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Pathway expression analysis
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This paper introduces a pathway expression framework as an approach for constructing derived 
biomarkers. The pathway expression framework incorporates the biological connections of 
genes leading to a biologically relevant model. Using this framework, we distinguish between 
shedding subjects post-infection and all subjects pre-infection in human blood transcriptomic 
samples challenged with various respiratory viruses: H1N1, H3N2, HRV (Human Rhinoviruses), 
and RSV (Respiratory Syncytial Virus). Additionally, pathway expression data is used for selecting 
discriminatory pathways from these experiments. The classification results and selected pathways 
are benchmarked against standard gene expression based classification and pathway ranking 
methodologies. We find that using the pathway expression data along with selected pathways, 
which have minimal overlap with high ranking pathways found by traditional methods, improves 
classification rates across experiments.

Influenza and other viruses linked to respiratory illnesses in humans have gained relevance due to the recent 
COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Accurate 
detection of these types of viruses is necessary to isolate infected individuals and consequently slow the spread 
throughout the population. Moreover, some infected individuals can be shedding the virus without showing 
symptoms. It is advantageous to have methods of detecting shedding that are robust to symptoms to avoid 
asymptomatic super spreader scenarios1.

Analyses of respiratory illnesses aid in understanding the mechanisms of shedding and in developing meth-
odologies that succeed across multiple infectious diseases. Understanding the imprint of viral shedding on 
human gene expression may uncover latent effects which are beyond disease symptoms. In this paper we will run 
our experiments on a human microarray data set with multiple respiratory viruses and studies, the GSE73072 
data set2. Previous work on these respiratory virus data ran various machine learning (ML) models, e.g., neural 
networks, support vector machines (SVM), centroid encoders (CE), and spectral gene network analysis, to 
identify discriminatory biomarkers within early shedders challenged with influenza and subsequently classify 
those subjects3–6.

Rather than just select significant genes, a biological pathway analysis uses biological relationships between 
genes, usually by grouping related genes, to build a biologically informed model7. Given the numerous definitions 
of pathway membership and number of ways to relate genes within a pathway, many of these pathway analyses 
require an a priori set of “important” genes (like those found using ML on gene expression data3) to determine 
significant pathways8,9. Standard tools that rely on an a priori gene set include: over representation analysis 
(ORA)10, gene set enrichment analysis (GSEA)11–14, Centrality-based pathway enrichment (CePa)15 and more16. 
ORA determines the statistical significance of the overlap between an a priori set of genes and a given pathway. 
GSEA improves upon ORA by accounting for the expression levels of the genes. CePa is a further improvement 
on the ORA method which uses the biological connections between genes in a pathway. Specifically, it uses the 
centrality of genes in the network generated by a pathway as part of its ranking. Beyond simply ranking path-
ways by statistical significance, Maglietta et al. offer a method that ranks functional groups of genes, specifically 
genes associated with the same GO term17, to predict a phenotype16. All of these pathway methods rely on a 
pathway database which is used to determine pathway membership. There are a plethora of pathway databases 
including KEGG18, MetaCyc19, Reactome10, Wikipathways20, BioCarta21, InnateDB22 and many more. Most of 
these databases contain essentially the same information regarding pathway membership. We use the Reactome 
database, along with their built in tool for ORA in order to produce pathway rankings to compare against our 
novel pathway expression analysis rankings.

In this paper, we formalize a method called pathway expression analysis which transforms gene expression 
data into pathway expression data. This allows for the determination of pathway significance and subject classifi-
cation using pathways expression levels rather than genes expression levels. This is not the first time such a trans-
lation has been considered. Some of the following works use GO terms or other biologically known collections 
of genes rather than pathways. For the sake of simplicity, we will use the term pathway loosely in this paragraph 
to refer to a biologically known collection of genes. Between the early 2000’s and 2012, various authors have 
explored classification and pathway ranking using statistical techniques. Pathway expressions, often referred to 
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as pathway activities, have been calculated using means and medians23, metagenes (aka. eigengenes)24, t-scores25, 
log-likelihood ratios (LLRs)26, and FAIME (Functional Analysis of Individual Microarray Expression)27. Some 
of these methods do not use all the genes in the pathway to calculate pathway expression. For example Guo et al. 
only calculate the average expression level of the differentially expressed genes in a pathway. Pathway selection 
in these papers is not always done using pathway expression levels. Su et al.26 use gene expression levels to select 
pathways. On the other hand, some works do indeed use their pathway expression data to determine significant 
pathways and to classify between phenotype. Lee et al. determine significant pathways for classification using the 
AUC (area under the ROC curve) on a validation data set25. Classification and regression of changes in pheno-
type with pathway expression data has been done using simple models like decision trees23, linear discriminant 
analysis26, logistic regression25,26, clustering24,27 and other statistical models27.

