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A new method for identifying 
industrial clustering using 
the standard deviational ellipse
Ziwei Zhao 1,2, Zuoquan Zhao 1,2* & Pei Zhang 3

Industrial agglomeration has attracted extensive attention from economists and geographers, yet 
it is still a challenge to identify the multi-agglomeration spatial structure and degree of industrial 
agglomeration in continuous space—there is still a lack of a more targeted industrial clustering 
method. The clustering method and the standard deviational ellipse (simply, ellipse) model have 
advantages in identifying the spatial structure and representing spatial information respectively. On 
this basis, we propose an ellipse-based approach to identifying industrial clusters. Our ellipse-based 
approach rests upon group nearest neighbor using the group-based nearest neighbor (GNN) ordering 
and spatial compactness matrix, where a number of point sequences with varying lengths, generated 
under the GNN ordering, are characterized by an ellipse and the elliptical parameters of these point 
sequences formulate the values and structure of the compactness matrix. Clustering is reformulated 
to identify ellipses with a specified parameter among a number of potential candidate ellipses, with 
significant changes (especially in the area) used as the cutoff criterion for determining the clusters’ 
border point. Our approach is illustrated in the location pattern of firms in Shanghai City, China in 
comparison with four well-known clustering methods. With the combination of elliptical parameters 
and spatial compactness, our approach may bring a new analytical ground for future industrial 
clustering research.

The phenomenon of industrial agglomeration on the earth arouses research in various fields of  science1–4. In the 
field of human geography, industrial agglomeration is the most significant feature of world economic activities. 
British economist Marshall first paid attention to the phenomenon of industrial agglomeration and the concept 
of ‘industrial cluster’ was first proposed by Porter in 1990, which triggered increasing attention to industrial 
 agglomeration5,6. In recent decades, a large number of empirical studies on industrial agglomeration have been 
published. These studies revolve around whether industries and their firms are agglomerated (or clustered) in 
regions or spaces, and the extent and scale of agglomeration from an overall perspective. The kernel function can 
effectively identify the location and quantity of  agglomeration7, but due to the arbitrary bandwidth, the bound-
ary of agglomerations cannot be determined. The spatial Gini  coefficient8, the industry concentration  measure9, 
the Herfindahl  index10,11, the location  entropy12 and the work of Ellison and  Glaeser13 can measure the degree 
of agglomeration, but there is the modifiable areal unit problem (MAUP): the shape, size, and position of the 
selected regions will have a greater impact on the  measurement14,15. The works of Ripley, Marcon and Puech and 
Duranton and Overman can test the existence of industrial agglomeration in continuous space to overcome the 
 MAUP16–18, but cannot identify the actual spatial structure of the multi-agglomeration pattern. So far, there has 
been little discussion about the method simultaneously fulfilling three requirements: (i) measuring the degree of 
industrial agglomeration (ii) identifying the spatial structure of agglomeration multi-agglomeration pattern, i.e. 
the number, location, and spatial extent of  agglomeration19 (iii) data analysis work is done in continuous space 
to avoid boundary deviations and arbitrary spatial units.

As an important method for spatial data analysis, spatial clustering has potential in agglomeration analysis. 
As Delgado pointed  out20, the economies of agglomeration manifest more clusters—in geographic concentra-
tions of related industries and associated institutions. Naturally, we try to apply the clustering method used for 
spatial point analysis to identify industrial clusters. A few studies have applied clustering algorithms to industrial 
agglomeration  analysis21. For example, Karaca and  Zeynep21 used the K-means clustering method to determine 
how the wood products manufacturing sector was clustered in the Nace Rev region of Turkey and ultimately 
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identified three clusters. However, such studies are still rare and imperfect. Firstly, most of the existing studies 
use a single clustering method. Due to the lack of evaluation of clustering results and comparison of clustering 
results of different methods, these studies cannot verify the effectiveness of a single method in industrial clus-
tering. Secondly, the existing research applies the classical clustering method to the analysis of industrial data 
rigidly, without adaptive improvement. Due to the randomness and irregularity of industrial data, and there is no 
prior information such as the number of clusters to be used, industrial clustering methods that are more targeted 
than existing spatial clustering methods are needed. Notably, the underlying rich spatial information within 
industrial agglomerations relies on complete spatial representation, while most clustering methods attempt to 
use partial information to determine a complete structure of data. The information includes distance, centroid, 
density, shape, and direction of local clusters. For example, K-means22–24 uses distance and centroid metrics to 
identify local clusters;  DBSCAN25 uses a density metric; the complete  linkage26 uses a distance metric; multi-
layer  network27 uses a shape metric; both the nearest neighbor and nearest centroid  neighbor28,29 use a direction 
metric. Recently, some clustering methods use relatively integrated information. A typical example is Rodriguez 
and  Laio30 who attempt to combine the centroid, distance, and density metrics into a more integrated clustering 
framework. Practically, some metrics, such as  shape31 and  direction28,29, have been frequently ignored or not 
been well represented in cluster analysis. This loss of information may be related to the failure of many clustering 
methods to deal with industrial data with a lower clustering tendency. Against this background, the elliptic model 
shows a great advantage in representing a neighborhood and a cluster in spatial cluster analysis. The power of 
ellipses in spatial data representation is evidenced by the popularity of ellipses in spatial data analysis and the 
elliptical mixture models in cluster  analysis32–35. Therefore, it would be desirable to have a consistent framework 
of clustering utilizing the elliptic model.

