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Blood leukocyte transcriptional 
modules and differentially 
expressed genes associated 
with disease severity and age 
in COVID‑19 patients
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Fabiane A. Regalio 6, Roberto M. Cesar Jr 7 & Carlos A. Moreira‑Filho 1*

Since the molecular mechanisms determining COVID‑19 severity are not yet well understood, there 
is a demand for biomarkers derived from comparative transcriptome analyses of mild and severe 
cases, combined with patients’ clinico‑demographic and laboratory data. Here the transcriptomic 
response of human leukocytes to SARS‑CoV‑2 infection was investigated by focusing on the 
differences between mild and severe cases and between age subgroups (younger and older adults). 
Three transcriptional modules correlated with these traits were functionally characterized, as well 
as 23 differentially expressed genes (DEGs) associated to disease severity. One module, correlated 
with severe cases and older patients, had an overrepresentation of genes involved in innate immune 
response and in neutrophil activation, whereas two other modules, correlated with disease severity 
and younger patients, harbored genes involved in the innate immune response to viral infections, 
and in the regulation of this response. This transcriptomic mechanism could be related to the better 
outcome observed in younger COVID‑19 patients. The DEGs, all hyper‑expressed in the group of 
severe cases, were mostly involved in neutrophil activation and in the p53 pathway, therefore related 
to inflammation and lymphopenia. These biomarkers may be useful for getting a better stratification 
of risk factors in COVID‑19.

The molecular mechanisms determining COVID-19 severity in different age groups are not yet well understood. 
The study of blood transcriptomic differences between mild and severe cases of the disease seems to be a prom-
ising strategy for discovering these mechanisms, moreover when the information derived from the genomic 
analyses is combined with clinico-demographic and laboratory data obtained from patients’ cohorts, in a sys-
tems biology  approach1,2. Additionally, the obtention of gene expression profiles for severe and mild cases, and 
for patients’ age groups as well, together with the identification and functional characterization of differentially 
expressed genes, may contribute to a better stratification of risk factors. It may also provide a thorough under-
standing of COVID-19 pathogenesis, helping the choice of adequate  therapies3–5 and, through the deciphering 
of host response transcriptional complexity, the discovery of new therapeutic  targets5.
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Consequently, we decided to investigate the transcriptional basis of the differences between severe and 
mild cases of COVID-19 through a comparative study of the transcriptional responses of human leukocytes to 
SARS-CoV-2 infection in different age groups. We adopted a Weighted Gene Co-expression Network Analysis 
(WGCNA)  approach6 for identifying transcriptional modules associated with the traits of interest (severity, age) 
and, subsequently, we conducted differential gene expression and enrichment analyses for discovering transcrip-
tional biomarkers, as further described in the following paragraphs.

Materials and methods
Ethics statement. This study was approved by the Research Ethics Committee of the Hospital das Clínicas 
da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP) under number 4.001.109. A written 
informed consent was obtained from all participants or from their legal guardians. All methods were performed 
in accordance with the relevant guidelines and regulations.

Characteristics of participants. The participants included 121 SARS-CoV-2 PCR positive subjects 
recruited between May and August 2020, before the emergence of the first variant of concern in Brazil, that 
occurred in November  20207 (Supplementary Table S1). All these patients were unvaccinated against SARS-
CoV-2. They were divided into two groups—Mild or Severe—according to the severity of illness categories 
described in the NIH COVID-19 Guidelines [COVID-19 Treatment Guidelines Panel. Coronavirus Disease 
2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available at https:// www. covid 19tre 
atmen tguid elines. nih. gov/, accessed on 12/07/21]. The Severe group comprised 58 COVID-19 hospitalized 
patients requiring oxygen therapy that have been tested positive for SARS-CoV-2 by RT-qPCR and were admit-
ted at the HC-FMUSP. The Mild group comprised 63 individuals recruited as outpatients who presented at least 
one of the following symptoms: fever, coryza, dyspnea, anosmia or hyposmia, ageusia or hypogeusia, wheez-
ing in the chest, diarrhea, vomiting, body pain, headache, sore throat, or chills (Table 1). They were tested by 
nasopharyngeal swab RT-qPCR and found to be positive for SARS-CoV-2 and negative for other 15 respiratory 
viruses. After 14 days the clinical evolution of signs or symptoms of all these individuals was checked and the 
diagnosis of oligosymptomatic COVID-19 was confirmed.

Factor analysis of mixed data (FAMD). FAMD is a principal component method for analyzing a data 
set containing both numerical and categorical  variables8. To perform this analysis, the Severe and Mild groups 
were divided into three age ranges: (i) 0 months to nine years; (ii) 10–40 years; (iii) > 41 years. Numerical data 
was obtained from Complete Blood Count (CBC) and age, while the qualitative levels of CBC variables (low, 
normal, or high) according to age and sex were included as categorical variables together with sex, symptoms, 
and other variables of potential clinical relevance (Table 1). This analysis excluded missing values and comprised 
64 variables and 92 individuals (Supplementary Fig. S1). FAMD was performed using the package FactoMineR 
version 2.79 in R-studio environment (version 1.2.5033)10.

Sample collection, processing, and analysis. Whole blood samples were collected from hospitalized 
patients (median of 13 days after first symptoms) and from oligosymptomatic individuals (median of 10 days 
after first symptoms). All samples were collected in EDTA-containing tubes. Each blood sample was divided for 
complete blood count analysis, white blood cell and plasma separation. White blood cells were used for RNA 
extraction. Neutrophil-to-lymphocyte ratio (NLR), platelets-to-lymphocyte ratio (PLR), systemic immune-
inflammation index (SII = (P × N)/L), and neutrophil-to-platelet ratio (NPR) were calculated as these hemo-
gram-derived ratios correlate with inflammation and COVID-19  severity11.

Nasopharyngeal and oropharyngeal samples were collected through a swab and/or a mucus specimen trap 
and kept under refrigeration (4 °C) up to 24 h until cryogenic cooling and storage at − 70 °C for further molecular 
diagnosis of SARS-CoV-2 and/or other respiratory viruses.

