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A machine learning approach 
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Alex Rubén Huamán De La Cruz 6,8, Kleyton da Costa 7,8 & Javier Linkolk López‑Gonzales 4,8*

The main objective of this study is to model the concentration of ozone in the winter season on air 
quality through machine learning algorithms, detecting its impact on population health. The study 
area involves four monitoring stations: Ate, San Borja, Santa Anita and Campo de Marte, all located 
in Metropolitan Lima during the years 2017, 2018 and 2019. Exploratory, correlational and predictive 
approaches are presented. The exploratory results showed that ATE is the station with the highest 
prevalence of ozone pollution. Likewise, in an hourly scale analysis, the pollution peaks were reported 
at 00:00 and 14:00. Finally, the machine learning models that showed the best predictive capacity for 
adjusting the ozone concentration were the linear regression and support vector machine.

Currently, air pollution is one of the most harmful environmental problems at the local, regional and global levels. 
Its impacts go beyond ecosystems, harming human health, the economy and environmental sustainability1. Most 
of the world’s population lives in a polluted environment. Although physical activities release different pollut-
ants, the main source of pollution is anthropogenic activities, which accidentally release dangerous chemicals1,2. 
Elevated tropospheric ozone (O3 ) concentrations signal a serious threat to the climate and the environment. 
In addition, due to industrial processes and urbanization, climate change intervenes in the dispersion of O 32. 
Nitrogen dioxide (NO2 ), O 3 , aerosol absorption index (AAI), and carbon monoxide (CO) are key indicators 
of air pollution. The creation of NO2 influences the formation of ozone, through a complex set of reactions 
with oxygen and free radicals generated from volatile organic compounds (VOC) in the presence of sunlight3, 
which is why the levels highest ozone levels are recorded during periods of sunny weather4. On the other hand, 
chemical ozone loss due to anthropogenic halogens is temperature driven, with greater loss occurring during 
cold winters, and this pollutant is readily soluble in water, indicating that the presence of precipitation increases 
the speed at which it dissolves, and in the winter season ozone concentrations decrease5. O 3 is considered a sec-
ondary pollutant, because it results from a photochemical reaction of CO and VOC in the presence of nitrogen 
oxides (NOx = NO + NO2 ), which allows its high concentrations, developed by emissions of NOx coming from 
combustion sources6. However, for ozone to accumulate to levels harmful to health, there must be continuous 
recycling between NO and NO2 . That is why predicting and understanding the rate of formation and emission of 
ozone is essential both to alert the public about the appropriate intervention, and to evaluate immediate actions 
on climate behavior7.

At the global level, China is one of the countries that presents the most problems with ozone concentrations 
and emissions7,8, since the critical days of O 3 pollution are 93 to 575% higher than those of other industrial-
ized countries, with Beijing and Shanghai being the cities with the highest air pollution in recent years8. On the 
other hand, the global ozone load is perceptible to the variation of emissions in tropical and subtropical regions, 
since in these there are favorable parameters such as high temperatures, intense sunlight and convection, for 
the ozone production and accumulation, showing the close relationship between climatic variables and O 3 
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concentrations9. As a counterpart, some places in the United States and southern Canada have minimal ozone 
exposure, even being considered “clean places”10. In Europe and North America, projects are being carried out 
to improve air quality, taking into account environmental and climatic factors for greater application11. At the 
same time, seeing the focus on Latin America, it is known that there is a higher exposure rate in areas located 
near land routes with a high level of vehicular congestion, as well as industrial regions, due to the secondary 
pollutants that are formed downwind, as in the case of ozone, which is one of the most dangerous pollutants in 
existence12. In recent years, they began to propose and implement measures to improve air quality, with Chile 
and Brazil being the leaders in terms of change. However, despite this, a study revealed that only 17 countries 
in Latin America and the Caribbean have regulations and policies regarding ozone as a pollutant13. Peru is in 
the ranking of the countries with the highest rates of air pollution. However, the National Institute of Statistics 
and Informatics indicates that, at the urban national level, more than half of the population considers that the 
air in their area is polluted14. This situation is associated with the rapid economic and industrial development of 
Peru, which means the release of pollutants and gases that alter air quality. Almost a third of the total population 
of Peru resides in Lima, which is why the largest amount of air pollutants are present in the country’s capital 
city, making Lima one of the thirty most polluted cities in South America15. In metropolitan Lima, there is an 
Automatic Air Quality Monitoring Network System (RAMCA), which is based on low-cost alternative methods. 
This system has around ten stations, which record atmospheric gases on an hourly basis, among them are: Ate 
(ATE—East Lima), San Borja (SB—South Central Lima), Campo de Marte (CDM—Lima Central) and Santa 
Anita (STA—East Lima), currently monitored by the Servicio Nacional de Meteorología e Hidrología del Perú 
(SENAMHI) under the command of the Ministry of the Environment16. Lima’s air quality is greatly affected by 
persistent weather and climate patterns17. According to the environmental quality standard for air, it sets levels 
of concentrations of physical, chemical and biological parameters present in the atmosphere, thus indicating the 
value allowed for ozone with 100 µg/m3 in a period of 8 h18.

