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Identification of ferroptosis‑related 
genes and pathways in diabetic 
kidney disease using bioinformatics 
analysis
Dezhen Liu 1,3, Wei Zhou 2,3, Li Mao 1*, Zhaohui Cui 1 & Shanshan Jin 1

Diabetic kidney disease (DKD) is a major public health issue because of its refractory nature. 
Ferroptosis is a newly coined programmed cell death characterized by the accumulation of lipid 
reactive oxygen species (ROS). However, the prognostic and diagnostic value of ferroptosis‑related 
genes (FRGs) and their biological mechanisms in DKD remain elusive. The gene expression profiles 
GSE96804, GSE30566, GSE99339 and GSE30528 were obtained and analyzed. We constructed a 
reliable prognostic model for DKD consisting of eight FRGs (SKIL, RASA1, YTHDC2, SON, MRPL11, 
HSD17B14, DUSP1 and FOS). The receiver operating characteristic (ROC) curves showed that the 
ferroptosis‑related model had predictive power with an area under the curve (AUC) of 0.818. Gene 
functional enrichment analysis showed significant differences between the DKD and normal groups, 
and ferroptosis played an important role in DKD. Consensus clustering analysis showed four different 
ferroptosis types, and the risk score of type four was significantly higher than that of other groups. 
Immune infiltration analysis indicated that the expression of macrophages M2 increased significantly, 
while that of neutrophils and mast cells activated decreased significantly in the high‑risk group. Our 
study identified and validated the molecular mechanisms of ferroptosis in DKD. FRGs could serve as 
credible diagnostic biomarkers and therapeutic targets for DKD.

DKD also called diabetic nephropathy (DN), is the most common cause of end-stage renal disease (ESRD) as a 
refractory chronic microvascular complication of diabetes mellitus (DM). The main pathological features of DKD 
are tubular atrophy and tubulointerstitial  fibrosis1. Currently, only angiotensin converting enzyme inhibitors 
(ACEI), angiotensin receptor blockers (ARB), and sodium-glucose cotransporter-2 inhibitors (SGLT2i) have been 
proven to provide partial renoprotection in the progression of  DKD2. As current treatments for DKD are limited, 
it is difficult to inhibit DKD from progressing to ESRD, which has become a conundrum for nephrologists and 
 endocrinologists3. Therefore, more sensitive biomarkers for early diagnosis, intervention, better classification, 
and management of DKD are needed.

Ferroptosis is a recently identified atypical form of programmed cell death induced by oxidative stress 
 damage4. The main feature of ferroptosis is excessive accumulation of oxidation products. Some studies have 
found that ferroptosis may promote the progression of DKD in main three ways. First, excessive ROS accumu-
lation cause significant injuries to the kidney. The lipid peroxidation products were found increased in DKD 
model, like MDA and 4-HNE. Second, reduced antioxidant capacity leads to massive damage to renal tubular 
epithelial cells. Gpx4, an antioxidant enzyme that reduces phospholipid hydroperoxide, is significantly reduced 
in DKD and is considered one of the biomarkers of ferroptosis. Third, the imbalance of iron homeostasis leads to 
iron deposition, the expression of TFR-1 was significantly increased, while the expression of FTH-1 was reduced 
which means the overload of iron. All of them reveal that ferroptosis may occupy an important position in the 
progression of  DKD5. Some studies on DKD showed that xCT and GPX4 were decreased in diabetic kidney 
biopsy samples which are the key mediators of  ferroptosis6. The ferroptosis markers including ACSL4, GPX4, 
iron level and lipid peroxidation products were found significantly changed in streptozotocin induced DKD mice 
 models7. In db/db mice model ferroptosis could aggravate the damage of renal tubules through HIF-1α/HO-1 
 pathway8. Some non-coding RNAs are also involved in ferroptosis in  DKD9. A number of studies have investi-
gated ferroptosis, however, the specific mechanisms of ferroptosis caused by iron and ROS are still unknown. 
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And the regulatory mechanism of ferroptosis in tubular cells has not been fully clarified. Because the coexist 
of multiple cell death modes in DKD, including ferroptosis, autophagy and pyroptosis, it is an urgent direction 
to elucidate the specific involvement of ferroptosis in DKD. At present, there are no specific biomarkers of fer-
roptosis to diagnose and treat DKD until now.