The last known work in this field is FAIME in 201227. Within the last 10 years, the field of machine learning 
in biology has boomed in popularity and there’s a need for formalization of these previous pathway expression 
methods. Our work fills this gap by defining pathway expression data as the result of a simple linear transfor-
mation of gene expression data. We offer two forms of pathway expression data: Linear Pathway Expression 
(LPE) and Centrality Pathway Expression (CPE). Methods like those presented by Guo et al. fall easily into the 
pathway expression framework as a special case of LPE23. CPE, on the other hand, is a novel method for pathway 
expression that ranks genes based on networks of known and inferred gene interactions rather than statistically 
inferring a gene ranking using differences between phenotype like the FAIME method27. Unlike other previous 
pathway expression methods (e.g., FAIME), CPE and LPE can be thought of as ’unsupervised’ pathway expres-
sion methods since they do not require phenotype labels for their computation. Due to their simplicity, CPE and 
LPE use less computational resources than most previous pathway expression methods since our methodology 
involves a linear transformation rather than more complicated non-linear mappings. Rather than use one of the 
classifiers from the previous works we choose to use Sparse Support Vector Machines (SSVMs) for our classifier. 
This sparse classification scheme allows us to preform our pathway selection and classification using pathway 
expression data in one step, without any parameter tuning.

We use our pathway expression methods (LPE and CPE with SSVM) to select pathways which discriminate 
between uninfected subjects (controls) and eventual shedders infected with various respiratory viruses: H1N1, 
H3N2, HRV (Human Rhinoviruses), RSV (Respiratory Syncytial Virus), in the early stages of infection using 
the GSE73072 data set. O’Hara et al. found that gene expression data from some pathways like B Cell Maturation 
and Activation + Cell Adhesion Molecules were used to produce 100% classification accuracy for certain experi-
ments with this data set but analyses with pathway expression has never been done6. This work compliments the 
early detection analysis done by Aminian et al.3 by utilizing “pathways expression” with a simple feature selector 
and classifier in place of gene expression with optimal feature selection and classification techniques. By using 
pathway expression as an alternative to gene expression, we extract pathways as features using SSVMs and sub-
sequently rank pathways by their weight in the SSVM model. We do this by extracting the top pathways for each 
pathway expression method on training data, restricting the test pathway expression data to those top pathways, 
and finally classifying controls vs. shedders (from 4 evenly spaced time bins within 32 hours after infection) using 
the test pathway expression data using SVM. We also benchmark these selected pathways against two known 
pathway ranking methodologies ORA and CePa. As an aside, our implementation of CePa in Python, to the best 
of our knowledge, is one of the first Python implementations of such a workflow.

In our experiments on the GSE73072 dataset we find that pathway expression methods generally produce 
higher classification rates than gene expression methods with the same type of SSVM feature selector and clas-
sifier. We also find that using CPE, which adds gene network information, increases classification rates over 
simple LPE. Classification rates with CPE and LPE are found to be robust LIMMA normalization of the gene 
expression data and the pathways selected by these methods prove to be appropriately robust across training 
dataset partitions. The pathways which are selected using CPE and LPE methods tend to be distinct from the 
pathways selected using CePa and ORA. Hence, pathway expression is a useful method for discovering biological 
pathways which are not traditionally associated with a disease of interest. The code for LPE and CPE is imple-
mented in Python and available at https://​github.​com/​nmank/​Pathw​ayAna​lysis. This work is meant to revive 
work in pathway expression analysis by adding a simple framework for generating pathway expression data, 
introducing a new method for pathway expression, CPE, which leverages gene networks to produce pathway 
expression data and finally implementing a simple sparse classifier to select pathways and discriminates between 
phenotype at the same time.

Results
In this section we provide a number of results using pathway expression on GSE73072. Specifically, we investigate 
two types of pathway expression: Centrality Pathway Expression (CPE) and Linear Pathway Expression (LPE) 
and compare these methods to Gene Expression (GE) methods. We provide a visualization of pathway expression 
data in Supplementary Information. This section is broken down into Classification Results, Comparing Pathway 
Selection Methodologies and Top CPE Pathways. In Classification Results we provide classification statistics 
including Balanced Success Rates (BSRs) for experiments using the features selected on pathway expression on 
test studies. We also pose an argument for the best CPE method in Classification Results. In Comparing Pathway 
Selection Methodologies, we compare the pathways selected using pathway expression to those selected using 
CePa and ORA. Lastly, in Top CPE Pathways, we list the top pathways found using the best CPE method.