For the lack of a satisfactory cluster representation and a more targeted industrial clustering method, this 
study aims to propose an ellipse-based clustering (EBC) which (i) measures the degree of industrial clustering; (ii) 
effectively identifies the multi-cluster pattern, i.e. the number, location, and spatial extent of agglomeration; (iii) 
could be operated in continuous space. Our approach directly uses ellipses to represent, quantify, and identify the 
local neighborhood as well as clusters of point data. The ellipse-based approach operates on spatial compactness 
ordering, from which all data points are turned into a number of point sequences by using a group-based nearest 
neighbor, and each group of points in the sequences, examined as a potential cluster, is characterized intuitively 
by an ellipse in terms of elliptic parameters, including its center, area, density, shape, and orientation. Clustering 
is reformulated as the problem of identifying high-density ellipses among a number of potential ellipses, with 
significant changes (especially in the area) used as the cutoff criterion for determining the clusters’ border point. 
Notably, our approach allows for the number of clusters arising naturally, and only one parameter (the cutoff 
value) to be specified statistically during the clustering process.

It is noted that our ellipse-based approach differs from the mixture model-based clustering  approach36,37 and 
the elliptic spatial scan  statistic38, the two widely used ellipse-related clustering methods in several important 
ways. First, our approach is fully data-driven in the sense that all ellipses are computed from the point groups 
resulting from spatial compactness ordering. Unlike ours, the model-based clustering methods need to estimate 
the clustering structure of data with the assumption that different clusters result from different probability 
 models34. While the elliptic scan statistic tends to employ an ellipse-shaped scanning window for clustering, in 
which these ellipses have nothing to do with the underlying clustering  structure38. In contrast to elliptic scan 
statistics, which use predefined ellipses with different parameters to randomly search and match the local neigh-
borhood of  data38, our approach operates orderly on the spatial compactness matrix, from which the ellipses in 
use capture the spatial structure of point groups in the matrix’s rows.

In cluster representation, the elliptic model shows a great advantage in representing a neighborhood and 
a cluster in spatial cluster analysis. The use of ellipses in spatial data representation is popular in spatial data 
analysis and the elliptical mixture models in cluster  analysis32–35. Ellipses differ from other cluster representations 
such as a  graph39,40, a  tree41, a  path42,43 or a line  segment44 in that ellipses quantify directly the spatial structure 
of a neighborhood using elliptic parameters, while such representation as a graph, for instance, can capture only 
some information of a cluster, e.g., minimum spanning tree, with some other metrics, e.g., nearest neighbor-
hood  distance40,45 indispensable in cluster analysis. Therefore, many clustering methods tend to use individual 
location-based metrics in less integrated ways. For representing the range of a neighborhood, we choose the 
ellipse’s area, which can vary with direction, different from such range metrics as ε-neighborhood’s  radius25, 
density reachable  distance46, gradient distance, and Gaussian density  distance47, neighborhood  width48 and so on; 
For representing the orientation of a neighborhood, we use the direction of the major axis of the ellipse, which 
has not been examined in cluster  analysis23,24; For representing the shape of a neighborhood, we use the ratio of 
the length of the minor axis to that of the major axis, in sharp contrast with the shape metrics of density  core31 
and inter-connection  coefficient47. For representing the center of a neighborhood, we choose the average center 
because the average center is the most widespread cluster representation in data  clustering23,24.