To date, few studies have used bioinformatics methods to improve the understanding of genes related to fer-
roptosis in DKD. Hu et al.10 obtained diabetic nephropathy and normal kidney samples from GSE96804 dataset. 
Six hub genes (FPR3, C3AR1, CD14, ITGB2, RAC2 and ITGAM) related to ferroptosis in DKD were analyzed. 
However, this study had small samples from a single microarray analysis, which may have resulted in a high 
false‐positive rate. Therefore, it is necessary to identify new prognostic ferroptosis markers for the diagnosis and 
treatment of DKD using comprehensive bioinformatics analyses.

We integrated four microarray datasets from the Gene Expression Omnibus (GEO) database to identify the 
significant differentially expressed genes (DEGs). The least absolute shrinkage and selection operator (LASSO) 
regression was used to construct and verify the diagnostic model. To further explore the biological processes of 
DKD, we conducted a comprehensive enrichment analysis using gene ontology (GO) database, Kyoto encyclo-
pedia of genes and genomes (KEGG) pathway database, gene set enrichment analysis (GSEA), gene set variation 
analysis (GSVA), and single sample GSEA (ssGSEA) methods. Weighted gene co-expression network analysis 
(WGCNA) was used to identify co-expressed gene modules and explore the core genes in the network. As the 
immune system plays an important role in the progression of DKD, we used CIBERSORT to conduct the immune 
infiltration analysis. Our study establishes a comprehensive network of FRGs related to DKD, providing useful 
evidence for identifying the role of ferroptosis in the diagnosis and targeted therapy of DKD.

Results
Differentially expressed genes. The DKD dataset GSE96804(normal group 20; DKD group 41) from 
the public data platform was downloaded and homogenized to further study the characteristics of DKD and 
explore efficient markers for early diagnosis and treatment (Fig.  1a,b). Principal component analysis (PCA) 
showed that the expression profile of normal kidney tissue was significantly different from that of the DKD 
group (Fig. 1c). DEGs were analyzed between the two groups using the limma package, including 516 upregu-
lated and 441 downregulated genes. The results were visualized using volcano and heat maps (Fig. 1d–f). The 
abnormal expression difference between the DKD group and the normal group may provide clues for the occur-
rence and development mechanism of the disease and new treatment methods.

Through gene pathway enrichment analysis, we can preliminarily analyze the biological processes or signal 
pathways that may be involved in the occurrence and development of DKD. We analyzed the enrichment scores 
of related data sets in the MSigDb database of all samples using GSVA and screened the differential enrichment 
pathways using the limma package with the filter criteria of |logFC| > 0, adj. p < 0.01 (see Supplementary Table S1 
online). We found significant differences in multiple signaling pathways between the two groups, which were 
visualized using a heat map (Fig. 1e). Among the differential signaling pathways, we found that there were dif-
ferences in several iron ion-related pathways between the two groups, and the differences were statistically sig-
nificant. To further explore the differences of function and pathway between DKD and normal groups, we used 
GSEA to perform enrichment analysis on the differential gene list ranked from high to low in the logFC of the 
GO, KEGG, and MSigDb pathway-related datasets (see Supplementary Tables S2, 3 online). The results showed 
that the collagen-containing extracellular matrix and extracellular matrix were mainly enriched using GO enrich-
ment analysis, while the mitochondrial inner membrane and mitochondrial matrix (Fig. 2a,b) were inhibited. 
In the pathway enrichment analysis, focal adhesion and microRNAs in cancer were enriched, while chemical 
carcinogenesis-reactive oxygen species and non-alcoholic fatty liver disease were inhibited (Fig. 2c,d). Multiple 
pathways were enriched in the MSigDB-related dataset enrichment analysis, ferroptosis pathway enrichment 
was inhibited, and the results were consistent with GSVA (Fig. 2e,f). GSEA enrichment analysis of ferroptosis 
related pathways in DKD were visualized in Fig. 3a. Ferroptosis is a new type of programmed cell death, few 
studies have found the role of ferroptosis in the development of DKD. In order to further explore the potential 
relationship between ferroptosis and DKD, 382 FRGs were downloaded from the FerrDb. The expression of 103 
genes was significantly different between the normal and DKD groups (Fig. 3b). The differentially expressed genes 
related to ferroptosis with |logFC| > 0.5 were shown by heat map (Fig. 3c). To further confirm our conclusion, we 
used the ssGSEA algorithm to calculate the ferroptosis gene enrichment score of each sample based on FRGs. 
We found that the degree of ferroptosis enrichment in the DKD group was significantly lower than that in the 
normal group, which was consistent with the GSEA and GSVA results. At the same time, taking the enrichment 
score of ferroptosis as a predictive index, ROC curve proved that the ferroptosis-related gene set had a significant 
diagnostic value (AUC:0.771) (Fig. 3d,e). The results suggested that there was a significant difference between 
the normal and DKD groups at the transcriptional level, and the ferroptosis-related pathways were significantly 
changed in DKD. We believe that ferroptosis may plays a certain role in the occurrence and development of DKD. 
FRGs may be used as new predictive biomarkers to provide new angle for the diagnosis and treatment of DKD.