For his part, the anthropogenic causes such as the burning of fossil fuels in the industrial sector, the high rate 
of vehicular transport, waste burning and excessive agriculture, excessively alter the levels of greenhouse gases 
and generate particulate matter, causing an imbalance that affects both the natural ecosystem and the health of 
human beings19. Likewise, the climatological variables such as temperature, wind speed and relative humidity 
are a fundamental part of the atmospheric system, which influences the spread, increase and accumulation of 
the pollutant16,17,19. Therefore, conceiving seasonal changes, climatic alterations, and potential causes in the area, 
allow a better monitoring and mitigation plan for pollutants20. On the other hand, when examining the cor-
relation between ozone and climatic variables, obtain a greater guide to analyze the periods and critical points 
of concentration of the pollutant21. In this context, understanding air pollutants over a range of space and time 
is essential for a meaningful assessment of the relationship between air pollutant concentrations and adverse 
human health effects. However, meteorological variables have a great influence on air pollution through multiple 
pathways of pollutants22. Using statistical and deterministic models, the concentration of pollutants in the air 
can be addressed. For its part, machine learning facilitates the understanding of air pollution data based on the 
exposure of the data relationship and the prediction of results, independent of empirical models23. It addresses 
the nonlinearity problem and improves the predictive performance of the model24. In Peru, modeling studies for 
ozone have not yet been carried out. Attempts to take advantage of the high predictive capabilities of machine 
learning algorithms for modeling are limited. In this sense, our contributions are summarized below:

•	 We apply machine learning techniques to model the concentration of ozone on air quality in four monitoring 
stations in Metropolitan Lima during the winter season. These were: ATE, SB, CDM and STA.

•	 We investigated the climatic and geographic diversity of all monitoring stations, using data collected from 
three consecutive years (2017, 2018 and 2019).

•	 The analysis based on machine learning algorithms effectively predicted the ozone concentration on an hourly 
scale.

•	 In recent years, air pollution has increased in the capital of Peru, a determining reason for focusing the study 
on this area, considering that the accelerated automobile and industrial growth are the main causes of pol-
lution.

The rest of the paper is structured as follows: “Materials and methods” that describes the methodology devel-
oped based on statistical modeling approaches. Then, “Results” and “Discussion” that presents the main findings 
of this research compared to other studies. Finally, “Conclusions” that provides the main conclusions, together 
with some recommendations for future research.

Material and methods
The methodology of this study carried out a data pre-processing. The database was ordered, classified and ana-
lyzed for each monitoring station, taking into account the winter period of the city, which runs from June 21 to 
September 22, both for climatic variables and for ozone. Four monitoring stations located at strategic points in 
Metropolitan Lima were considered, from 2017 to 2019. It is worth mentioning that the number of monitoring 
stations in Metropolitan Lima is ten, however, four were selected due to lack of data in the registers. The hourly 
concentrations of O 3 were measured using Teledyne analyzers. The analyser operation includes zero and span 
verifications, calibrations and detection of leaks. The data are transmitted by telemetry to SENAMHI to be vali-
dated after correcting null entries, duplicates, and/or anomalies. Likewise, SENAMHI has a systematic network 
of conventional and automatic stations that monitor and report the variables under study to a processing center. 
These stations use high-quality instruments and sensors to measure temperature, relative humidity, wind speed 
and direction on an hourly scale. In addition, the imputation algorithm called Multiple Imputation by Chained 
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Equations was applied. This algorithm is based on Fully Conditional Specification, where each incomplete vari-
able is imputed by a separate model25. This performs multiple imputation to replace missing values in a data set, 
in this case, for hourly scale records (see Table 1). Likewise, reports were generated in the R Studio and Jupiter 
notebook programs, to present the descriptive, exploratory, correlational and predictive analyses. The latter 
was addressed using different machine learning algorithms (Fig. 1) and evaluating its ability to adjust through 
performance metrics.

Study area and monitoring stations.  This study focuses on two districts in East Lima and two in Cen-
tral Lima. The metropolis is characterized by having a temperate climate, with a high and constant atmospheric 
humidity in winter, despite being considered one of the second driest cities on the planet and this due to the 
minimum rainfall that it presents near the 9 mm26. On the other hand, relative humidity is above 80% through-
out the year. Normally, it does not record lower amounts and the speed of the wind coming from the south 
ranges between 4 and 5 m/s26. The air quality in the city is poor, which prevents clean air and good health in the 
population. The quality varies in time intervals, by hours or minutes27. The pollutants move in the city according 
to the prevailing wind regime. However, the tropospheric ozone is one of the most harmful pollutants that harm 
human health, that is why it is designated “bad ozone”28. But in the metropolitan area it does not exceed the level 
recommended by Peruvian laws16, specifically in the winter season, despite the fact that the general levels are 
not high compared to those of spring-summer. Ozone is likely to have an impact, even at low concentrations29.

For his part, the monitoring stations are located at key points of industrial development and vehicular traffic30. 
The first station is located in the ATE district, which is one of the areas where there is more particulate matter, 
since it is on both sides of the central expressway and where vehicle traffic has increased31. This same phenom-
enon occurs in the STA district. On the other hand, the SB monitoring station is located in a heavy vehicle traffic 

Table 1.   Percentage of imputation for each monitoring station during the years 2017, 2018 and 2019. This 
analysis is based on the 2256 observations obtained from the winter season.