In this paper, ellipse-based clustering is employed to identify the industrial agglomeration of manufactur-
ing firms in Shanghai City. Shanghai City is located on the edge of the Yangtze River Delta, the largest urban 
agglomeration in the eastern coastal areas of China, where manufacturing plays an important role in economic 
development. Our approach is compared with K-means clustering with geographical coordinates as variables 
(K-means), Ester’s density-based spatial clustering of application with noise (DBSCAN)25, King’s complete-link 
 clustering26 (Complete-link), and the expectation-maximization algorithm based on the Gaussian mixture model 
(GMM-EM)37. These clustering methods are respectively the leading algorithms in partitional clustering, density-
based clustering, hierarchical clustering, and ellipse-related clustering. On the one hand, we use Davies-Bouldin 
index (DBI) to evaluate and compare the results of different clustering methods; On the other hand, we compare 
the results of different methods with kernel density analysis to judge the effectiveness of different methods in 
identifying industrial clusters.
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The model
Ordering and matrices. We define a group-based version of nearest neighbor as follows:

Definition 1 (Group-based nearest neighbor) Let E, D be sets, E ∩ D = ∅ , D = {α1,α2, . . . ,αn} , where αi ∈ R
2 , 

i = 1, 2, . . . , n . For ∀β ∈ E , if  ∃β̂ ∈ E , s.t. d(D, β̂) ≤ d(D,β) then β̂ is the group-based nearest neighbor (G-NN) 
of D within E, β̂ = GNN(D, E).

Briefly, for two disjoint sets, the group-based nearest neighbor of a set within another set is the closest point 
in the later set to the former. As for the measurement of distance, we define the distance between a data point 
and a set:

  The distance between αi and β can be measured by Euclidean distance, Minkowski distance and Manhattan 
distance, etc. Here davel is used to calculate the group-based nearest neighbors, with Euclidean distance calculating 
d(αi ,β) . Based on the group-based nearest neighbors, we construct a compact ordering of points and present 
the ordering in the form of the spatial compactness matrix.

Definition 2 (Spatial compactness matrix) Let Aij,Bij , X be sets of spatial points, X = {x1, x2, . . . , xn} . For 
i = 1, 2, . . . , n , j = 1, 2, . . . , n , xi ∈ R

2 , zi1 = xi , Aij = {zi1, zi2, . . . , zij} , Bij = X \ Aij . β̂ is the group-based near-
est neighbor of Aij within Bij:

Aij denotes a compactness sequence of j points starting from xi . Z = (zij)nn denotes a spatial compactness matrix 
(SCM).

Especially, For spatial points defined on the sphere S2(R) with radius R, we use the length of arc to measure the 
distance between any two spatial points. Let ( a1, b1 ), ( a2, b2 ) be the latitude and longitude coordinates of zik and β.

where R is the radius of the sphere.
The spatial compactness matrix leads to data compression and simplified operation: (i) instead of identify-

ing each data point, we identify the compactness sequences of points for by using standard deviational ellipses, 
ending up with an ordered and comprehensive representation of clusters; (ii) the number of non-repetitive 
clusters composed of n points is m, m = C1

n + C2
n + · · · + Cn

n = 2n − 1, while the number of sequences from 
SCM is n2 . Sorting by compactness eliminates those clusters that are not compact enough, reducing the number 
of candidate clusters from m to n2.

Elliptic parametrization. With the assistance of ellipses, we parameterize the compactness sequences. 
Consider a n× n SCM Z = (zij)nn . Aij = {zi1, zi2, . . . , zij} is a corresponding cluster of a standard deviational 
ellipse. For potential clusters, we calculate the rotation angle θ and the standard deviation of x-axis and y-axis ( σx 
and σy ) of their ellipses. Feature zik in Aij has an ordinate of ŷk and a horizontal coordinate of x̂k , k = 1, 2, . . . , n , 
X̄, Ȳrepresent the average center of the elements in Aij , ỹk = ŷk − Ȳ ,x̃k = x̂k − X̄,then:

  On the basis of representation and related research on ellipse  model32–34,36,38, we use the center, area, density, 
the direction of the major axis, the ratio of the length of the minor axis to that of the major axis to establish 
parametric matrices.