Construction and verification of prognostic model of FRGs. In order to construct a more accu-
rate and reliable diagnosis model of DKD based on FRGs, we used WGCNA co-expression network analysis 
to search for gene modules related to ferroptosis and DKD. We obtained 10 consensus modules according to 
the results of the WGCNA. Next, we analyzed the correlation between the gene module and phenotypic data 
based on DKD and the enrichment score of ferroptosis. The results showed that the blue module (3,788) was 
positively correlated with DKD and negatively correlated with ferroptosis, while the green (576), green-yellow 
(114), and yellow modules (1237) were positively contrary (Fig. 4a–e). We obtained the key genes of each mod-
ule with a correlation coefficient of 0.8 as the threshold and intersected with the differential genes. Finally, 305 
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Figure 1.  Differentially expressed genes. (a) Histogram of GSE96804 data set sample expression value, purple 
represents DKD samples, dark blue represents normal kidney tissue samples (Control). (b) Histogram of GSE96804 
data set sample expression value after normalized by limma packets, purple represents DKD samples, dark blue 
represents normal kidney tissue samples (Control). (c) Principal component analysis, red represents DKD samples and 
light green represents normal kidney tissue samples (Control). (d) Volcano map of DEGs. The horizontal axis is logFC 
and the vertical axis is −log10(adj. p). The dotted lines in the figure represent |logFC|> 0.5 and adj. p < 0.01 respectively. 
Red represents up-regulated genes, blue represents down-regulated genes, and the top five genes’ tags are displayed 
in adj. p arrangement. (e) Heat map shows the difference of pathway enrichment between the two groups by GSVA, 
and the top 10 are selected by adj. p arrangement for visualization. (f) Heat map of the DEGs. Purple represents DKD 
samples, dark blue represents normal kidney tissue samples (Control), and the top 20 genes are visualized by adj. p 
arrangement. (adj. p < 0.05 was considered statistically significant).
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Figure 2.  Function analysis. (a) The GSEA enrichment method was used to annotate the GO gene function of the 
DEGs, and the two items with the highest and lowest enrichment scores are visualized according to the enrichment 
scores. (b) The GSEA enrichment method was used to annotate the GO gene function of the DEGs, and the top 15 
are visualized according to the enrichment scores. (c) The KEGG pathway enrichment analysis of DEGs was carried 
out by GSEA enrichment method, and the two items with the highest and lowest enrichment scores are visualized 
according to the arrangement of enrichment scores. (d) The KEGG pathway enrichment analysis of DEGs was carried 
out by GSEA enrichment method, and the top 15 are visualized according to the enrichment score. (e) The pathway 
enrichment analysis of DEGs was carried out according to the MSigDb dataset by the GSEA enrichment method, and 
the two items with the highest and lowest enrichment scores and ferroptosis related pathway are visualized according 
to the arrangement of enrichment scores. (f) The pathway enrichment analysis of DEGs was carried out according to 
the MSigDb dataset by GSEA enrichment method, and the top 15 are visualized according to the enrichment score. 
(adj. p < 0.05 was considered statistically significant).
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Figure 3.  Diagnostic value of FRGs. (a) Ferroptosis related pathway (GO_IRON_ION_BINDING) GSEA 
enrichment analysis. (b) Veen map shows the common genes of DEGs and FRGs. (c) The heat map shows 
the differential expression of genes related to ferroptosis. Purple represents the DKD samples and dark blue 
indicates the normal kidney tissue samples (Control). (adj. p < 0.05 was considered statistically significant). 
(d) The box chart shows the difference in the enrichment scores of FRGs between the two groups based on 
ssGSEA analysis, with blue representing normal group (Control) and red representing DKD group (p < 0.05 
was considered statistically significant). (e) ROC curve shows that FRGs had good diagnostic value in DKD 
(AUC = 0.771).
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ferroptosis gene sets related to DKD diagnosis were obtained (Fig. 5a). A diagnostic model was constructed by 
LASSO regression using the GLMNet package (Fig. 5b,c). Finally, we constructed a diagnostic model for DKD 
using eight FRGs (SKIL, RASA1, YTHDC2, SON, MRPL11, HSD17B14, DUSP1 and FOS), and calculated the 
risk score of each sample. The results showed that the risk score in the DKD group was significantly higher 
(Fig. 5d,e). We then analyzed the functions of these eight FRGs. Friend analysis showed that the FOS gene had 
the highest correlation with the other model genes (Fig. 6a), which may play more important role in disease. 
GO functional analysis indicated that multiple enzyme activities and transcriptional processes (Fig. 6b) may be 