Plasma cytokine concentrations. Cytokines (IL-2, IL-4, IL-6, IL-10, IL-17, IFN-gamma, and TNF-alpha) were 
measured in plasma samples by flow cytometry using a BD™ Cytometric Bead Array (CBA) Human Th1/Th2/
Th17 Cytokine Kit (BD Biosciences, San Jose, CA) according to the manufacturer’s instructions, and the concen-
trations were expressed in pg/mL. Plasmatic IFN-alpha and IFN-beta were evaluated by ELISA (IFN beta and 
IFN alpha Duoset ELISA, R&D Systems Inc., Minneapolis, MN) and the concentrations were expressed in pg/
mL. Cytokine data were censored if they were below the detection limit of the  instrument12.

Detection of respiratory viruses by RT‑qPCR. Nasopharyngeal and oropharyngeal samples from oligosympto-
matic individuals were obtained for RNA extraction using the NucliSens easyMag® platform fully automated 
(BioMerieux, Lyon, France), according to the manufacturer’s instructions. RT-qPCR was employed for detecting 
the genetic material of SARS-CoV-2 and of 15 other respiratory viruses: influenza A virus (Inf A), influenza B 
virus (Inf B), seasonal coronaviruses (CoV-NL63, -229E, -HKU1, and -OC43), enterovirus (EV), parainfluenza 
viruses (PIV-1, -2, -3 and -4), human metapneumovirus (HMPV), rhinovirus (RV), respiratory syncytial virus 
(RSV), and adenovirus (AdV). A panel of validated in-house singleplex qPCR assays developed at the Centers 
for Disease Control and Prevention (CDC, Atlanta, GA, USA) was used according to Corman et al.13 for SARS-
CoV-2, and according to Sakthivel et al.14 for the other viruses, using TaqMan™ assays (Applied Biosystems). For 
the reactions (25 μL of final volume), the AgPath-ID™ One-Step RT-PCR Kit (Applied Biosystems) was used, and 
the amplification step was carried out on the ABI 7500 instrument (Applied Biosystems) under the following 

https://www.covid19treatmentguidelines.nih.gov/
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cycling conditions: 45 °C for 10 min (1 cycle); 95 °C for 10 min (1 cycle); and 95 °C for 15 s, followed by 55 °C 
for 1 min (45 cycles).

RNA extraction. A total of 0.5–1.5 mL of whole blood was used for white blood cells (WBC) RNA extraction. 
WBC were immediately separated by centrifugation using EL buffer (QIAamp RNA Blood Mini kit, Qiagen, 
Hilden, Germany). After cell separation, the WBC were collected, preserved in RNAlater (Qiagen) and stored at 

Table 1.  Clinical and demographic characteristics of the COVID-19 hospitalized (Severe group) and 
oligosymptomatic (Mild group) patients. U unknown, NA not applicable, mo months, yrs years, d days. 
Thirteen patients in the Mild group opted for not answering the question relative to race. All statistical analyses 
were performed using Mann Whitney test, except for the analyses indicated by * or ** where Chi-square or 
Fisher exact tests were used. In bold, significant p-values < 0.05.

Severe Mild p-value

Number of subjects 58 63

Male 35 (60%) 25 (40%) 0.012

Median age 50 yrs 34 yrs 0.002

Male (range) 49 yrs (1 mo–81.4 yrs) 35 yrs (8 mo–79.8 yrs) 0.055

Female (range) 51 yrs (0 mo–75 yrs) 32 yrs (2.3–73.2 yrs) 0.020

0–40 yrs

 Male 13 15

 Female 6 26 0.022*

 > 40 yrs

 Male 22 10

 Female 17 12 0.411*

Group 0–9 yrs (median) 0 5 0.015

Group 10–40 yrs (median) 36 29.5 0.041

Group > 40 yrs (median) 56.5 53 0.083

Race (no. subjects)

 White 37 37 0.302**

 Mixed (Pardo) 21 11 0.140**

 Asian 0 2 0.496**

Symptoms (no. subjects) Yes, No; U Yes, No; U

 Cough 47; 11 45; 11; 5 0.325

 Fever 42; 16 30; 28; 5 0.011

 Coryza 12; 46 46; 12 0.000

 Dyspnoea 42; 12 17; 41; 5 0.000

 Wheezing in the chest 17; 40; 1 2; 56; 5 0.000

 Anosmia/hyposmia 30; 23; 5 32; 24; 7 0.478

 Ageusia/hypogeusia 27; 26; 5 32; 24; 7 0.260

 Headache 25; 28; 5 8; 50; 5 0.000

 Sore throat 34; 19; 5 31; 27; 5 0.128

 Diarrhea 25; 33 17; 41; 5 0.062

 Vomiting 15; 41; 2 3; 55; 5 0.000

 Body pain 21; 31; 6 14; 43; 6 0.047

 Chills 33; 23; 2 0; 44; 19 0.027

Therapy (no. subjects)

 Oxygen 49; 4; 5 NA

 Antibiotics 42; 11; 5 9; 49; 5 0.000*

 Antiviral drugs 12; 41; 5 1; 57; 5 0.001*

 Corticosteroids 19; 34; 5 3; 55; 5 0.000*

Hospital stay/age groups Median hospital stay (days)

 1 mo–9 yrs 7
0.311 (vs 10–40 yrs)

0.045 (vs > 41 yrs)

 10–40 yrs 6 0.033 (vs > 41 yrs)

 > 41 yrs 9

Blood sample collection after symptoms onset (range)

Median 13 days (2–69 d) Median 10 days (4–27 d)  < 0.0001
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10 °C until RNA extraction. WBC were lysed with RLT buffer, and the total RNA was extracted using  QIAamp® 
RNA Blood Mini kit (Qiagen). RNA purity analysis and quantification were performed using the NanoVue 
spectrophotometer (GE Heathcare Life Sciences, Marlborough, MA). RNA quality was assessed on the Agilent 
BioAnalyzer 2100 (Agilent, Santa Clara, USA). All RNA samples were stored at − 80 °C until used in hybridiza-
tion experiments.

Microarray hybridization. A total of 23 RNA samples were used for gene expression analysis and grouped 
as Severe (n = 11) or Mild (n = 12) according to the patient’s characteristics (Supplementary Table S2). These two 
groups showed no significant differences regarding age, sex, and time of whole blood collection after the first day 
of COVID-19 symptoms. The Severe group was further divided into subgroups A and B, where A included the 
samples from adolescents and younger adults (age ranging from 11 to 38 years; n = 5) and B included the samples 
from older adults (age ranging from 41 to 62 years; n = 6). Similarly, the Mild group was divided in subgroups 
C and D, where C included the samples from adolescents and younger adults (age ranging from 10 to 37 years; 
n = 7) and D included the samples from older adults (age ranging from 41 to 64 years; n = 5). The patients between 
zero and nine years (Severe and Mild groups) were not included due to insufficient RNA quality.