Let n× n center matrix Mmc = (m1
ij)nn , area matrix Marea = (m2

ij)nn , density matrix Md = (m3
ij)nn , shape 

matrix Ms = (m4
ij)nn , azimuth matrix Ma = (m5

ij)nn . m
1
ij = {X̄, Ȳ} , m2

ij = π · σx · σy , m3
ij = j/m2

ij , m
4
ij = σx/ · σy , 

m5
ij = θ . Notably, for spatial points defined on the sphere S2(R) with radius R, we use the elliptic area under the 

equal area projection of the spherical surface to approximate the expression m2
ij.

Determining candidate clusters. Rodriguez and  Laio30 propose an approach based on the idea that clus-
ter centers are characterized by a higher density than their neighbors and by a relatively large distance from 
points with higher densities. Here, clustering starts with the local maximum density in each sequence. Signifi-

(1)davel(D,β) =

i=n
∑

i=1

d(αi ,β)

n
.

(2)Ai,j+1 = {zi1, zi2, . . . , zij , β̂} = Aij ∪ {zi,j+1}

(3)d(zik ,β) = R · arccos(cosb1cosb2cos(a1 − a2)+ sinb1sinb2),

(4)A =





j
�

k=1

x̃2k −

j
�

k=1

ỹ2k



, C = 2

j
�

k=1

x̃kỹk , B =
�

A2 + 4C2, tanθ =
A+ B

C
,

(5)σx =

√

2
∑j

k=1
(x̃kcosθ − ỹksinθ)2

n
, σy =

√

2
∑j

k=1
(x̃ksinθ + ỹkcosθ)2

n
.
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cant changes in the area are used as the cutoff criterion for determining the clusters’ border points. To measure 
the changes, we establish the area gradient matrix and define ξ-steep points.

Definition 3 (Area gradient matrix) According to n× n area matrix Marea = (m2
ij)nn , establish n× (n− 2) area 

gradient matrix Area = (a3ij)n×(n−2),

where a2i =
∑

a2ij/n , a2ij = a1i,j+1 − a1ij , a
1
ij = m2

i,j+1 −m2
ij , i = 1, 2, . . . , n, j = 1, 2, . . . , n− 1.

Definition 4 (Steep points) For za,b+2 within n× n SCM Z = (zij)nn , if the corresponding a3a,b > ξ , then za,b+2 
is defined as a ξ-steep point.

Among the sequences sharing a common starting point Aij , j = 1, 2, . . . , n , the sequence with the highest 
density, e.g., Ai,mi , is chosen as the initial cluster, m3

i,mi ≥ m3
ij . For j = mi + 1 , determine whether a3i,j < ξ holds. 

If so, continue to determine a3i,j < ξ where j = mi + 2 . The process is repeated. Let H1 be the set of (i, j) which 
cannot make the discriminant true, H1 = {(i, j)| a3i,k < ξ , k = mi + 1,mi + 2, . . . , j, a3i,j+1 ≥ ξ}, card(H1) = n1 . 
Excluding the sequences with a density lower than the density from n1 sequences, we get the set H2 and n2 
candidate clusters, H2 = {(i, j)| (i, j) ∈ H1, m

3
ij ≥ m̄3} , card(H2) = n2 . Let F be the set of candidate clusters 

F = {Aij| (i, j) ∈ H2} . It is worth noting that sequences with the same elements but different orderings are consid-
ered to be the same cluster. In this section, candidate clusters with better performance in density and continuity 
stand out from compact sequences.
Optimization. We optimize the clustering results on the basis of candidate clusters and the measure of 
similarity.

Definition 5 (Clustering adjacency matrix) For clusters Ci , xi = 0, 1, i = 1, 2, . . . n , 
∑

xi = m , a clustering 
adjacency matrix H is defined:

We traverse all combinations of non-overlapping candidate clusters. Among these combinations, we select 
the one with the objective function maximum. Here, we use the sum of the areas of the ellipses corresponding 
to the clusters as the objective function:

  According to the solution to this optimization problem, if xi = 1 , then Ci is the class we need. It is worth noting 
that ξ has a vital influence on the generation of candidate clusters. Actually, the selection of parameters is not 
arbitrary, but determined by the characteristics of data sets. Here we use the average of density and sum of area 
to measure the similarity and determine the optimal ξ.