Figure 4.  WGCNA recognize and diagnose the ferroptosis related gene set. (a) After removing two samples 
with great differences according to stagger clustering, the tree view is displayed. (b) Construction of WGCNA 
gene module, the results suggest that there are 10 gene modules, which are represented by different colors, 
and gray represents the unclassified genes. (c) Build a scale-free network with five as the best soft threshold. 
(d) The correlation analysis between modules, red represents positive correlation and blue represents negative 
correlation. (e) The correlation analysis between modules and clinical features. Red represents positive 
correlation and blue represents negative correlation. Blue module (3788) is significantly positively correlated 
with DKD and negatively correlated with ferroptosis, while green module (3788), greenyellow module (114) and 
yellow module (1237) are just the opposite (p < 0.05 was considered statistically significant).
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Figure 5.  Construction of diagnostic model related to ferroptosis. (a) WGCNA obtained ferroptosis and 
diagnosis related gene module (WGCNA_gene) and intersected with DEGs. (b) The tuning parameters of 
LASSO model were selected by tenfold cross-validation. (c) LASSO coefficient spectrum of FRGs. The dotted 
line represents the selected value after 10 cross-validations. Finally, a ferroptosis-related diagnostic model 
containing eight genes was obtained. (d) Box chart shows the difference in risk scores between the DKD samples 
and the normal kidney tissue samples (Control). (e) Box diagram shows the differential expression of eight 
genes in the ferroptosis-related diagnostic model between the two groups (p < 0.05 was considered statistically 
significant).
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Figure 6.  Gene function analysis of ferroptosis-related diagnostic model. (a) Friend analysis showed that FOS 
had the highest correlation with the other seven genes. (b) GO functional analysis demonstrated the possible 
biological functions involved. (c) MAPK signaling pathway display in KEGG pathway analysis. (d) Fluid shear 
stress and atherosclerosis demonstration in KEGG pathway analysis. (e) Bar chart shows the proportion of 
22 cells assessed in each sample based on CIBERSORT algorithm. (f) Violin diagram shows the difference in 
distribution of 22 cells evaluated by CIBERSORT algorithm between high and low risk groups. Red represents 
the high-risk group and blue represents the low-risk group (p < 0.05 was considered statistically significant).
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involved (see Supplementary Table S4 online).  KEGG11,12 functional analysis suggested that the MAPK signaling 
pathway, fluid shear stress, and atherosclerosis pathways were enriched (Fig. 6c,d) (see Supplementary Table S5 
online). Immune infiltration is closely related to the development of DKD. In order to explore the relationship 
between ferroptosis and immune infiltration in DKD, we evaluated the immune cell infiltration of all samples 
through 22 kinds of immune cell gene sets using the CIBERSORT algorithm (Fig. 6e). The samples were divided 
into high and low risk groups according to the median risk score (low-risk group: 31; high-risk group: 30). We 
found that in the high-risk group, the expression of macrophages M2 increased significantly, whereas the expres-
sion of neutrophils and mast cells activated decreased significantly (Fig. 6f). Ferroptosis may affect the immune 
infiltration of Macrophages M2, Neutrophils and Mast cells activated immune cells in DKD.

