prevalence of pathological findings than CT and MRI examinations due to different patient populations. 
In our study, CT and MRI examinations were performed on elderly patients who usually have a longer medi-
cal history, whereas children who underwent a radiographic examination usually suffered from acute medical 
conditions. All these aspects have a major impact on the task of information extraction and therefore must be 
considered when training a language model from scratch or adapting it to a foreign clinical domain.

Our work has certain limitations. First, this is a single-center study and other open data sources in this area 
are scarcely available to evaluate our work. The performance of the information extraction approach may vary 
across clinical sites because (i) different specifications for the format of clinical reports (structured vs unstruc-
tured) result in different writing styles and (ii) disease prevalence varies by demographic factors. In addition, we 
currently cover a specific area in the clinical field where reports are used as a communication tool. Therefore, we 
encourage further research to evaluate our open language models in a different clinical domain and use them 
as a starting point for further research. The annotation and training strategies described in this paper should 
facilitate the whole process of training data generation and lead to more unified research in the field of German 
clinical information extraction.

Conclusion
[Rev1.6] In this study, we demonstrate the feasibility of clinical language understanding in low-resource lan-
guages such as German. Combined with an efficient training and labeling strategy and a standardized annota-
tion scheme, this work forms the basis for various clinical prediction tasks and encourages others to contribute 
to more consistent work in this field. Especially clinical studies with a small data set benefit from pre-trained 
German language models. [Rev2.2] We have shown that strategic sampling has great potential for effective selec-
tion of training data and minimizes the cost of human annotation. Validation as well as comparison with other 
sampling strategies need to be performed in future experiments on heterogeneous clinical datasets. [Rev1.4], 
[Rev2.3] In future studies, the language models will be extended and validated on datasets from other imaging 
disciplines derived from foreign clinical institutions as well as documents from other clinical disciplines such as 
discharge letters. Good starting points for this are (i) open datasets from the MIMIC-IV database or (ii) n2c2-
NLP research datasets that could be translated into German or used directly for multilingual language modeling. 
In addition, we plan to collaborate with other German-speaking clinical institutions to expand the scope with 
real-world clinical data.

Material and methods
Ethics declarations. All patients gave written informed consent to participate in this study. The study was 
approved by the ethics committee of the medical university of Graz according to the guidelines of the declara-
tion of Helsinki.

Study cohort and preprocessing. In this study, radiological reports of CTs of the head were retrieved 
between 2015–2021 from the radiological department. After data preprocessing and cleaning, 88.467 distinct 
reports remained for further analysis.

In addition, 100 reports of MRI examinations of the head focusing on cerebral aneurysms were collected and 
used for domain adaptive training and validation respectively.

Further, data was derived from the department of pediatric radiology. These 74.183 reports are based on 
radiographs of different body parts of children.

The preprocessing steps of all three datasets cover (i) text extraction from the “findings”, “impression”, “his-
tory” and “comparison” sections of a radiological report and (ii) sentence splitting, using the SoMaJo  library35. 
[Rev2.4] Tokenization of words and subwords is performed directly by the BERT language model during training 
and inference using the concept of WordPiece tokenization. These pre-processed reports are converted to the 
Brat-standoff format, which serves as the basis for the human annotation process. All datasets were acquired 
during clinical routine and retrospectively analyzed.

Annotation guidelines and corpus generation. The annotation guidelines for entities and relation-
ships were carried out by radiologists from our clinical department. Based on medical ontologies (UMLS, 
RadLex, MeSH) and prior  work13,36,37, the annotation scheme covers relevant clinical information with a focus 
on radiological reports. However, we emphasize to keep annotation classes as general as possible so that the 
task of information extraction can be easily transferred to other clinical domains with only minor adjustments. 
Tables 4, 5 describe entity and relationship classes, respectively. The annotation task was performed using the 
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BRAT annotation  tool38. New annotated samples were iteratively added to the training set depending on the 
active learning strategy. Each document in the training set was examined by two radiologists.

Named entity recognition. For the task of clinical named entity recognition, we rely on a German pre-
trained clinical language  model29. We continue self-supervised pre-training using masked language modeling 
(MLM) with the whole set of radiological CT reports of the brain. Self-supervised pre-training uses rich unla-
beled text data to train the transformer network and obtain a contextual word vector representation. This model 
builds the backbone for the downstream tasks (i) named entity recognition as well as (ii) relation extraction.