To determine gene expression profiles, 4 × 44 K DNA microarrays (Whole Human Genome Microarray Kit, 
Agilent Technologies, cat no. G4845A) were used. The procedures for hybridization using the fluorescent dye Cy3 
followed the manufacturer’s protocols (One-Color Microarray-Based Gene Expression Analysis—Quick Amp 
Labeling). The images were captured by the reader Agilent Bundle according to the parameters recommended 
for bioarrays and extracted by Agilent Feature Extraction software version 11.5.1.1 (https:// www. agile nt. com/). 
Spots with two or more flags (low intensity, saturation, controls, etc.) were considered as NA, that is, without 
valid expression value. All microarray raw data have been deposited in GEO public database (http:// www. ncbi. 
nlm. nih. gov/ geo), a MIAME compliant database, under accession number GSE193022.

Gene expression analysis. An in-house algorithm in R environment (version 3.6.2)10 was used for exclud-
ing transcripts presenting one or more missing values (NAs) per group and for converting gene expression 
values to log base 2. Through this procedure we obtained two gene expression data matrices: (i) one for gene co-
expression network (GCN) analysis, and (ii) another for differential gene expression (DEG) analysis. The GCN 
matrix had 6375 Gene Ontology (GO) annotated genes after excluding all NAs. The DEG matrix had 15,248 GO 
annotated genes, including NAs and with a minimum of four valid gene expression values per group. Boxplot 
analysis was used for outlier detection (Supplementary Fig. S2). Data normalization for both data matrices was 
performed using limma package version 3.915 in R environment (version 3.6.2)10. The differential gene expres-
sion analyses were conducted in three comparisons separately: (i) Severe vs. Mild (ii) A vs. B; (iii) C vs. D.

Weighted gene co‑expression network analysis (WGCNA). The network was constructed using the 
WGCNA  package16 (version 1.69-81; https:// horva th. genet ics. ucla. edu/ html/ Coexp ressi onNet work/ Rpack ages/ 
WGCNA/) in R version 3.6.2  environment10. No outliers were detected in the analysis of gene expression data 
matrix. Pearson’s correlation coefficient was used for obtaining gene co-expression similarity measures and for 
the subsequent construction of an adjacency matrix using soft power and topological overlap matrix (TOM). 
Soft thresholding process transforms the correlation matrix to mimic the scale-free topology. TOM is used to 
filter weak connections during network construction. Module identification is based on TOM and on average 
linkage hierarchical clustering. The soft power β = 20  (R2 = 0.9160) was chosen using the scale-free topology 
criterion (Supplementary Fig.  S3). Finally, Dynamic Tree Cut  algorithm6 was used for dendrogram’s branch 
selection. The module eigengene (ME) is defined as the first principal component of a given module, which can 
be considered a representative of the gene expression profiles in a module. Module Membership (MM), also 
known as eigengene-based connectivity (kME), is defined as the correlation of each gene expression profile with 
the module eigengene of a given module.

Module‑trait association. Module-trait association analysis was accomplished using the WGCNA package 
(version 1.69-81)16 in R environment (version 3.6.2)10. For this analysis we considered as specific traits: severity 
group, age subgroup, sex, race, comorbidities, therapy, clinical laboratory characteristics, hospital stay, and blood 
collection time point after first symptoms onset. Only traits present in three or more patients were considered 
in the module-trait association analysis. Subsequently, the gene significance (GS), i.e., a value for the correlation 
between specific traits and gene expression  profiles16 was obtained. The mean GS value for a particular module 
is considered as a measure of module significance (MS). Modules presenting a significant p-value (p < 0.05) and 
a positive trait correlation were selected for functional analysis.

Node categorization. All genes belonging to a given module were designated here as ME genes (for module 
eigengene gene). The modules significantly correlated to specific traits (age group, clinical, and laboratorial data) 
were further evaluated for identifying relevant hub genes, i.e., the highly connected genes, here termed high 
hierarchy (HH) genes, that hold the transcriptional network together and are also associated to specific cellular 
processes or link different biological  processes17. Thus, connectivity measures were used for the hierarchical 
categorization of hub genes, considering connectivity values related to the network (overall connectivity) and 
to the module (intramodular connectivity for each gene based on its Pearson’s correlation with all other genes 
in the module).

Intramodular node connectivity was calculated considering: (i) kTotal, the whole network connectivity of 
each gene; (ii) kWithin, gene connections with other genes in the same  module16. Genes presenting high kTo-
tal and kWithin are classified as high hubs (Hhubs), genes presenting high kTotal but low kWithin are called 

https://www.agilent.com/
http://www.ncbi.nlm.nih.gov/geo
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eHubs, and genes presenting high kWithin but low kTotal are the iHubs. The iHubs connect most of the genes 
in a transcriptional module, whereas the eHubs connect different transcriptional modules, and the Hhubs hold 
the transcriptional modules and the network  together18. The top 10 genes presenting the highest kTotal and/or 
kWithin values were selected as HH genes. All gene values were plotted in a kTotal (x-axis) vs. kWithin (y-axis) 
graph. Additionally, the expression profile was assessed for the selected hubs through GS values, i.e., the GS of 
the nth gene is the correlation measure between the nth gene expression and the specific trait. Positive or negative 
GS values mean that the nth gene is hyper- or hypo-expressed for the specific trait. Only GS values with p < 0.01 
were considered significant for the trait.

Enrichment analyses. WGCNA modular gene set enrichment analyses for Gene Ontology Biological Pro-
cess (GO BP), KEGG pathways, and Reactome pathways were accomplished by using the Enrichr online web-
based  tool19. The terms presenting adjusted p-value < 0.05 for the modules or p-value < 0.05 for the hub genes, 
were considered significantly enriched. The same enrichment analysis strategy was applied for all hub genes and 
DE genes.