Year Monitoring station Total Completed Imputed % imputed

2017

ATE 2256 2212 44 1.95 %

CDM 2256 2201 55 2.95 %

SB 2256 2203 53 2.35%

STA 2256 2196 60 2.66%

2018

ATE 2256 2216 40 1.77%

CDM 2256 2221 35 1.55%

SB 2256 2203 53 2.35%

STA 2256 2213 43 1.91%

2019

ATE 2256 2226 30 1.33%

CDM 2256 2212 44 1.95%

SB 2256 2208 48 2.13%

STA 2256 2204 52 2.30%
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Figure 1.   Architecture machine learning: Linear regression, support vector regression, decision trees, random 
forest, and multilayer perceptron. Data tasks: the data related to the ozone concentration in the winter season 
of 2017, 2018 and 2019 are organized. Individual tasks: machine learning models are applied to data that was 
previously organized. Common tasks: the prediction is made and the errors of each model are calculated using 
performance metrics.
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zone where excess pollutants are concentrated32. Finally, the CDM monitoring station, which is exposed to the 
frequent emissions of the vehicle fleet and the anthropogenic activities of the place32.

Machine learning modelling.  Machine learning is an approach based computational study for deriving 
knowledge from data. Likewise, trains algorithms to accept and predict new data using statistical analysis. For 
this study, the monitoring stations were divided into two: training and testing. Five machine learning models, 
linear regression, random forest, support vector regression, decision trees regression and multilayer perceptron, 
were used to predict the ozone’s hourly concentration. The model is used to ascertain the independent variables’ 
potential (meteorological variables) to predict the dependent variable ( O3 concentration). The model was devel-
oped using scikit-learn within the python programming environment. 80% of the dataset was used for model 
training and the rest of the dataset was used to test the model. Model validation was done using the coefficient 
of the determinant 

(

R2
)

 , which tests for models’ fitness using values between 0 and 1. Values nearer to 1 depict 
a mutual relationship, while values closer to 0 indicate a weaker association. The mean absolute error (MAE), 
which measures the mean absolute distance between predicted and true values, and the mean squared error 
(MSE), which shows the possibility of considerable mispredictions were also adopted for model validation. Eqs. 
(1)–(3) show the formula for calculating the R2 , MSE, and MAE, respectively.

where n is the total number of data points or instances, Xi and Yi are the actual and predicted values, respectively, 
Xm and Ym are the mean of the actual and predicted values, respectively.

Machine learning techniques. 

•	 Linear regression is a statistics-based machine learning model used for quantitative analysis and prediction 
of numerical variables based on correlation, and it is used to determine how well one or more explanatory 
variables can linearly predict the response variable. For this study, the response variable is the predicted ozone 
concentration, while the explanatory variables are the meteorological variables.

•	 Support vector regression (SVR) is a supervised learning algorithm for regression, which is versatile, since it 
fits linear and nonlinear models, thanks to the availability of its special functions, called kernel functions33. 
In this study, the linear kernel was used. It has more flexibility in choosing penalties and loss functions and 
scales better to large numbers of samples34.

•	 Decision trees (DT) is a non-parametric supervised learning method used for classification and regression. Its 
purpose is to create a model for prediction by learning decision rules from the characteristics of the data35. 
Basically, the decision trees apply a sequence of decisions that often depend on a single variable. These trees 
divide the input into regions, refining the level of detail at each iteration until reaching the end of the process, 
also called a leaf node, which provides the expected end label35.

•	 Random forest is a machine learning combination algorithm that can perform classification, regression, clus-
tering and variable selection36. Is based on the combination of decision trees. Each tree is constructed using 
a bootstrapped sample of the data. The final class is predicted, and output is resolved based on the number 
of the decision trees’ vote36. For this study, the RandomForestRegressor of scikitlearn was used in python, 
and the maximum depth of the tree equal to 2.

•	 The multilayer perceptron (MLP) model consists of a set of elementary processing elements called neurons37. 
These units are organized in architecture with three layers: the input, the hidden, and the output layers. The 
neurons corresponding to one layer are linked to the neurons of the subsequent layer. An important factor 
in the specification of neural models is the activation function’s choice. These can be non-linear functions as 
long as they are continuous, bounded, and differentiable. The transfer function of the hidden neurons should 
be nonlinear while for the output neurons the function could be a linear function or nonlinear functions37.