The GSE30566, GSE99339, and GSE30528 datasets were used to verify the effectiveness of the prognostic 
model. After the de-batch effect and normalization processing, we obtained the verification data set (normal 
group 26; DKD group 23) (Fig. 7a). The risk score for each sample in the dataset was calculated based on the 
correlation coefficient of our prognostic model. The box chart showed that the risk score of the DKD group is 
significantly higher (Fig. 7b). We further used ROC curve and calibration to verify the accuracy of the model, 
and the results showed that the ferroptosis-related prognostic model still had a high diagnostic value. At the 
same time, the heat map indicated that there were significant differences in the expression of model genes in 
the test set (AUC = 0.818) (Fig. 7c–d). All results proved that the prognostic model we constructed was accurate 
and repeatable.

Figure 7.  Model validation. (a) Data sets GSE30566, GSE99339 and GSE30528 were combined, batch removed 
and normalized. (b) Heat map shows the difference in the expression of model genes between the two groups. 
In the legend, purple represents DKD sample and dark blue represents normal kidney tissue sample (Control). 
(c) Box plot shows that the risk score in DKD group is significantly higher than that in control group after 
calculating the risk score of the new data set sample according to the model (p < 0.05 was considered statistically 
significant). (d) ROC curve confirmed that the diagnostic model still had high accuracy (AUC = 0.818), 
confirming that the prediction effect of the model is stable and repeatable.
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Analysis of subtypes of ferroptosis. We used previously obtained FRGs to construct a molecular sub-
type model to further study the molecular subtypes of ferroptosis in DKD. According to the expression matrix 
of FRGs, all cases were analyzed using consistent cluster analysis to determine their potential ferroptosis types 
using the ConsensusClusterPlus package. The results showed four different ferroptosis types after 1000 repeated 
sampling (Fig.  8a–d), and the risk score of type four was significantly higher than that of the other groups 
(Fig. 8e). This may provide a theoretical basis for exploring personalized treatment measures for DKD according 
to the subtypes of ferroptosis in the future.

Discussion
DM and its complications pose a major public health issue. The updated prevalence of diabetes in adults is 12.4% 
in  China13. DKD, one of the main chronic complications of DM, is currently the main cause of renal replace-
ment  therapy14. As the concrete mechanism of DKD is unclear, there are no effective medicines or methods to 
prevent ESRD. Ferroptosis is an iron-dependent cell death mode induced by the excessive accumulation of lipid 
peroxidation  products15. ROS plays a key role in  ferroptosis16. The discovery of ferroptosis has provided a new 
understanding of the pathogenesis of various diseases.

In the present study, we performed differential expression and principal component analysis. The results 
showed that the expression profiles were significantly different between the DKD and normal groups. Func-
tional enrichment analyses based on DEGs showed that ferroptosis-related pathways were significantly different 
between the two groups. The ferroptosis enrichment degree in the DKD group was significantly lower than that 
in the normal group. GO enrichment analysis showed that the collagen-containing extracellular matrix and 
extracellular matrix were enriched, while the mitochondrial inner membrane and mitochondrial matrix were 
inhibited. Abnormal accumulation of extracellular matrix produced by endothelial cells and podocytes leads 
to thickening of the glomerular basement membrane, an early pathological change in  DKD17. The prognostic 
performance of the ferroptosis-related gene set was verified using the ROC curve analysis, which indicated that 
the model had a good prognostic value. Immune cell infiltration was further analyzed between the high- and 
low-risk groups. The results showed that macrophage M2 increased significantly in the high-risk group. This may 
be due to an overactivated immune response in patients with DKD. These results suggest that immunotherapy 
may be a therapeutic target for DKD.