Statistical analysis. Significance analysis for microarray (SAM) using MeV software (version 4.9.0) was 
used for differential gene expression analyses. The relative expression of the differentially expressed genes (DEGs) 
was normalized with the endogenous reference gene GUSB for statistical analysis (Supplementary Table S3). The 
t-test was used for statistical analyses of differentially expressed genes. Mann Whitney, Chi-square, and Fisher 
exact tests were used for statistical analysis of the clinic-demographical data. All statistical analyses were per-
formed in GraphPad Prism (version 8). The FAMD analysis was performed as described in “Factor analysis of 
mixed data (FAMD)” section.

Gene co‑expression network (GCN). The GCNs were constructed by using Pearson’s correlation. Data 
analysis and visualization were accomplished through  Cytoscape20 version 3.9.0.

Results
Patient demographic and clinical characteristics. The clinical and demographic characteristics of the 
severe (hospitalized) and mild (oligosymptomatic) COVID-19 patients are shown in Table 1. The median age 
for the Severe and Mild groups was significantly different: 50 years and 34 years, respectively. There was a pre-
dominance of males in the Severe group as compared to the Mild group. There were more young male patients 
(0–40 years of age) in the Severe group. Significant lower median hospital stay was observed for young patients 
(10–40 years of age) as compared with elderly patients (Table 1). In the Severe group more patients presented 
fever, dyspnea, wheezing in the chest, and vomiting, while more oligosymptomatic individuals presented coryza 
and headache (Table 1). A significantly higher number of patients in the Severe group presented at least one 
comorbidity. In decreasing order of frequency: systemic arterial hypertension (SAH), obesity, diabetes mellitus 
(DM), chronic heart conditions, chronic lung diseases, and chronic kidney disease (Supplementary Fig. S4).

The hemogram results were interpreted as normal, high, or low, based on reference values for age and sex 
(Supplementary Table S4). The comparative analysis between the Severe and Mild groups showed that more 
individuals in the Severe group presented high values for segmented neutrophils and low values for erythrocytes, 
hematocrit, hemoglobin, lymphocytes, and immature neutrophils (Supplementary Fig. S5). Severe patients had 
significantly elevated values for all hemogram-derived ratios when compared to Mild (i.e., oligosymptomatic) 
patients (Supplementary Table S5), and higher values were found for PLR and SII parameters in the subgroups 
B and D (patients over 41 years of age), thus confirming the positive correlation of elevated hemogram-derived 
ratios with inflammation and severe COVID-1910. Additionally, the individuals in the Severe group expressed 
higher levels of IL-6 and IL-10 when compared with the Mild group. The cytokines IL-4, IL-2, and IFN-γ, were 
also elevated in these individuals (Supplementary Fig. S6).

FAMD analysis for clinical characteristics yielded six dimensional clusters for patients aged 0–9, 10–40 and 
over 40 years, in the Severe and Mild groups (Fig. 1). All patients selected for transcriptomics studies are con-
tained in four dimensional clusters: 10–40 and over 40 years for both Severe and Mild groups.

WGCNA and module‑trait correlation analysis. The normalized gene expression data of 6375 GO 
annotated genes were used for network construction and module identification by WGCNA. Nine transcrip-
tional modules were identified. Module sizes ranged from 147 genes in the magenta module to 891 genes in 
the turquoise module (Supplementary Fig. S7). The hierarchical clustering dendrogram of module-eigengenes 
revealed two meta-modules. In the meta-module I, which encompasses the blue, red, turquoise, magenta, pink, 
black, and yellow modules, the transcriptional modules are correlated with severe phenotypes, whereas the in 
the meta-module II, that includes the brown and green modules, the correlation is with mild phenotypes (Sup-
plementary Fig. S8a). The module-trait correlation analysis identified three transcriptional modules with at least 
one significant correlation (p < 0.05) with disease severity (Severe; Mild) or with the A and B age subgroups (Sup-
plementary Figs. S7, S8b). The yellow module is highly (r = 0.70) and positively correlated with the Severe group 
and with high level of segmented neutrophils (r = 0.72), and weakly (r = 0.46) correlated with subgroup B (old 
and severe patients) and with low level of lymphocytes (r = 0.51). The magenta module is positively correlated 
with the Severe group (r = 0.44), subgroup A (young and severe patients, r = 0.47), and high level of segmented 
neutrophils (r = 0.46). It is also positively correlated with male sex in the Severe group (r = 0.47) and with white 
race (r = 0.55), and negatively correlated with DM in the Severe group (r =  − 0.62). The black module is positively 
correlated with subgroup A (r = 0.48) and with high level of segmented neutrophils (r = 0.48), and negatively 
correlated with DM in the Severe group (r =  − 0.63).
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We also performed a functional characterization of these three transcriptional modules and identified their 
high hierarchy (HH) genes (Supplementary Fig. S9). Transcriptional modules often represent biological processes 
that can be phenotype-specific18. The functional enrichment among the genes within a module is widely used 
for disclosing its biological  meaning18.

Yellow module. The enrichment analyses for this module (Fig.  2a, Supplementary Table  S6) showed that 
the most represented cellular processes and functional pathways mainly reflect the inflammatory and innate 
immune responses against SARS-CoV-221. Two terms are worth mentioning: (i) in the GO BP analysis, the 
most represented category is related to neutrophil activation (44 genes), what is quite expectable due to the role 
of neutrophils in restricting viral replication and  diffusion22; (ii) in the KEGG analysis, the genes of the HIF-1 
signaling pathway, that are hyper-expressed in the peripheral blood mononuclear cells (PBMC) of COVID-19 
 patients23 and aggravate inflammatory  responses24.

The yellow module harbors 14 HH genes (Fig. 2b). The Hhubs TMEM5925 and ATP6V1E126, and the iHubs 
SPTLC127 and SNAPIN28 are autophagy-related genes, the latter being critical for autophagosome maturation in 
macrophages. Two Hhubs—PRDX329 and SDHB30—are involved in the protection against oxidative stress. The 
eHub TXNDC12 (alias ERP16) takes part in the cellular defense against prolonged ER  stress31. A decrease in ER-
stress was shown to occur in a stage-specific manner during neutrophil and macrophage  differentiation32. The 
iHub C1GALT1C1 codes for a molecular chaperone (Cosmc) that plays a crucial role TRAIL-induced  apoptosis33. 
A well-balanced IFN/TRAIL response is necessary for overcoming viral  infections34. Finally, it is important to 
mention that in this module seven HH genes also have high GS values. Four of these genes—TMEM59, PRDX3, 
SPTLC1, and C1GALT1C1—are positively correlated with the Severe group and with high level of segmented 
neutrophils. Two other genes—EIF4A3, a modulator of the non-sense mediated mRNA decay  pathway35 and 
SNAPIN—are positively correlated with the Severe group. TENT2 (alias PAPD4), a gene involved in miRNA 
 processing36, is positively correlated with high level of segmented neutrophils. Taken together, the gene enrich-
ment analyses and the functional characterization of the HH genes for the yellow module fairly agree with the 
positive correlation of this module with COVID-19 severe cases, with subgroup B (aged and severe patients), 
and with high number of segmented neutrophils and lymphopenia (i.e., elevated NLR and SII; Supplementary 
Table S5), two hallmarks of COVID-19  severity37.