Results
Correlation analysis: meteorological variables vs. O 

3
.  Ozone concentration was analyzed with the 

meteorological variables for the four monitoring stations. Figure 2 shows that the correlation between tempera-
ture and ozone for the four monitoring stations ranges between 0.3094 and 0.8486. There is a positive, directly 
proportional correlation between the two. This aligns with the results of other studies that established a connec-
tion between ozone and temperature38. Also, mentioned that changes in the intensity of solar radiation lead to 
large seasonal differences in O 3 concentrations. High temperatures and ultraviolet radiation accelerate the pro-
duction of ozone39. This directly proportional association between temperature and ozone has an impact on the 
winter season, that is, the phenomenon that the lower the temperature, the lower the ozone concentration occurs 
(phenomenon that occurs in Metropolitan Lima). Regarding wind speed and ozone concentration, a strong 
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positive correlation is shown between the four monitoring stations. Both variables are directly proportional in 
terms of their increase. The correlation indices for the stations range between 0.0633 and 0.7218. A higher level 
of ozone occurs as the wind speed increases, while the lowest ozone concentration is recorded in the absence 
of wind39, since the effect generated by the meteorological variable on the O 3 concentration decreases its levels 
due to the dispersion it generates6. Figure 2 also shows a strong negative correlation between relative humidity 
and ozone. This ranges between −0.3201 and −0.8385 . Low humidity is a suitable climatic condition for photo-
chemical reactions in ozone production6. This contaminant is easily soluble in water40, which indicates that the 
presence of precipitation increases the speed at which it dissolves41. In addition, Lima is a city with a high relative 
humidity index42, which causes ozone concentrations to decrease in the winter season. Likewise, it is shown that 
the strongest correlations between climatic variables and ozone concentration occur at the ATE and STA moni-
toring stations. These areas are more exposed to air pollution, since both districts are located at key points of 
industrial development, vehicular traffic and fuel combustion30. On the other hand, the adoption of five machine 
learning algorithms was required to determine the reliability of these climatic variables as predictors of the ozone 
variation trend. In addition, the importance of evaluating the correlation between ozone and climatic variables 
establishes indicators for future modeling of concentrations of atmospheric pollutants. To observe the average 
impact of each variable for the prediction of the variable of interest, we used the Shapley Additive Explanations 
(SHAP) method43. The results (Fig. 3) shows that relative wind speed and relative air humidity are the features 
with higher impact on ozone forecast, that is, the variables most relevant to model’s prediction.

Critical episodes of O 
3
.  We consider critical episodes those values that show an unusually high or low 

behavior. These data often exhibit excessive kurtosis and/or prominent right tails (see Table 2). Critical ozone 
episodes were analyzed, contrasting with preliminary work44. Previously, histograms were generated to evaluate 
their behavior (Fig. 4) in the four monitoring stations. Data was used on an hourly scale on all winter days from 
2017 to 2019. It should be noted that the ATE station was taken as a reference, because it shows higher levels of 
pollution since it is considered an industrial and commercial zone30,31. Likewise, for greater identification, the 
behavior of the mean and standard deviation of ozone was reported (see Fig. 5), showing that the pollution peaks 
are at 00:00 hours and at 14:00 hours. While, to increase the perception of critical episodes and to know their 
behavior, an average study was carried out on a daily, monthly and annual level (see Fig. 6). The other moni-
toring stations have the following: CDM (04:00 and 13:00 hours), SB (03:00 and 14:00 hours) and STA (04:00 
and 14:00 hours). Regarding the hourly average of pollution per day of the week at the ATE station, a higher 
index is observed at 2:00 p.m. every day, corresponding to a greater vehicular, commercial and industrial flow27, 
except Thursday and Saturday (pollution declines). On the other hand, in the other monitoring stations there is 

Figure 2.   Correlation matrices considering mean between the meteorological variables and the ozone for 
each monitoring station. This correlational analysis allows evaluating the associations between the variables 
under study. The reported values oscillate between −1 and 1, when there is a negative and positive association, 
respectively.
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a greater concentration on Friday, Saturday and Sunday, at 1:00 p.m. (CDM) and 2:00 p.m. (SB and STA). This 
phenomenon has already been analyzed, being called the “weekend effect”, and is characterized by a high growth 
of O 3 in the urban areas compared to working days45. In relation to the monthly behavior (Fig. 6), this presents a 
moderate increase in the month of June, and low in the months of July and August, in the three years. This is due 
to the fact that episodes of high pollution are not only affected by precursor gases in the environment19, but also 
by the meteorological conditions of the area, especially when knowing the high rate of dispersion that ozone has 
compared to with other contaminants8. In Lima, in the month of June, there are conglomerations of air masses 
that originate in the Pacific Ocean, with a complete route from the city to the eastern part, an area in which it 
stops, suspending the ozone and decreasing the quality from air; this being the point where the ATE district is 
located27. In the other monitoring stations, the following results were given: CDM (July), SB (August) and STA 
(July). On the other hand, the direction of the wind presents a greater predominance towards the south-west 
in the monitoring stations, with a speed that oscillates between 0 and 4.3 m/s. Regarding the analysis by year, 
it is possible to visualize the pronounced variation of critical episodes recorded at the ATE station, with 2017 
being the year most affected by pollution. This is due to the fact that the increase in the industry in that year 
was transcendental, thus generating the emission of precursors such as: NO, CO and VOC. Even reports from 
the municipality mention that on several occasions, this district exceeded the breaking point imposed by cur-

Figure 3.   Mean impact of selected variables on ozone. Each variable is observed ordered according to the 
impact with respect to ozone. In the same way, it is observed that both wind speed and relative humidity have 
the greatest impact on the model.
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rent laws27, and this is reflected in Table 2, where the maximum values reached 165 µg/m3 this result being 65% 
higher than the norm. In the other monitoring stations, the following result was given: CDM (2019), SB (2017) 
and STA (2017).