Results
Data and baselines. We identify industrial clusters for Shanghai manufacturing listed firms. As of January 
8, 2019, there were a total of 479 manufacturing firms in Shanghai City that were listed on the Shanghai and 
Shenzhen stock markets or the ChiNext stock market (without distinguishing between A-shares and B-shares), 
corresponding to 474 spatial points, with five locations each occupied by two firms. The securities codes and 
addresses of the listed manufacturing firms in Shanghai City were provided by the WIND database. We geocode 
the addresses with Gaode Map API to obtain a series of latitude and longitude coordinates based on the WGS-84 
coordinate system and the Albers projected coordinate system. For ease of illustration, we use the stock code of a 
listed company to represent each company. Notably, our study did not consider the only firm in the Chongming 
district, which is an obvious noise point.

During the ellipse-based clustering, the average density and the sum of area are used to measure the similar-
ity of clusters. The higher the average density, the better the compactness of the clustering pattern. Figure 3e,f 
shows the average density and the sum of area calculated by selecting clustering under different parameters ( ξ).

Before clustering, we use the Hopkins statistic to access clustering tendency. The Hopkins Statistic is a spatial 
statistic that tests the spatial randomness of a variable as distributed in space. We conduct 100 Hopkins Statistic 
tests, using 0.3 as the sampling ratio. The average of the Hopkins statistic is 0.79 (> 0.75), indicating that there 
is a clustering tendency in the data set at a 90% confidence level.

(6)a3ij =
(a2ij − a2i )

2

∑

(a2ij − a2i )
2

(7)H(x1C1, x2C2, . . . , xnCn) = (hij)mm, hij =

{

0, xixj = 1,Ci ∩ Cj = ∅

1, xixj = 1,Ci ∩ Cj �= ∅

(8)max f =

n2
∑

i=1

xi ·m
∗
i

(9)
{

H(x1C1, x2C2, . . . , xn2Cn2) = I
xi = 0, 1 i = 1, 2, . . . , n2
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Identification of industrial clusters using EBC. In the first step of the EBC algorithm, we compute the 
spatial compactness matrix. The process is illustrated in Fig. 1. Each of the 478 manufacturing firms in Shanghai 
is the first column of each row of the matrix, corresponding to the starting point of each compactness sequence. 
For every compactness sequence, the nearest neighbor of the group with first j points is selected as the next 
point. Add this point to the original compactness sequence and update the compactness sequence. Repeat the 
process to update the length of each compactness sequence to 478, and the compactness matrix can be obtained. 
we calculate the index matrix.

Based on the SCM and its corresponding elliptic parameter index matrix, we select and intercept the com-
pactness sequence satisfying continuity and density. It’s worth noting that termination of expansion depends on 
parameters related to area mutation. One possible approach is to use the probability density function to select 
from all the rates of change of area corresponding to the matrix. In this case, we select parameters ranging from 
0.01 for 95% to 0.025 for 99% with 0.001 intervals.

Figure 2 shows the process of selecting candidate clusters from all sequences starting with 603131.SH, taking 
location distribution of firms in Shanghai City as an example. The first heat map, the map of density, shows that 
the densest location in the row is chosen as the beginning. The second heat map, the heat map of area gradient, 
shows that each sequence stops expanding when the area mutation is greater than ξ . Besides, Fig. 2 displays the 
initialization and termination. Figure 2c shows the securities codes for the firms added, and Fig. 2d shows the 
change of the standard deviation ellipse corresponding to the sequence. With the increase of points, the ellipse 
gradually changes its shape and area. Candidate clusters with better performance in density and continuity stand 
out from compact sequences.

After all candidate sequences are determined, the final clustering pattern is output according to the principle 
of non-overlap and maximum sum of areas. The higher the average density, the better the compactness of the 
clustering pattern. The sum of average area spatial dispersion. Figure 3e,f shows the sum of average density and 
area calculated by selecting clustering patterns with different area variation parameters ( ξ ). Based on the com-
prehensive judgment of the results, we set ξ = 0.01, which is more efficient. EBC identifies 13 clusters and 139 
noise points (accounted for 29.1% ). The attributes of these 13 clusters are shown in Table 1. The sum of the areas 
of the corresponding ellipses in the 13 clusters is 538.64  km2, accounting for 32% of the total pattern ellipse area 
(1680.68  km2); the average density of all clusters is 0.6293, which is 2.213 times the average density of the total 
pattern (0.2838). The densities of the clusters range from 1.30 to 10.00 while the areas range from 7.27 to 299.69 
 km2. The average of shapes is 0.46 while the minimum is 0.1.