Magenta module. The enrichment analyses revealed a predominance of pathways related with innate and adap-
tive immune responses and inflammation (Fig. 3a, Supplementary Table S7). Moreover, the Fc epsilon receptor 
signaling pathway indicates the involvement of basophils and, indeed, it was recently shown that these cells play 
an active role in the immunity against SARS-CoV-238.

The magenta module has 13 HH genes (Fig. 3b) and most of them act on the modulation of the innate and 
adaptive antiviral immune responses. The Hhub PPP2CA codifies protein phosphatase 2A, an important regula-
tor of inflammatory  signaling39. The Hhub RNF114 codes for a RING-type zinc-finger protein that modulates 
NF-κB activity and T-cell  activation40. The Hhub HTR3A encodes the subunit A of the 5-HT3 receptor of sero-
tonin, found in monocytes, B and T cells and probably involved in their recruitment to sites of  inflammation41. 

Figure 1.  Exploratory multivariate analysis. Factor analysis of mixed data (FAMD) with grouping variables 
identified four dissimilar groups: the two main groups (Severe and Mild), and the two age-related subgroups 
(10–40 years old; 41–85 years old).
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Decreased serum levels of serotonin were found in severe cases of COVID-19, whereas in the mild cases the 
serotonin levels were close to those found in control  individuals42. The Hhubs DHX1543 and DHX2944 code 
for two DEAH-box helicases that are key sensors for antiviral defense against RNA virus infection. The Hhub 
WASHC5 codes for strumpellin, a protein involved in endosomal  fission45 that was shown to interact directly 
with SARS-CoV-246. The Hhub CNOT8 encodes the CNOT8 catalytic subunit of the CCR4-NOT complex, which 
is required for selective mRNA degradation (mRNA surveillance) and for preventing excessive inflammatory 
 responses47. The eHub PSMD10 codes for gankyrin and promotes  autophagy48, a crucial innate immune response 
against infection. The eHub SYNGR4 codes for the integral membrane component synaptogyrin and promotes 
endosome  recycling49 that is essential for cytokine release by  neutrophils50. The eHub JTB (alias PAR) acts on 
the regulation of mitochondrial  function51 and the low expression of mtDNA in the immune system cells of 
COVID-19 patients was recently  reported52. Lastly, there are three iHubs: SLBP, which encodes a TNF-induced 
stem-loop binding protein that regulates histone metabolism, inflammation, and viral  replication53. RASSF5 

Figure 2.  Enrichment analysis and high hierarchy genes (HH genes) for the yellow module. (a) Histogram 
of enriched Reactome, KEGG pathways, and GO BP terms. The terms with adjusted p < 0.05 were considered 
significant. (b) HH genes (Hhubs, iHubs, and eHubs) of this module, which is significantly and positively 
correlated with Severe group, subgroup B, H-SN, and L-Lymphs traits. Each HH gene is identified by its 
hierarchical categorization, GO biological process or molecular function, and KEGG Pathways-related terms (in 
bold letters). Only positive (i.e., hyper-expressed) or negative (i.e, hypo-expressed) significant GS values for the 
specific trait (p < 0.01) are shown. H‑SN high percentage of segmented neutrophils in the hemogram, GS gene 
Significance.
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(alias NORE1A), an apoptosis inducer and senescence  effector54; and ARL6IP1, that codes for an ER-shaping 
protein/ involved in the fine control of ER  organization55.

Black module. The enriched pathways in the black module (Fig.  4a, Supplementary Table  S8) reflect some 
of the main mechanisms involved in the innate immune and inflammatory responses to SARS-CoV-2. Many 
pathways, such as TLR/4, MyD88/TLR2, CASP8, TRAIL signaling, and necrosis (Fig. 4a) are mechanistically 
related and take part in the recognition of viral proteins, inflammatory responses, and cell  death56. Interestingly, 
the increased expression of TLRs and MyD88 were found to be positively correlated with COVID-19  severity57. 
Noteworthy, the GO BP analysis shows enrichment for I-kappaB Kinase/NF-kappaB signaling pathway, a master 
regulator of inflammatory and immune  responses58.

This module has 13 HH genes (Fig. 4b) of which five are directly related to immune response regulation. The 
Hhub CACNA1C codes for the alpha-1 subunit of CaV1.2 calcium channel and is involved in the regulation of 
human Th2-lymphocyte  functions59. The eHub RAC1 codifies a Rho GTPase that triggers NF-κB  activation60. 
The eHub PTMA encodes prothymosin-alpha, an alarmin involved in cell proliferation, apoptosis, and immune 
regulation and whose expression in CD8 T memory stem cells is increased in COVID-1961. The iHub FOXP4 
codifies a transcription factor required for T cell recall response to  pathogens62. The iHub UCP3 codes for an 
uncoupling protein (UC) involved in the maintenance of Th17/Treg cell  balance63, which is skewed towards 
Th17 in COVID-1964.