Models’ performance.  The results described in Table 3 consider three precision metrics: multiple deter-
mination coefficient, mean squared error and mean absolute error. The coefficient of determination has a vari-
ation between 0.4190 and 0.9933, showing that all models are able to explain the average variation in the ozone 
level. It should be noted that five steps ahead were considered as the forecast horizon and the data were grouped 
according to the average at each time during the entire period collected. The MAE and MSE metrics show that 
the models have a good predictive capacity for all monitoring stations that were investigated. The MSE and MAE 
of all the algorithms give a low value, which shows the predictive performance’s accuracy. A comparative study 
was proposed by38, with the result that the best models to model ozone in Malaysia are: random forest, linear 
regression, support vector regression and decision tree regression. The study did not investigate the multilayer 
perceptron model, but the results found are consistent with what we found in this study. Furthermore, the varia-
tion of R 2 was 0.216 and 0.970. The Fig. 7 shows the forecast results for models applied in this study. It is possible 
to observe that the models have results with similar behaviors - even at different levels. The results are important 

Figure 4.   Ozone histogram per each monitoring station. This analysis shows how the ozone behavior is in the 
different monitoring stations. Likewise, it is complemented with the descriptive analysis, provided by Table 2, 
where it reports positive asymmetry for all seasons.

Table 2.   Ozone description by monitoring stations. The highest contamination average is in ATE. It also 
reports the highest pollution indices, presenting a positive asymmetry. Likewise, SB is the one with the lowest 
contamination index.

ATE CDM SB STA

Mean 28.36 28.13 17.09 10.56

SD 40.08 21.31 11.05 12.21

Min 0.80 0.80 0.20 0.10

25% 5.50 8.98 8.30 1.80

50% 8.50 24.50 15.10 6.20

75% 29.30 44.03 24.00 14.80

Max 165.80 117.10 83.90 152.60

Skewness 1.89 0.53 0.83 1.94

Kurtosis 2.30 −0.67 0.51 5.54
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Figure 5.   Analysis of average contamination in hourly scale. In this analysis it is observed that the peak hours 
are 0 h and 14 h. This provides the restriction for the exploratory analysis, reported in Fig. 6.
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to present the predictive capacity of the models for the analyzed variable of interest. Regarding the use of support 
vector machine, the study analyzed the use of a linear kernel and an RBF type kernel. Results were better through 
a linear kernel. For Random Forest, simulations with a max depth between 2 and 100 were considered, with the 
best result obtained with 2. And for the MLP model, a log-sigmoid function was considered. The comparison 
between the applied machine learning models shows that the linear regression model obtained the best predic-
tion results for CDM and SB stations. For the ATE station, the SVM model was the best for the MAE metric and 
the linear regression model was the best for the R 2 and MSE metrics. And finally, the SVM model was the best 
for the STA station. Thus, it is shown that the best models were the linear regression model and SVM. The results 
found by the models, even with forecast variations, are shown as valid behavior variables to analyze and run at 
the monitoring stations.

Discussion
The impacts of ozone on air quality in metropolitan Lima were modeled using machine learning techniques. The 
concentration of O 3 in the metropolis presents critical levels, mainly in ATE, compared to the other monitoring 
stations (CDM, SBJ, STA) on an hourly scale. Typically, low temperatures, excess relative humidity and wind 
speed are influencing factors for records of low O 3 levels. In a study in Beijing46 was mentioned that low humid-
ity is a suitable climatic condition for photochemical reactions in ozone production. Metropolitan Lima is a city 
with a high relative humidity index and more in the winter season16. Therefore, it acts as an important factor to 
decrease the increase in ozone concentration, since it is associated with precipitation and solubility in water. The 
use of artificial intelligence models (such as machine learning methods) is important to propose new approaches 
for definition of environmental public policies. In this case, economic agents can benefit from more accurate 
results and improve their decision-making process and monitoring of nature phenomena. And is important to 
investigate the use of interpretability methods (as we make in this study). Among the climatic factors addressed 
in this study, temperature became an important variable since it has a strong relationship with O 3 . In the study 
by Ocak and Turalioglu47, found that they had high levels of ozone during warm periods; this phenomenon is 
complemented by the case of Metropolitan Lima during the cold period, since the values of ozone concentrations 
decline. The results obtained in our study support that, in the winter season, Lima presents O 3 values on an hourly 
scale below 100 µg/m3 according to the ECA for air18. This is because critical episodes occur on some weekdays 
during peak hours. The main cause is vehicular traffic, since transport generates this pollutant48. On the other 
hand, temperature differences result in the movement of air masses from lower to higher temperatures, causing 
local winds that are recorded on the coast, transporting the pollutant in a south-southeast direction49. In this 
sense, the high levels of ozone can be mitigated by adopting measures such as the substitution of the classic fuel 

Figure 7.   Forecast results plot. Observed data for ozone (training set) and forecast results for applied models: 
linear regression, support vector machine, random forest, decision tree, and neural network.
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for gaseous ones (NGV, LPG) and biofuels50. With all this, through Table 4, different comparisons of approaches 
between Metropolitan Lima (Peru) and China are summarized, providing a broader spectrum regarding ozone.