Fine‑tuning for NER. To ensure that the language model knows that an entity can be a single word or a group 
of words, we need to provide information about the beginning and ending of an entity in our training data. In 
this work, this is realized via the IOB (Inside Outside Beginning) tagging schema. Further, we replace the pre-
training output layer with a linear layer for the task of entity classification. Each entity class, stated in Table 4, 
is defined in two ways, either with the “B-<class name>” or “I-<class name>”. For example, the phrase “ohne 
Hinweis” (no indication) in Fig. 6 would be split into “B-Certainty” and “I-Certainty” following the IOB labeling 
schema. Further, all unlabeled tokens like “der”, “und”, auf ”, “ein” will be labeled with the “O” tag, representing 
the class no entity.

Relation extraction. Sample generation. In this section, we describe the task of within-sentence relation 
sample generation and classification. Given a radiological report D that contains a set of n sentences {si}ni=1 . Each 

der und auf eine .,Ausweitung IMG_OBS inneren LOC äußeren LOC Liquorräume ANATOMICAL ohne Hinweis CERTAINTY Liquorzirkulationsstörung MEDICAL_COND

Examines

Is_located
Is_located

Certainty

Figure 6.  Example of an annotated sentence of a radiological report. English translation: expansion of the 
internal and external CSF spaces, without evidence of a CSF outflow disorder.

Table 4.  Overview entity classes.

Concept Description Example

Central

Medical_condition Pathologic findings of disease value or findings of uncertain 
disease value “akute sinusitis frontalis”, “Ausweitung e vacuo”, “Kalzifizierung”

Anatomical_entity Anatomical terms “Gehirnschädel”, “Ventrikel”

Imaging_observation Objective radiological descriptions “Ausweitung”, “Raumforderung”

Diaglab_procedure Imaging modalities, but also preliminary examinations, or clini-
cal examinations outside of radiology “CT”, “EKG”

Non_anatomical_substance Drugs, noxious agents, or other biologically active substances “Kontrastmittel”, “Marcumar”, “Gadolinium”

Procedure Terms for interventions such as surgical procedures or radiation 
treatments “Bohrlochtrepanation”

Medical_device Medical devices and materials “Clips”, “Ventrikelsonde”

Follow_Up Recommendations or statements on follow-up investigations “Kontrolluntersuchung empfohlen”, “Follow-up Untersuchung”

Prior_investigation Preliminary examination carried out “Voruntersuchung”, “VU”, “MRT-Voruntersuchung”

Descriptors

Location_descriptor Terms with spatial information, also anatomical-spatial words “frontal”, “links”, “beidseits”

Certainty_descriptor Negations and speculations as well as information about the 
degree of certainty of findings or diagnoses “kein”, “wahrscheinlich”, “deutlich”

Quality_descriptor Term about the assessability of imaging (usually in combination 
of an artifact) “eingeschränkte Beurteilbarkeit”

Radlex_descriptor Terms that describe other entities in more detail and cannot be 
assigned to any other descriptor “hypodens”, “inhomogen”, “klein”

Specifications

Dosing The dosage of medical or non-medical substances and the radia-
tion dose “400 MG J/ML - 200 ML, 50.00 ml”

State_of_health Terms describing norm variants or normal findings. “altersgerecht”, “frei”, “unauffällig”

Measurement Measurement of a parameter with following unit or dimension-
less (no dosages) “8 cm”, “30 min”, “Segment IV”

Time_information Terms with temporal information (no dynamic temporal 
changes) “akut”, “rezent”, “vor 2 Tagen”

Dynamism Descriptions of dynamic changes “neu”, progredient”, “vorbekannt”

Property Property or function terminology “Durchmesser”, “Belüftung”

Score_Grade_Type Terms of classification, categorization, medical scores, gradua-
tions, variations, and typifications “ASPECTS”, “geringgradig”, “Typ 2”
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sentence si holds a set of ki named entities {ej}kij=1 , extracted prior by the the entity recognition model. The rela-
tion extraction task infers the relation between entity pairs (en, em) , where the subscripts n and m relates to dis-
tinct entities within a sentence. The training set of relations refers to the joint set of annotated relations R+ and 
the set of no relation R− : Rtrain = R+ ∪ R− . By definition, entities which have no relation to each other within a 
sentence are automatically labeled as no relation. Since we do not consider the direction of the relation, all pos-

sible combinations (relations) between two distinct entities within a sentence can be expressed by: 
(

ki
2

)

 . Ac-

cording to the sentence in Fig. 6, 6 entities can be extracted. Thus, 15 relations are possible, four of which are 
positive relations. The remaining 11 relations are labeled as no relation.