The other HH genes in the black module are involved in different biological functions, some of them possibly 
related to modulatory mechanisms acting on inflammatory and immune responses. The Hhub CGYB codes 

Figure 3.  Enrichment analysis and high hierarchy genes (HH genes) for the magenta module. (a) Histogram 
of enriched Reactome, KEGG pathways, and GO BP terms. The terms with adjusted p < 0.05 were considered 
significant. (b) HH genes (Hhubs, iHubs, and eHubs) of this module, which is significantly and positively 
correlated with Severe group, subgroup A, and with H-SN traits. Each HH gene is identified by its hierarchical 
categorization, GO biological process or molecular function, and KEGG Pathways-related terms (in bold 
letters). This module did not present significant Gene Significance (GS) values for any specific trait (p < 0.01).
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for cytoglobin, a protein that protects cells against oxidative  stress65. The Hhub FHL1 encodes a four-and-a-
half-LIM-domain protein involved in gene transcription regulation, cytoarchitecture, cell proliferation, and 
signal  transduction66. Interestingly, FHL1 inhibits the vascular endothelial growth factor (VEGF)  expression67 
and elevated serum levels of VEGF were positively correlated with disease severity in COVID-1968. The Hhub 
MISP3 codes for a protein involved in spindle orientation and mitotic  progression69. The Hhub EVX1 encodes 
a transcriptional  repressor70 and the Hhub SHISA4 codes for a transmembrane adaptor  protein71. The iHub 
DPEP3 encodes dipeptidase 3, involved in the hydrolytic metabolism of dipeptides, and the iHub PYY2 is a 
pseudogene coding for peptide YY2. Finally, the eHub HBZ codes for zeta hemoglobin and HBZ expression 
may be interpreted as evidence for circulating erythroid precursors in hospitalized (requiring oxygen)  patients72, 
being negatively correlated with hemoglobin levels. HBZ has a negative GS value for the H-SN trait (Fig. 4b).

Differential gene expression analyses. Two comparative gene expression analyses (SAM) were con-
ducted: (i) Severe (n = 11) vs. Mild (n = 12) groups; (ii) A (n = 5) vs. B (n = 6) subgroups. In the Severe vs. Mild 
comparison 50 differentially expressed genes (DEGs) were found, of which 49 were hyper-expressed in the 
Severe group, with fold-changes ranging between 8.8 and 2.0. The A vs. B comparison yielded only two DEGs. 
Subsequently, a normalized expression analysis (using GUSB as endogenous reference) showed that these two 
genes did not differ significantly between the subgroups A and B.

The enrichment analysis for the DEG set of the Severe group showed that these genes are mainly related with 
neutrophil activation, innate immune response, and inflammation (Supplementary Fig. S10, Table S9).

A normalized gene expression analysis (using GUSB as an endogenous reference gene) was then performed 
for the DEGs firstly selected according to KEGG and GO BP enrichment analyses. It was found that 23 genes 
in the Severe group were significantly (p < 0.005) hyper-expressed (Table 2). Noteworthy, 17 out of the 23 genes 
hyper-expressed in the Severe group had been previously reported to be hyper-expressed in the PBMC from 
COVID-19 patients according to the COVID-19 Related Gene Sets, a database in the Enrichr webtool  library19 

Figure 4.  Enrichment analysis and high hierarchy genes (HH genes) for the black module. (a) Histogram of 
enriched Reactome and GO BP terms. The terms with adjusted p < 0.05 were considered significant. (b) HH 
genes (Hhubs, iHubs, and eHubs) of this module, which is significantly and positively correlated with subgroup 
A and with H-SN traits. Each HH gene is identified by its hierarchical categorization, GO biological process or 
molecular function, and KEGG Pathways-related terms (in bold letters). Only positive (i.e., hyper-expressed) 
or negative (i.e, hypo-expressed) significant GS values for the specific trait (p < 0.01) are shown. H‑SN high per-
centage of segmented neutrophils in the hemogram, GS gene significance.
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(Table 2). It is also important to mention that 13 out of the 23 genes hyper-expressed in the Severe group are 
related with neutrophil activation.

DEGs as transcriptional biomarkers. The significant fold-change values and the biological functions of all DEGs 
found for the Severe group (Table 2, Supplementary Figs. S11, S12) clearly show their potentiality as transcrip-
tional biomarkers. The ascribed roles of these genes—of which 13 are newly identified biomarkers (Table 2)—in 
the immune response to COVID-19 are addressed in the following paragraphs.

Among the seven genes in the GO BP category “neutrophil activation involved in immune response” (Supple-
mentary Fig. S11), three were already identified as COVID-19 biomarkers: CEACAM8 (alias CD66B), that codes 
for a neutrophil cell-adhesion protein and is highly expressed in patients with severe COVID-1973. ARG1, coding 
for arginase 1 and up-regulated in severe cases of COVID-1974; and LCN2, which encodes lipocalin 2, a marker 
of neutrophil activation that was classified by machine learning algorithm as one the most potent discrimina-
tors of critical illness in COVID-1975. One DEG in this category, CAMP, codify for the antimicrobial molecule 
cathelicidin (LL37), a modulator of TLR activation and inflammation that has been proposed as a potential can-
didate for COVID-19 prevention and  treatment76. The remaining three DEGs are related to neutrophil immune 
functions and metabolism: STOM, that codes for stomatin, a membrane protein associated with azurophilic 
 granules77; GGH, that encodes gamma-glutamyl hydrolase, a lysosomal enzyme involved in the immune response 
of  neutrophils78; and GYGY  that codifies glycogenin, an enzyme involved in the synthesis of  glycogen79.

In the GO BP category “neutrophil activation and positive regulation of cell death” (Supplementary Fig. S6) 
there are two DEGs. One is HP that codes for haptoglobin, a hemoglobin-binding plasma protein stored and 
released by neutrophils in response to  activation80. Haptoglobin plasmatic levels were shown to correlate with 
disease severity in COVID-19, being reduced in critical  patients81 and elevated in COVID-19  children82. The 
other DEG, HPR, codes for a haptoglobin-related protein that binds hemoglobin was shown to be elevated in the 
sera of children with bacterial and viral  pneumonia83. In the GO category “positive regulation of cell death and 
negative regulation of oxidoreductase activity” there is only one DEG, SCNA, which codes for alpha-synuclein, 

Table 2.  DEGs selected as potential biomarkers for the Severe group and for the subgroup C. Genes in bold 
are hyper-expressed in the PBMC from COVID-19 patients (COVID-19 Related Gene Sets/Enrichr database). 
*t-test for relative expression of the DEGs normalized with endogenous reference gene GUSB. **Newly 
identified as a potential COVID-19 transcriptional biomarker.