Discussion
In this section, we will compare the results given by the proposed EBC algorithm with those produced by: (i) the 
Expectation-Maximization algorithm based on Gaussian mixture  models37; (ii) Ester’s  DBSCAN25; (iii) King’s 
complete-link  clustering26; (iv) K-means clustering with geographical coordinates as variables. An ideal clustering 
method should ensure that the internal elements are compact and the different clusters are separated, while the 
ideal clustering method for industrial data should identify high-density and compact regions, and the points in 
the regions that are not dense enough are regarded as the noise. Therefore, we use the Davies-Bouldin index to 
evaluate the results of different clustering methods and compare the results with kernel density analysis to further 
demonstrate the performance of different methods in industrial agglomeration analysis.

Considering that the prior categories of the samples in the Shanghai manufacturing listed firms dataset 
are not available, and we are more concerned with comparing the results obtained by different methods, here 
we use the Davies-Bouldin index, a widely used validity  measure49,50, to test the clustering quality of different 
methods on firms’ location data  set51. The main idea of the Davies-Bouldin index is that a reasonable clustering 
result should be uniform and compact inside, and there should be a good separation between clusters. Given 
the internal dispersion si of a cluster, the separation dij between two clusters, the similarity Rij between clusters 
is generally defined as:

(10)Rij =
si + sj

dij
, i, j = 1, 2, . . . , n, i �= j,

Figure 1.  The SCM of listed firms in Shanghai.
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where vi represents the centroid of clusters Ci ; Ni represents the number of entities in cluster Ci . The DBI can 
be defined as:

where Nc represents the number of clusters. The smaller the value of DBI, the better the clustering result.
When clustering industrial data sets, due to the lack of prior information such as the number of clusters, we 

test the effectiveness of each clustering method under different parameters. As shown in Fig. 3a–d, we select 
appropriate parameters for four clustering methods. When k = 4, GMM-EM performs best, DBI = 0.873; When 
MinPts = 100, ε = 0.015, DBSCAN performs best, DBI = 1.99; When k = 16, complete-link performs best, 
DBI = 0.575; When k = 16, K-means performs best, DBI = 0.8730.615; In comparison, when ξ = 0.01, EBC 
performs best, DBI = 0.477. The results show that on the industrial data set, EBC is superior to the other four 
algorithms under DBI.

Then we compare the results of different clustering methods with those of kernel density analysis to verify 
whether the clustering methods identify dense areas and noise points. The results of the optimal parameter from 
four clustering methods are shown in Fig. 4c–f. We perform kernel density analysis using square cells with sides 
of 400 meters. As shown in Fig. 4a, the results of kernel density analysis display vague boundaries of potential 
clusters. By comparing Fig. 4b–f with Fig. 4a, it is not difficult to see that the dense area identified by EBC is the 
most similar to Fig. 4a. In addition to the central area of Shanghai City, in Fig. 4b, the green area at the upper 
left, the brown area at the left, the green area at the bottom, and the blue area at the bottom show that EBC accu-
rately identified regions with different local densities. In contrast, the dense regions and the regions of low object 
density (noise) can not be distinguished from Fig. 4c,e,f. In Fig. 4e, complete-link cannot merge the relatively 
compact and dense clusters in the central area, and split the large clusters in the center of the city, eroding the 
compactness of clusters. The results from GMM-EM, K-means and EBC have certain similarities, but GMM-
EM and K-means can’t eliminate the noisy points. According to Fig. 4d, the red area is the dense area identified 
by the DBSCAN algorithm, and the blue area is the noise. However, compared with the kernel density analysis 
results in Fig. 4a, the clustering results of DBSCAN are not effective enough to identify the local dense regions 
with different densities. In general, compared with GMM-EM, complete-link and K-means, EBC distinguishes 
noise points between dense areas; compared with DBSCAN, EBC can identify local dense areas; compared with 
complete-link and K-means, EBC can ensure the continuity of the identified dense areas, without cutting the 
sufficiently dense areas. The results show that EBC is more effective than the four algorithms in identifying dense 
areas and noise points, and more suitable for analyzing industrial clusters.