Model architecture. Our supervised relation classification approach is based on an pre-trained relation extrac-
tion model called R-BERT30. As a starting point we use the pre-trained language model from the previous sec-
tion. Compared to the standard relation classification approach, we adapted the model output so that we do 
not consider the direction of the relation. This means, Is_located(e1, e2) is the same as Is_located(e2, e1) . Since 
we incorporate predefined relationship rules, as specified in Table 5, the complexity of the final model layers is 
reduced which is beneficial in cases of a small training set.

Active learning cycle. Our active learning cycle can be divided into the following phases: 

1. Initial training sample generation. At the beginning, we randomly select an initial set of of unlabeled sentences 
for human annotation. The initial pre-trained language model is fine tuned for NER and RE on this set.

2. Querying strategy. Additional unannotated sentences are selected based on a querying strategy. The num-
ber of sentences proposed to the human annotator for labeling/verification is a hyperparameter in our AL 
framework and is set by default to 100 samples per iteration. In the experiments, the selected sentences were 
automatically labeled by the language model prior the human annotation/review phase. This reduces the 
cost of human annotation because the annotation of a sentence does not have to be started from scratch, but 
instead the already annotated labels are corrected. These automatically inferred labels are further defined as 
soft labels.

3. Training NER and RE model. The two models are retrained on the updated annotated training dataset.

Step 2 and 3 are repeated iteratively until a stopping criteria is met. In our work, we stop annotation when the 
accuracy reaches a threshold on a hold-out test set. This test set is generated from the same domain as the train-
ing dataset.

Random selection. We randomly select queries from the set of unlabeled data. The assumption is, that by ran-
dom selection, (i) the underlying data distribution is represented in the training set and (i) the NER/RE models 
are provided with “average” informative samples. This query strategy can be performed independently of the 
classifier model and is the most favorable in terms of runtime and computational cost.

Pseudo‑perplexity score. This sampling strategy relies on querying sentences with high pseudo-perplexitiy 
scores. Given a tokenized sequence X = (x0, x1, . . . , xn) , the pseudo-perplexity of this sequence is defined by:

Table 5.  Overview relationship classes.

Relation Description

Medical

Shows Links a DiagLab_procedure with various findings that are displayed by the respective imaging method

Examines This relation refers to imaging modalities that examine specific anatomical structures

Compares Relates to findings from previous examinations that are compared with current findings such as imag-
ing_observations or Medical_conditions

DDx Terms that represent possible explanations (differential diagnoses) for findings in a report

Recommendation Findings or conditions a follow-up examination is recommended for

Description

Has_state Medical_condition or anatomical_entity whose state is further described by an imaging_observation

Has_property A term that gives various findings a property

Has_dosing Links the dosage with a respective non_anatomical_substance

Has_time_info Links Time_information entities with various terms

Has_measure Assigns text information containing measurements to different entities (i.e. Scores_Grade_Type, 
property, Medical_condition, ...)

Has_dynamic Associates terms that imply dynamic changes with findings in a report

Has_score This relation connects Score_Grade_Type entities with other terms they refer to

Has_treated Applied on procedures used as treatment for a Medical_condition

Is_located Links location_descriptor or anatomical_entity with findings which are localized by them

Certainty Associates terms giving information on how certain a specific finding is
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     Where each token Xj is masked out and predicted based on all previous and following tokens 
X−i = (x0, x1, . . . , xi−1, xi+1, . . . , xn) The pseudo-perplexity of a masked language model is an intrinsic meas-
ure of how well the model is able to predict sentences in a  corpus39. We claim that sentences where the model is 
least accurate (or most surprised) during inference have a higher contribution in the training phase. Compared 
to the random selection strategy, the queries rely on the performance of a pre-trained language model and are 
therefore more computationally intensive.

Data availability
The datasets used and analysed within this study are not publicly available due to legal restrictions but are avail-
able from the corresponding author on reasonable request.

Code availability
The source code as well as the pre-trained models will be available on github.
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