Comparison DEG

Gene expression Database for enrichment analysis

Fold-change Relative (p-value)* GO BP or KEGG (in italic)

Severe × Mild

LTF 8.53 0.0001 Neutrophil activation involved in immune response; negative regula-
tion of apoptotic process

HP** 6.95 0.0002 Neutrophil activation involved in immune response; positive regula-
tion of cell death

CEACAM8 6.16 0.0009 Neutrophil activation involved in immune response

HPR** 5.64 0.0003 Acute inflammatory response; positive regulation of cell death

LCN2 5.02 0.0013 Neutrophil activation involved in immune response

ARG1 4.98 0.0009 Neutrophil activation involved in immune response

GYG1** 4.06 0.0002 Neutrophil activation involved in immune response

MPO 4.03 0.0011 Neutrophil activation involved in immune response; negative regula-
tion of apoptotic process

ORM1 3.98 0.0008 Neutrophil activation involved in immune response; platelet degranu-
lation

TXNDC5 3.66 0.0020 Neutrophil activation involved in immune response; negative regula-
tion of apoptotic process

ORM2** 3.56 0.0006 Neutrophil activation involved in immune response; platelet degranu-
lation

CAMP 3.27 0.0006 Neutrophil activation involved in immune response

RRM2** 2.95 0.0002 p53 signaling pathway

GGH** 2.86 0.0004 Neutrophil activation involved in immune response

SELP 2.71  < 0.0001 Platelet degranulation

CCNB1** 2.57 0.0004 p53 signaling pathway; cellular senescence

BMP6** 2.43 0.0001 Hippo signaling pathway

BIRC5** 2.37  < 0.0001 Hippo signaling pathway; negative regulation of apoptotic process

SNCA** 2.33 0.0004 Positive regulation of cell death; negative regulation of oxidoreductase 
activity

YWHAH** 2.25 0.0005 Hippo signaling pathway

CCNB2** 2.23  < 0.0001 p53 signaling pathway; cellular senescence

STOM** 2.22 0.0004 Neutrophil activation involved in immune response

CDK1 2.14  < 0.0001 p53 signaling pathway; cellular senescence; negative regulation of 
apoptotic process
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a neuropeptide expressed in brain and also in mononuclear blood  cells84,85 that was shown to exhibit potent 
antiviral activity and capacity for signaling the immune system by attracting neutrophils and macrophages and 
activating dendritic  cells86,87.

There are three DEGs in the GO BP category “neutrophil activation and negative regulation of apoptosis” 
(Supplementary Fig. S11). One is LTF, which codifies for lactoferrin, a relevant player in innate immunity with 
antiviral effects against SARS-CoV-2 and a wide range of viral  species88. Serum levels of lactoferrin were found 
to be elevated in severe cases of COVID-1989. The other DEG is MPO, a gene that codes for myeloperoxidase, a 
leukocyte-derived enzyme whose plasmatic levels are elevated in mild to severe cases of COVID-19 and down-
regulated in patients with very severe  disease90. The third gene is TXND5, that codes for the thioredoxin domain 
containing 5 (TXNDC5), an endoplasmic reticulum-resident protein that belongs to the thioredoxin family. The 
plasmatic levels of this protein are markedly elevated in septic patients, and it has been considered a therapeutic 
target for attenuating inflammatory  responses91. Additionally, it was shown that TXND5 is hyper-expressed in B 
cells after COVID-19 vaccination, being a marker for  seroconversion92. Therefore, the three genes are potential 
candidates for monitoring disease severity in COVID-19.

The GO BP category “platelet degranulation and neutrophil activation” has three DEGs (Supplementary 
Fig. S11). One of these genes is SELP, that codes for P-selectin, a platelet cell-adhesion molecule. Increased 
levels of P-selectin were found in severe cases of COVID-19, what contributes for a prothrombotic state in these 
 patients93. The other two genes in this category are ORM1 and ORM2, and both are involved in the encoding 
of human orosomucoid protein, a major acute-phase plasma  protein94. Recently, a proteomic analysis of serum 
from COVID-19 patients showed a significant down-regulation of the ORM1  protein95.

The KEGG pathway “p53 signaling and cellular senescence” (Supplementary Fig. S12) includes four DEGs. 
One of these genes is CDK1 that codes for the cyclin-dependent kinase 1 and is a master regulator of  autophagy96. 
CDK1 was shown to be, through bioinformatics and machine learning approaches, a relevant Hub gene in the 
WBC transcriptome of COVID-19 patients, with high biomarker and therapeutic target  potentials97. Other two 
DEGs in this pathway, CCNB1 and CCNB2, coding respectively for cyclin B1 and cyclin B2, are interactors of 
CDK1 and regulate the mammalian cell  cycle98. The fourth DEG in this pathway, RRM2, interacts with CDK1 
and CNBB1 in the p53  pathway99 and was recently identified, through bioinformatic analysis, as a key gene in 
the infection of human intestines by SARS-CoV-2100.

Finally, there are three DEGs in the KEGG “Hippo signaling pathway” (Supplementary Fig. S12). One of 
these genes is BIRC5 that codes for survivin, an inhibitor of apoptosis protein. Survivin is indispensable for the 
homeostasis of the immune system, being required for innate and adaptive immune responses, differentiation 
of CD4+ and CD8+ memory T-cells, and for B cell  maturation101. The other two DEGs are BMP6 and YWHAH. 
The former codes for the bone morphogenetic protein 6, a regulator of vascular homeostasis and  angiogenesis102 
recently identified as an anti-inflammatory  cytokine103. The latter codes for the 14-3-3η (eta) protein, a phospho-
serine/phospho-threonine binding protein that interacts with a wide range of protein targets and participates 
in multiple cellular biological functions. The 14-3-3η protein is involved in the modulation of antiviral defenses 
via the RLR signaling pathway. The interaction between 14-3-3η and the melanoma differentiation-associated 
gene 5 (MDA5) accelerates the activation of the MDA5 signaling, thus helping host cells to mount an effective 
response against RNA viral  infections104.