Conclusions
This study modeled and analyzed the concentration of ozone on air quality in Metropolitan Lima during the 
winter season. Correlation analysis and five machine learning techniques were used to obtain the relationship 
between meteorological variables and ozone, highlighting linear regression and support vector machine as 
techniques that showed better predictive capacity. In parallel, the correlation analysis shows a strong posi-
tive relationship between temperature and ozone. Also, there is a strong positive relationship between wind 
speed and ozone. While, between relative humidity and ozone there is a strong negative relationship (inversely 
proportional) in the four monitoring stations, indicating their high exposure to the pollutant. From this, it is 
determined that the air quality of urbanized areas is significantly associated with fluctuations in meteorologi-
cal factors. This problem is generated by anthropogenic activities. Taking into account climatic variations, this 
study provides a solid basis for interventions in the most vulnerable areas. In addition, it opens the gap for future 
analysis and understanding of the behavior of meteorological variables and ozone. Likewise, this research pre-
sents great modeling potential, through machine learning algorithms for simulations of the urban variability of 
ozone in the Lima metropolitan region, which will serve as a reference for future ozone modeling applications. 

Table 3.   Result of the R 2 , MAE and MSE metrics applied to the forecast results for the analyzed models. The 
results are separated by station (ATE, CDM, SB and STA).

Station/model R2 MAE MSE

ATE station

LR 0.9923 0.0724 0.0058

SVM 0.9913 0.0643 0.0065

DT 0.9478 0.1648 0.0392

RF 0.8753 0.2373 0.0937

MLP 0.906 0.2481 0.0706

CDM station

LR 0.9892 0.0486 0.0036

SVM 0.9844 0.0702 0.0052

DT 0.873 0.1915 0.0424

RF 0.7576 0.2286 0.0809

MLP 0.9246 0.1352 0.0251

SB station

LR 0.9849 0.0847 0.0087

SVM 0.9814 0.0923 0.0107

DT 0.8728 0.199 0.0729

RF 0.9699 0.096 0.0172

MLP 0.419 0.5149 0.3332

STA station

LR 0.9909 0.0758 0.006

SVM 0.9933 0.0501 0.0044

DT 0.8349 0.2497 0.1081

RF 0.8203 0.2842 0.1176

MLP 0.9452 0.1783 0.0359

Table 4.   Behavior of ozone evaluated both in China and in Peru (Metopolitan Lima).

References China Lima

China8 Lima16
O3 concentrations above current air quality standards were identified, 
influenced by the Northwest Pacific typhoon, a frequent weather activity in 
hot seasons

In June there are conglomerates of air masses that originate in the Pacific 
Ocean, suspending ozone and reducing air quality in surrounding areas

China39,51, LimaThis study
Hourly O 3 concentrations show that levels gradually increased after 08:00 h 
(33,8 µg/m3 ), peaked at 16:00 h (96.7 µg/m3 ), and then decreased. Further-
more, O 3 concentrations were highest in summer and lowest in winter

O3 concentrations evaluated in the winter season report 0.10 µg/m3 at  
02:00 h, while at 18:00 h a high concentration of 165.8 µg/m3 is reported

China51, LimaThis study Of the 13 cities evaluated, the lowest O 3 concentration was concentrated in 
Chengde (82.7 µg/m3 ), while the highest was in Hengshui (98.4 µg/m3)

Likewise, of the stations observed in Lima, the lowest O 3 levels are concen-
trated in the STA district (0.10 µg/m3 ), while the highest are found in ATE 
(165.8 µg/m3)
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However, further studies may be needed to improve the fit by incorporating more input variables that have not 
yet been investigated due to lack of data and information. Alternatively, in the context of COVID-19, it would 
also be interesting to evaluate and model the behavior of ozone, using statistical techniques such as multiple 
linear regression, use of three-dimensional logarithms and principal component analysis, under the influence 
of meteorological variables in the warm and cold season, similar to what was developed for PM10

52, obtaining 
important reports for decision-making in environmental management.

For their part, subsequent studies can be extended to additional contaminants with classification approaches 
under the standards established by the country. On the other hand, the partially varying coefficient model 
approach with heavy tails could be addressed for ozone, since it was successfully addressed with PM10

53. Also, 
evaluate through time series, the trends of meteorological variables and ozone, in order to broaden the under-
standing of the correlation between the variation of climatic variables and the variation of ozone concentration.

Data availability
The datasets analysed during the current study are available in the Servicio Nacional de Meteorología e Hidrología 
del Perú repository: https://​www.​senam​hi.​gob.​pe/?p=​calid​ad-​del-​aire.

Received: 31 August 2022; Accepted: 16 December 2022

References
	 1.	 De Marco, A. et al. Impacts of air pollution on human and ecosystem health, and implications for the national emission ceilings 

directive: Insights from Italy. Environ. Int. 125, 320–333 (2019).
	 2.	 Ordóñez, C., Garrido-Perez, J. M. & García-Herrera, R. Early spring near-surface ozone in Europe during the covid-19 shutdown: 

Meteorological effects outweigh emission changes. Sci. Total Environ. 747, 141322 (2020).
	 3.	 Odman, M. T. et al. Quantifying the sources of ozone, fine particulate matter, and regional haze in the southeastern united states. 

J. Environ. Manag. 90, 3155–3168 (2009).
	 4.	 Das, S. et al. Trends in summer-time tropospheric ozone during covid-19 lockdown in Indian cities might forecast a higher future 

risk. Atmosphere 13, 1115 (2022).
	 5.	 Von der Gathen, P., Kivi, R., Wohltmann, I., Salawitch, R. J. & Rex, M. Climate change favours large seasonal loss of arctic ozone. 