Eight key FRGs (SKIL, RASA1, YTHDC2, SON, MRPL11, HSD17B14, DUSP1and FOS) were identified, and 
their validity in predicting the prognosis of DKD was analyzed. SKIL (also known as SnoN) is a regulator of the 
transforming growth factor-β (TGF-β) signaling pathway, which acts as an antifibrotic factor in the pathological 
process of  DKD18. SKIL gene depletion prompted epithelial- mesenchymal transited into renal tubular cells in 
the condition of high glucose. Loss of SKIL expression appears to exacerbate progressive renal fibrosis in  DKD19. 
Li et al.20 found that high glucose induced the downregulation of SKIL through the TGF-β1/Smad signaling 
pathway in human renal tubule epithelial cells. Bone morphogenetic protein-7 (BMP-7) ameliorates renal fibrosis 
by increasing the expression of SKIL in renal tubular epithelial  cells21. However, the relationship between fer-
roptosis and SKIL in DKD remains unknown. RASA1 is a RasGAP signaling scaffold protein involved in various 
physiological processes, such as cell proliferation, differentiation, and  apoptosis22. RASA1 inhibits renal tissue 
fibrosis by reducing myofibroblasts  proliferation23. In kidney carcinoma, RASA1 reduces miR-223-3p expression 
to inhibit the proliferation and differentiation of renal cell  carcinoma24. YT521-B homology domain containing 
2(YTHDC2) is an m6A reader that expedites messenger ribonucleic acid (mRNA) decay. YTHDC2 increases the 
translation efficiency of target genes and reduces their mRNA  abundance25. Ma et al.26 found that YTHDC2 is a 
powerful inducer of ferroptosis and that increasing YTHDC2 is an alternative therapy for lung adenocarcinoma 
targeting ferroptosis. SON is a ubiquitously expressed and evolutionarily conserved DNA and RNA binding 
protein localized in nuclear speckles. SON is involved in multiple cellular processes, including transcription, 
RNA splicing, and gene repression, which regulate the cell cycle and preserve stem  cells27,28. Based on the above 
mechanism, SON plays a role in various diseases such as cancer, influenza, and  hepatitis29. Overexpression of 
SON is involved in aberrant transcriptional initiation in  leukemia30. MRPL11 contribute to protein synthesis as 
a mitochondrial ribosomal protein within the mitochondria. It mediates aerobic energy conversion through the 
oxidative phosphorylation system to affect the pathophysiological processes of various  tumors31,32. The protein-
coding variants of the hydroxysteroid 17-β dehydrogenase 14 gene (HSD17B14) can prevent the progression of 
type 1 DM to  ESRD33. Dual-specificity phosphatase 1 (DUSP1), a regulator of the MAPK family, is associated 
with various pathological changes in the kidney, including renal hypertrophy, renal fibrosis, and glomerular 
apoptosis. Ge et al.34 proved that DUSP1 is involved in renal fibrosis in DKD through the miR-324-3p/DUSP1 
axis. Another study demonstrated that DUSP1 could release DKD by targeting the JNK-Mff-mitochondrial fis-
sion  pathways35. Researchers have found that DUSP1 can inhibit autophagy-dependent ferroptosis in human 
pancreatic cancer  cells36. FOS was identified to play an important role in various kidney diseases such as mem-
branous  nephropathy37, immunoglobulin A  nephropathy38, and chronic  glomerulonephritis39. All FRGs have 
not been fully illustrated in the development of DKD. Further experiments are required to verify the functions 
of the key genes in DKD.