Subnetworks for module genes and DEGs. Subnetworks were constructed for the yellow and black 
modules. The subnetwork for the yellow module, positively correlated with the Severe group, was constructed 
using genes enriched for innate immune response and inflammation processes and pathways. The subnetwork 
for the black module, positively correlated with subgroup A, was constructed using genes enriched for inflam-
mation, innate immune response, and immune response regulation. All these genes and their respective func-
tions are listed in Supplementary Table S10. The DEGs identified in the Severe vs. Mild group comparison were 
also included in the yellow subnetwork (Supplementary Table S9). Consequently, these subnetworks were con-
structed with 141 genes for the yellow subnetwork and 33 genes for the black subnetwork. For all subnetworks 
a gene–gene link cut-off of r >|0.9| was adopted. The yellow subnetwork (Fig. 5) for the Severe group showed 
a higher value of connectivity (10.6) when compared with the subnetwork obtained for the Mild group (3.2). 
The subnetworks for the black module (Fig. 6) showed a higher connectivity for subgroup A (11.3) when com-
pared with the subgroup B (6.0). Additionally, the yellow subnetwork contains more interconnected genes in the 
Severe group (104 genes and 551 links) than in the Mild group (74 genes and 241 links). It is worth to mention 
that the yellow subnetwork for the Severe group encompasses several genes involved in neutrophil activation 
(Fig. 5). Similarly, the black subnetwork for subgroup A contains many genes involved in the I-kappaB Kinase/
NF-kappaB signaling, an important modulator of inflammatory and immune responses (Fig. 6).

Discussion
The transcriptomic response of human leukocytes to SARS-CoV-2 infection was investigated by focusing the 
differences between mild and severe cases and between age subgroups (younger and older adults). The gain of 
this investigation strategy consists in combining host response transcriptomic data with clinical, demographic, 
and laboratory information, in a systems biology approach, for studying the immune response between mild and 
severe COVID-191,2,105. Here, it was possible to functionally characterize the transcriptional modules correlated 
with age and disease severity, as well as to identify severity-associated DEGs, as discussed below. Still, this study 
faced two limitations, i.e., the relatively small number of patients included in the transcriptomic study (Table S2), 
thus impeding a statistical evaluation of the recovery parameter in these patients, and the reduced number of 
infants presenting severe symptoms, preventing us to investigate the leukocyte transcriptional response to SARS-
CoV-2 in that young population.
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Initially, it is worth to recall that most of the patients in the Severe group presented fever, dyspnea, wheezing in 
the chest, chills, and vomiting, while in the Mild group a sizable number of patients solely presented mild symp-
toms, such as coryza and headache. It is well known that when the response to respiratory viruses is inadequate 
the infection spreads to lower respiratory tract (LRT)106. An early and effective immune response in patients 
infected with SARS-CoV-2 can limit and eliminate the infection yet in the upper respiratory tract (URT)107. 
Genomic analyses shown that there is no tissue specific genetic adaptation of SARS-CoV-2 to the URT or  LRT108.

The transcriptional module differences between the Severe and Mild groups reflect and are coherent with 
the different presentation of symptoms and with COVID-19 severity. The functional enrichment analysis of the 
yellow module, associated with the Severe group, revealed that this module is related with inflammation and 
innate immune response, such as neutrophil activation, apoptosis, necroptosis, and HIF-1 signaling pathway. 
Expectedly, this module contains seven out of its 14 HH genes highly correlated with disease severity and/or high 
level of segmented neutrophils. Increased neutrophil count, immature circulating neutrophils, and neutrophil 
activation transcriptomic sig-natures are typically found in severe cases of COVID-1937. Interestingly, the HIF-1 
pathway is associated with neutrophil activation, prolonged lifetime, and excessive function in COVID-19 severe 
 patients24,37.

Figure 5.  Subnetworks for the yellow module containing ME genes (non-HH module genes), hub genes, and 
DEGs for the Severe and Mild groups. Red or blue links indicate positive or negative expression correlation 
values, respectively. Red or green border colors account for hyper-expressed or hypo-expressed genes, 
respectively.
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Furthermore, the subnetwork constructed for the yellow module showed that most of the highly intercon-
nected genes in the Severe group are hyper-expressed, and that many of these genes are involved in neutrophil 
activation, with other genes involved in necroptosis, apoptosis, and autophagy. This high network connectivity 
indicates that in the Severe group the biological functions and/or cellular processes related to innate immune 
response and inflammation are more activated than in the Mild group, shedding some light on the underlying 
transcriptomic mechanism, since the immune response to SARS-CoV-2 is characterized by neutrophil hyperac-
tivation and high neutrophil  counts109. Most of the patients of the Severe group included in this study presented 
high NLR as compared with the Mild group.

It is important to highlight that the young (subgroup A) and old patients (subgroup B) in the Severe group also 
presented differences in their transcriptomic profiles. Two modules—magenta and black—that are correlated with 
the subgroup A, contains many HH genes related to the innate immune response to viral infections, as well as 
other HH genes related to modulatory mechanisms acting on these responses. Moreover, in the black subnetwork 
the highest gene interconnectivity was found for subgroup A, thus indicating that immune modulatory functions 
are more activated in this subgroup when compared to subgroup B. These transcriptomic mechanisms could be 
related to the lower median hospital stay that has been observed for young patients (including our cohort) when 
compared with elderly  patients110. In the elderly patients a less effective immune modulation of COVID-19, allied 
to immune senescence and, eventually, to comorbidities, would lead to a worse  outcome111.

A total of 23 DEGs were found, all hyper-expressed in the Severe group. These genes are potential biomarkers 
for COVID-19 severity (13 are newly described). Remarkably, thirteen of these DEGs are involved in neutrophil 
activation, confirming the role of neutrophils in severe COVID-1937. Four DEGs are involved in the p53 signaling 
pathway, that has been associated with lymphopenia in severe COVID-19  patients3, and three with the Hippo 
pathway, recently associated with the antiviral host response in COVID-19112. Epidemiological studies show that 
age remains a relevant predictive factor for COVID-19  severity111, together with pre-existing conditions, such as 
obesity, DM and  hypertension113. However, the molecular mechanisms determining COVID-19 severity are not 
yet well understood. Hence, there is a demand for biomarkers derived from comparative transcriptome analyses 
of mild and severe cases, combined with patients’ clinico-demographic and laboratory data. These biomarkers 
may well be useful for the better stratification of risk factors in COVID-19.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request. All microarray raw data have been deposited in GEO public database (http:// 
www. ncbi. nlm. nih. gov/ geo, token ahwlmsiervcnfid), a MIAME compliant database, under accession number 
GSE193022. All data will be released with paper publication.

Figure 6.  Subnetworks for the black module containing ME genes (non-HH module genes), hubs, and 
DEGs for the subgroups A and B. Red or blue links indicate positive or negative expression correlation values, 
respectively. Red or green border colors account for hyper-expressed or hypo-expressed genes, respectively.

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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