Nat. Commun. 12, 1–17 (2021).
	 6.	 Jaffe, D. A. et al. Scientific assessment of background ozone over the US: Implications for air quality management. Elem. Sci. 

Anthropocene 6, 56 (2018).
	 7.	 Lu, H., Lyu, X., Cheng, H., Ling, Z. & Guo, H. Overview on the spatial-temporal characteristics of the ozone formation regime in 

China. Environ. Sci. Process. Impacts 21, 916–929 (2019).
	 8.	 Wang, N. et al. Typhoon-boosted biogenic emission aggravates cross-regional ozone pollution in China. Sci. Adv. 8, eabl6166 

(2022).
	 9.	 Fry, M. M. et al. The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative 

climate forcing. J. Geophys. Res. Atmos. 117, D7 (2012).
	10.	 Jakovlev, A. & Smyshlyaev, S. Numerical simulation of world ocean effects on temperature and ozone in the lower and middle 

atmosphere. Russ. Meteorol. Hydrol. 44, 594–602 (2019).
	11.	 Lu, X., Zhang, L. & Shen, L. Meteorology and climate influences on tropospheric ozone: A review of natural sources, chemistry, 

and transport patterns. Curr. Pollut. Rep. 5, 238–260 (2019).
	12.	 Green, J. & Sánchez, S. . La. calidad del Aire en América Latina: Una Visión Panorámica (Clean Air Institute, Washington, DC, 

2013).
	13.	 Riojas-Rodríguez, H., da Silva, A. S., Texcalac-Sangrador, J. L. & Moreno-Banda, G. L. Air pollution management and control in 

Latin America and the Caribbean: Implications for climate change. Rev. Panam. Salud Públ. 40, 150–159 (2016).
	14.	 INEI. Informe técnico de Estadísticas Ambientales. in Technical Report (2021).
	15.	 Rodríguez-Urrego, D. & Rodríguez-Urrego, L. Air quality during the covid-19: Pm2.5 analysis in the 50 most polluted capital cities 

in the world. Environ. Pollut. 266, 115042 (2020).
	16.	 Silva, J. S., Rojas, J. P., Norabuena, M. & Seguel, R. J. Ozone and volatile organic compounds in the metropolitan area of Lima-

Callao, Peru. Air Qual. Atmos. Health 11, 993–1008 (2018).
	17.	 Gonzales, G. F. et al. Contaminación ambiental, variabilidad climática y cambio climático: Una revisión del impacto en la Salud 

de la Población Peruana. Rev. Peruana Med. Exp. Salud Públ. 31, 547–556 (2014).
	18.	 Minam, P. Aprueban estándares de calidad ambiental (ECA) para agua y establecen disposiciones complementarias. El Peru 7, 

10–19 (2017).
	19.	 Wei, J. et al. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across 

China. Remote Sens. Environ. 270, 112775 (2022).
	20.	 Miao, Y., Che, H., Zhang, X. & Liu, S. Relationship between summertime concurring pm2.5 and O3 pollution and boundary layer 

height differs between Beijing and Shanghai, China. Environ. Pollut. 268, 115775 (2021).
	21.	 Ninneman, M. & Jaffe, D. Observed relationship between ozone and temperature for urban nonattainment areas in the United 

States. Atmosphere 12, 1235 (2021).
	22.	 Wu, B., Li, T., Baležentis, T. & Štreimikienė, D. Impacts of income growth on air pollution-related health risk: Exploiting objective 

and subjective measures. Resour. Conserv. Recycl. 146, 98–105 (2019).
	23.	 Tong, W. Machine learning for spatiotemporal big data in air pollution. in Spatiotemporal Analysis of Air Pollution and Its Applica-

tion in Public Health. 107–134 (Elsevier, 2020).
	24.	 Ma, J. et al. Identification of high impact factors of air quality on a national scale using big data and machine learning techniques. 

J. Clean. Prod. 244, 118955 (2020).
	25.	 Van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in r. J. Stat. Softw. 45, 1–67 (2011).
	26.	 Miranda, L. & Chávez, S. Perfil y escenarios climáticos de Lima metropolitana. Actualidad gubernamental en línea. Diciembre 

2012, n 50. Rev. Bibliogr. Geogr. Cienc. Soc. línea 25 (2012).
	27.	 Delgado, A. & Aguirre, A. Air quality level assessment through the grey clustering analysis on Lima, Peru. in 2019 IEEE XXVI 

International Conference on Electronics, Electrical Engineering and Computing (INTERCON). 1–4 (IEEE, 2019).
	28.	 Epelde-Gonzalo, F. & Tomás-Vecina, S. Impacto de la alarma de contaminación ambiental por ozono en un servicio de urgencias 

hospitalario. Anal. Med. Int. 18, 59–60 (2001).
	29.	 Chubarova, N., Timofeev, Y. M., Virolainen, Y. A. & Polyakov, A. Estimates of UV indices during the periods of reduced ozone 

content over Siberia in winter–spring 2016. Atmos. Ocean. Opt. 32, 177–179 (2019).

https://www.senamhi.gob.pe/?p=calidad-del-aire


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22084  | https://doi.org/10.1038/s41598-022-26575-3

www.nature.com/scientificreports/

	30.	 Cordova, C. H. et al. Air quality assessment and pollution forecasting using artificial neural networks in metropolitan Lima-Peru. 
Sci. Rep. 11, 1–19 (2021).