(11)si =

∑

x∈Ci
d(x, vi)

Ni
, i = 1, 2, . . . , n,

(12)DBI =

∑Nc
i=1 Ri

Nc
,

(13)Ri = max(Rij), j = 1, 2, . . . ,Nc ,

Figure 2.  Initialization and termination of a sequence: initialize by elliptical density and select candidate 
clusters by mutation of elliptical area.
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EBC identifies a large cluster in the center of Shanghai City and several small clusters around it. Complete-link 
recognizes the relatively separated clusters in the surrounding area but it cannot merge the relatively compact 
and dense clusters in the central area, and split the large clusters in the center of the city, eroding the continuity. 
Meanwhile, DBSCAN has fallen into the trap of continuity and cannot effectively divide high-density clusters. 
The results from GMM-EM, K-means and EBC have certain similarities, but GMM-EM and K-means can’t 
eliminate the noisy points. Generally speaking, on firms’ location data set, EBC can identify clusters of various 
shapes and scales, and higher densities.

Conclusion
We have proposed an ellipse-based approach to distinguish highly concentrated areas from noisy points, so as to 
analyze the industrial multi-agglomeration pattern and degree of industrial agglomeration in continuous space, 
with a high degree of consistency in cluster representation, quantification and identification. All data points are 
reordered into a number of sequences by using group-based nearest neighbors, and each group of points in the 
sequences, examined as a potential cluster, is represented by an ellipse in terms of elliptic parameters. Clustering 
is reformulated as the problem of identifying target ellipses among a number of potential ellipses, with significant 
changes (especially in the area) used as the cutoff criterion for determining clusters and the maximum sum of 
areas as the objective function.

We have illustrated the utility of EBC by applying it to an industrial data set. Without the necessity to know 
prior information, as a data-driven clustering method, EBC distinguishes high density areas from noise, with 
its performance under DBI obviously better than the other four methods. Besides, our ellipse-based approach 
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Figure 3.  Similarity measure under different parameters: (a) optimal k through DBI (GMM-EMM1), (b) 
optimal MinPts through DBI (DBSCANM2, ε = 0.015), (c) optimal k through DBI (complete-linkM3), (d) 
optimal k through DBI (K-meansM4), (e) optimal ξ through the average of density (EBC), (f) optimal ξ through 
the sum of area (EBC).

Table 1.  Profile (variance) of clusters.

Cluster X (°) Y (°) Shape index Azimuth (°) Size Density index (/km2) Area index  (km2)

1 121.36 31.14 0.51 17.68 166 0.55 299.69

2 121.35 30.81 0.36 − 17.79 22 0.43 50.64

3 121.13 31.18 0.77 − 82.05 20 0.44 45.53

4 121.51 31.31 0.69 − 13.15 20 0.68 29.40

5 121.32 31.32 0.44 − 55.41 16 0.75 21.48

6 121.62 31.26 0.48 53.15 12 0.60 20.00

7 121.19 31.43 0.54 − 17.85 8 0.54 14.82

8 121.44 30.95 0.32 35.22 14 1.14 12.25

9 121.62 31.12 0.21 − 15.49 11 0.90 12.16

10 121.70 31.21 0.10 − 13.45 8 0.83 9.67

11 121.59 31.20 0.75 − 67.78 17 2.09 8.12

12 121.50 31.24 0.44 − 62.21 12 1.58 7.61

13 121.52 31.09 0.44 24.74 13 1.79 7.27
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reveals detailed information about industrial agglomeration, including the number, location, boundary, and 
degree of industrial clustering. In the case of Shanghai City, the agglomeration areas identified by our approach 
are highly consistent with the distribution of high-density areas identified in the kernel density analysis. The 
339 listed manufacturing firms are distributed in 13 clusters, and the average density of agglomeration areas is 
2.2 times that of the total density.

This study proposed an industrial agglomeration identification method using ellipses. Notably, EBC is a 
flexible and adjustable method due to the rich spatial information revealed by ellipses. In the initial process of 
ordering, the second-nearest neighbor is optional, so as to expand the collection of compactness sequences. 
The use of weighted standard deviation ellipse makes it possible to identify industrial agglomeration based on 
attribute data such as employment and industrial output.

In the future, more work is needed to improve our ellipse-based model. We can use elliptic parameters instead 
of distance metric. The distance metric can be replaced by elliptic parameters to determine group-based nearest 
neighbors. Besides, the appropriate use of shape and density constraints in the sorting process may improve 
the efficiency of the algorithm. In addition, on the basis of identifying the absolute agglomeration of industries, 
further immediate lines of research could consider the comparison of the agglomeration between different 
industries and regions, and explore whether the actual distribution of industrial agglomeration deviates from 
a random distribution.

Data availibility
The datasets used during the current study are included in the Supplementary information file.
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