KEGG pathway enrichment analysis revealed that the MAPK signaling pathway was significantly enriched. 
The MAPK signaling pathway plays a crucial role in various physiological processes such as proliferation, differ-
entiation, and  metastasis40,41. It is involved in ferroptosis as a regulator of oxidative stress, which regulates signal 
transduction in a ROS-induced  manner42.  Poursaitidis43 showed that the inhibition of MAPK signaling protected 
lung cancer cells against ferroptosis. Wen-Tsan  Chang44 demonstrated that the drug could induce hepatocellular 
carcinoma cell death through the MAPK pathway in the form of ferroptosis. In acute myeloid leukemia cells, inhi-
bition of the MAPK pathway can render acute myeloid leukemia cells insensitive to  ferroptosis45. Nevertheless, 
how FRGs affect the pathophysiological process of DKD through the MAPK pathway needs to be fully studied.
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Figure 8.  Ferroptosis subtypes. (a) The best immune classification was analyzed by consistency clustering analysis, matrix heat map 
is showed according to K from 2 to 9. Both rows and columns of the matrix represent samples. The consistency matrix clustering value 
is showed from 0 (impossible clustering together) to 1 (always clustering together) with white to dark blue. The consistency matrix 
is arranged according to the consistency classification (the tree map above the heat map). The bar between the tree map and the heat 
map is the category. (b) Consistent cumulative Distribution Function (CDF) graph: This graph shows the cumulative distribution 
function with different values of K, and CDF reaches an approximate maximum value when K = 4. (c) Incremental area of variables: 
when K = 4, the area under the CDF curve tends to be stable, and when K = 5, the relative change of CDF decreases significantly. (d) 
Tracking graph: The black stripe at the bottom of this graph represents the sample, which shows the classification of the sample when 
K is taken with different values. Different color blocks represent different classifications. The tracer map shows that the grouping is 
clear when K = 4. (e) Boxplot shows the differences of risk scores in different groups according to the four ferroptosis subgroups. The 
results showed that patients with type four had significantly higher risk scores while type 1 and type 3 had lower risk scores (p < 0.05 
was considered statistically significant).
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Our study has some limitations. First, only diabetic glomerular tissue samples were included, which may 
have led to one-sided results and selection bias. Therefore, in future studies, it will be necessary to improve the 
detection capability by integrating data from multiple tissue samples. Second, the sample size was relatively small, 
which may have resulted in a false-positive rate. This will facilitate an increase in sample size for further valida-
tion. Third, owing to the lack of pathological specimens of DKD in clinical settings, we were unable to assess the 
associations between risk indicators and pathological subtypes. In future studies, more pathological subtypes of 
DKD are needed to conduct further analyses. Fourth, our results are based on bioinformatic analysis, therefore, 
require further in vitro and in vivo verification. Fifth, our screening method can be used for gene screening in 
terms of its diagnostic value, phenotypic module clustering, differential expression and co-expression analysis, 
and clinical predictive models. It also has good value in screening ferroptosis-related molecules with diagnostic 
value in DKD. Based on these analyses, there were only eight genes left; thus, it is impossible to further screen 
key genes by protein–protein interaction (PPI). In the follow-up study, we will consider using a PPI interaction 
network to screen molecules further. Sixth, in our study, the effect of the ferroptosis pathway on the upstream and 
downstream regulation mechanisms of DKD was not considered. In a follow-up study, we will further study the 
multi-level regulatory mechanism of ferroptosis on DKD at epigenetic, transcriptional, and post-transcriptional 
levels through various molecular experiments and bioinformatics methods.

While an effective treatment for DKD has not yet emerged, we integrated comprehensive bioinformatic 
analyses to identify the biological functions and pathways associated with ferroptosis in the development of 
DKD. We found eight ferroptosis genes (SKIL, RASA1, YTHDC2, SON, MRPL11, HSD17B14, DUSP1 and FOS) 
which might be serve a vital role in the pathogenesis of DKD. Our results may provide a novel methodology for 
DKD early diagnosis and targeted therapies. Further experimental studies are needed to confirm the function 
of ferroptosis in DKD.

Methods
Data collection and preprocessing. We extracted the gene expression profiles of DKD 
(GSE96804,GSE30566,GSE99339 and GSE30528) from the GEO database using the GEOquery  package46. 
The GSE96804  dataset47 from Homo sapiens, based on the GPL17586 platform, contains 61 samples, includ-
ing 20 normal glomerular and 41 diabetic glomerular tissues. All the samples were included in this study. The 
GSE30566  dataset48 from Homo sapiens based on the GPL571 platform contains 26 samples, including 13 nor-
mal glomerular and 13 normal renal tubular control; 13 normal glomerular samples were included in this study. 
The GSE30528  dataset48 from Homo sapiens, based on the GPL571 platform, contains 26 samples, including 13 
normal glomerular and 9 diabetic glomerular tissues. All the samples were included in this study. The GSE99339 
 dataset49 was obtained from Homo sapiens, and the data platforms were GPL19109 and GPL19184. It contained 
184 samples, including 13 diabetic glomerular tissues, all of which were included in this study. The original data 
of GSE30566 and GSE30528 were normalized and standardized, and GSE30566, GSE30528 and GSE99339 were 
combined as validation data sets. The data were normalized and de-batch processed using the sva  package50 and 
standardized using the limma  package51. Subsequently, 382 FRGs were obtained from the  FerrDb52. Our study is 
based on open-source data; therefore, there are no ethical issues or conflicts of interest.