	31.	 Encalada-Malca, A. A., Cochachi-Bustamante, J. D., Rodrigues, P. C., Salas, R. & López-Gonzales, J. L. A spatio-temporal visualiza-
tion approach of pm10 concentration data in metropolitan Lima. Atmosphere 12, 609 (2021).

	32.	 Valdivia, S. A. P. Análisis temporal y espacial de la calidad del aire determinado por material particulado pm10 y pm2, 5 en Lima 
metropolitana. Anal. Científicos 77, 273–283 (2016).

	33.	 Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. & Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl. 13, 18–28 (1998).
	34.	 Chang, C.-C. & Lin, C.-J. Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2, 1–27 (2011).
	35.	 Quinlan, J. R. Induction of decision trees. Mach. Learn. 1, 81–106 (1986).
	36.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
	37.	 Hornik, K. et al. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989).
	38.	 Balogun, A.-L. & Tella, A. Modelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using 

correlation analysis with random forest, decision tree regression, linear regression, and support vector regression. Chemosphere 
299, 134250 (2022).

	39.	 Ge, Q., Zhang, X., Cai, K. & Liu, Y. Ozone pollution in Chinese cities: Spatiotemporal variations and their relationships with 
meteorological and other pollution factors (2016–2020). Atmosphere 13, 908 (2022).

	40.	 Sun, W., Hess, P. & Liu, C. The impact of meteorological persistence on the distribution and extremes of ozone. Geophys. Res. Lett. 
44, 1545–1553 (2017).

	41.	 Kumari, S., Jayaraman, G. & Ghosh, C. Analysis of long-term ozone trend over Delhi and its meteorological adjustment. Int. J. 
Environ. Sci. Technol. 10, 1325–1336 (2013).

	42.	 Senamhi. Distritos de Lima Alcanzan Hasta 100 de humedad relativa. in Technical Report (2019).
	43.	 Wang, J., Wiens, J. & Lundberg, S. Shapley flow: A graph-based approach to interpreting model predictions. in International 

Conference on Artificial Intelligence and Statistics. 721–729 (PMLR, 2021).
	44.	 Mardones, C. & Cornejo, N. Ex-post evaluation of a program to reduce critical episodes due to air pollution in southern Chile. 

Environ. Impact Assess. Rev. 80, 106334 (2020).
	45.	 Miranda Tustón, G. L. Evaluación del comportamiento de los contaminantes atmosféricos O3, NO2 y COVs en el efecto fin de semana 

en el Centro Histórico de la ciudad de Riobamba. B.S. Thesis, Escuela Superior Politécnica de Chimborazo (2017).
	46.	 Chen, Z. et al. Understanding long-term variations of meteorological influences on ground ozone concentrations in Beijing during 

2006–2016. Environ. Pollut. 245, 29–37 (2019).
	47.	 Ocak, S. & Turalioglu, F. S. Effect of meteorology on the atmospheric concentrations of traffic-related pollutants in Erzurum, 

Turkey. J. Int. Environ. Appl. Sci. 3, 325–335 (2008).
	48.	 Tello, I. J. Z., Carranza, C. F. C. & Torres, R. M. Tendencias y escenarios de la contaminación del aire por origen automotriz en 

Lima metropolitana. Rev. Inst. Investig. Fac. Minas Metalur. Cienc. Geogr. 24, 211–219 (2021).
	49.	 Silva, J. et al. Particulate matter levels in a south American megacity: The metropolitan area of Lima-Callao, Peru. Environ. Monit. 

Assess. 189, 1–18 (2017).
	50.	 Ballester, F. Contaminación atmosférica, cambio climático y salud. Rev. Esp. Salud Públ. 79, 159–175 (2005).
	51.	 Xu, S. et al. Spatio-temporal prediction of ground-level ozone concentration based on Bayesian maximum entropy by combining 

monitoring and satellite data. Atmosphere 13, 1568 (2022).
	52.	 Cabello-Torres, R. J. et al. Statistical modeling approach for pm10 prediction before and during confinement by covid-19 in South 

Lima, Perú. Sci. Rep. 12, 1–19 (2022).
	53.	 Jeldes, N., Ibacache-Pulgar, G., Marchant, C. & López-Gonzales, J. L. Modeling air pollution using partially varying coefficient 

models with heavy tails. Mathematics 10, 3677 (2022).

Acknowledgements
The authors gratefully acknowledge the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) for 
providing the ozone data used in this study. M. Belmonte belongs to: FONDECYT-ANID-Chile grant number 
11190498, DGI-UPLA (Dirección General de Investigación UPLA), LABMAI (Laboratorio de Biotecnología, 
Medio Ambiente e Ingeniería) and HUB-AMBIENTAL-UPLA.

Author contributions
All authors participated in the conceptualization, methodology, software, and manuscript writing.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.L.L.-G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A machine learning approach to analyse ozone concentration in metropolitan area of Lima, Peru
	Material and methods
	Study area and monitoring stations. 
	Machine learning modelling. 
	Machine learning techniques. 

	Results
	Correlation analysis: meteorological variables vs. O . 
	Critical episodes of O . 
	Models’ performance. 

	Discussion
	Conclusions
	References
	Acknowledgements