Construction and verification of the LASSO model. Currently, LASSO regression is a commonly 
used machine learning algorithm for the construction of diagnostic models. Regularization was used to solve 
the occurrence of overfitting in the process of curve fitting and to improve the accuracy of the model. The model 
was built using the GLMnet  package53 with a parameter set.seed (2), family = "binomial". The risk score of each 
sample is calculated by the sum of the expression values of all model genes multiplied by the corresponding cor-
relation coefficients.

Difference expression analysis. We used the limma package to calculate the differential expression of 
genes between the normal and DKD groups in the GEO microarray data with log fold change |logFC| > 0.5 and 
adj. p < 0.01 as the threshold. The genes were upregulated in the DKD group if logFC > 0.5, and downregulated if 
logFC < − 0.5. The results of the differential expression analysis are shown in the heat map using the R package 
pheatmap and the volcano map using the ggplot2  package54.

Functional enrichment analysis. GO analysis was used to conduct large-scale functional enrichment, 
including biological process (BP), molecular function (MF), and cellular component (CC) analyses. The KEGG 
database stores the genomes, biological processes, diseases, and medical information. GO biological process and 
KEGG pathway enrichment analyses of the DEGs were performed using the R clusterProfiler  package55. The 
critical value of FDR(adj. p) < 0.05 was considered statistically  significant55.

To study the differences in biological processes among different groups, we used GSEA for enrichment analysis 
according to the logFC arrangement based on the GSE96804 profile. GSEA is a computational method used to 
analyze whether a particular gene set has a statistical difference between the two biological states. In our study, 
we used GSEA to explore the differences in pathways and biological processes of the samples in the datasets. The 
"msigdb.v7.0.symbols" gene set were downloaded from the  MSigDB56 database for GSEA analysis.

In addition, the enrichment scores of related pathways in the MSigDB database were calculated according to 
the gene expression matrix of each sample using the GSVA method using the R-packet  GSVA57. The differences 
in samples were screened using the limma  package51. Enrichment items with statistically significant differences 
are shown in the heat map. According to the gene expression matrix of each sample, the enrichment scores of 
the FRGs were calculated using the ssGSEA method and are displayed in boxplots.
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Gene co‑expression analysis. WGCNA58 aims to identify co-expressed gene modules, analyze core genes 
in the network, and explore the relationships between modules and phenotypes. First, the soft threshold was 
calculated using the pickSoftTreshold function, and five was the best soft threshold. We then built a scale-free 
network based on the soft threshold. Next, a topology matrix and hierarchical clustering were constructed. We 
dynamically cut and identified the gene module and calculated the eigengenes, and the number of genes in each 
module was at least 50. The correlation between modules was constructed according to the eigengenes of the 
modules, and hierarchical clustering was performed. The modules were merged again with a correlation of more 
than 0.7, and finally, 10 modules were obtained. The correlations between modules and clinical features were 
explored using Pearson’s correlation analysis.

Consistent cluster analysis. Consistent clustering is a method that can be used to determine the members 
and number of possible clusters in a dataset (microarray gene expression). In order to distinguish different sub-
types of DKD, we carried out a consensus clustering analysis related to FRGs in the DKD group in the GSE96804 
dataset using "ConsensusClusterPlus" R  package59. In this process, the number of clusters was set between 2 and 
10; 80% of the samples were taken each time and calculated 100 times, clusterAlg = "hc” and distance = "euclid-
ean."

Immune infiltration (CIBERSORT). CIBERSORT60 is an algorithm for deconvolution of the transcrip-
tome expression matrix, according to the principle of linear support vector regression, to estimate the composi-
tion and abundance of immune cells among mixed cells. The gene expression matrix data (TPM) were uploaded 
to CIBERSORT, combined with the LM22 gene matrix, and an immune cell infiltration matrix with filtration 
(p < 0.05) was obtained. A bar chart was drawn using the ggplot2 package in R language to show the distribution 
of 22 immune cell infiltrations in each sample.

Statistical analyses. All data calculations and statistical analysis were conducted using R programming 
(https:// www.r- proje ct. org/, 4.0.2 version). For two groups of continuous variables, the statistical difference in 
normal distribution variables was estimated using an independent Student’s t-test, and non-normally distributed 
variables were analyzed using the Mann–Whitney U test (Wilcoxon rank sum test). A two-tailed p < 0.05 was 
considered statistically significant.

Data availability
The original contributions presented in the study are included in the article/Supplementary Material. Further 
inquiries can be directed to the corresponding author.
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