Classification results.  In our classification experiments we draw samples from the GSE73072 data set and 
distinguish between controls and shedders within 32 hours after infection. For our experiments, we separate 
these data into 4 evenly sized time bins. Controls are all subjects at times before infection. We perform 3 differ-
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ent data set splits. For two of these splits, we find features using data from 4 studies and on the remaining 2 or 3 
studies. For the third split, we find features using data from 6 studies then test on 1 study. The details of the data 
sets used for these experiments are in Supplementary Information.

We use these classification experiments to compare LPE and CPE methods to each other and benchmark 
these pathway expression methods against GE methods. Classification results on the test studies from the 4 to 2, 
4 to 3 and 6 to 1 experiments with LIMMA batch correction by subject ID are reported Table 1. A comparison 
between test classification BSRs between uncorrected and LIMMA corrected data which indicates that pathway 
expression classification BSR is more robust to LIMMA correction than gene expression using our pipelines is 
in the Supplementary Information. Using pathway expression, LPE or CPE, we produce the same or higher clas-
sification statistics on the test data than GE for more than 81% of all the test statistics, experiments and time bins.

CPE requires two parameters to be set: a pathway gene network edge type and a centrality measure. We 
test CPE by using either correlation edges or pre-computed (from Reactome) edges, which may be directed or 
undirected. For centrality measures, we use either PageRank or out-degree centrality. Supplementary Informa-
tion is a table of the CPE configuration which produces the highest test BSR. Using this table, we observe that 

Table 1.   Classification statistics by method, experiment and time bin on the test data sets. Pathway expression 
methods generally produce a higher BSR, precision, recall and accuracy over gene expression methods with 
the SVM feature selection technique. CPE is computed using pre-computed edges with PageRank centrality. 
The highest statistic for each time bin is bold face. All experiments apply LIMMA using subject identifier to the 
data. Standard deviation is not available for these statistics due to the design of our LOSO experiments. See the 
Methods section for details.

Time bin Experiment Method BSR Precision Recall Accuracy

1–8 4–2 GE 0.6 0.71 0.71 0.64

1−8 4–2 LPE 0.72 0.79 0.81 0.73

1–8 4–2 CPE 0.8 0.85 0.86 0.8

9–16 4–2 GE 0.74 0.81 0.76 0.72

9–16 4–2 LPE 0.82 0.87 0.85 0.8

9–16 4–2 CPE 0.74 0.8 0.8 0.73

17−24 4–2 GE 0.67 0.74 0.76 0.69

17–24 4–2 LPE 0.7 0.77 0.77 0.7

17–24 4–2 CPE 0.77 0.83 0.82 0.77

25–32 4–2 GE 0.96 0.98 0.99 0.98

25–32 4–2 LPE 0.92 0.97 0.96 0.94

25–32 4–2 CPE 0.9 0.96 0.94 0.92

1–8 4–3 GE 0.61 0.74 0.71 0.65

1–8 4–3 LPE 0.73 0.83 0.8 0.76

1–8 4–3 CPE 0.73 0.82 0.84 0.77

9–16 4–3 GE 0.74 0.83 0.78 0.74

9–16 4–3 LPE 0.79 0.86 0.85 0.78

9–16 4–3 CPE 0.81 0.88 0.84 0.81

17–24 4–3 GE 0.59 0.72 0.65 0.6

17–24 4–3 LPE 0.69 0.79 0.75 0.69

17–24 4–3 CPE 0.77 0.85 0.83 0.78

25–32 4–3 GE 0.8 0.91 0.87 0.84

25–32 4–3 LPE 0.8 0.91 0.87 0.84

25–32 4–3 CPE 0.83 0.92 0.92 0.88

1–8 6–1 GE 0.62 0.8 0.97 0.81

1–8 6–1 LPE 0.8 0.89 0.97 0.89

1–8 6–1 CPE 0.89 0.94 0.97 0.93

9–16 6–1 GE 0.91 0.94 1.0 0.96

9–16 6–1 LPE 0.89 0.94 0.97 0.93

9–16 6–1 CPE 0.82 0.91 0.91 0.86

17–24 6–1 GE 0.77 0.87 1.0 0.9

17–24 6–1 LPE 0.74 0.86 0.94 0.85

17–24 6–1 CPE 0.8 0.89 0.97 0.9

25–32 6–1 GE 0.76 0.87 0.97 0.87

25–32 6–1 LPE 0.68 0.84 0.91 0.81

25–32 6–1 CPE 0.91 0.94 1.0 0.96
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pre-computed edges with PageRank centrality is the most common method across all experiments and time 
bins to produce the highest BSR.

Finding the “best” CPE configurations by using the configurations which produce the maximum test BSR is 
not the best way to select the “best” CPE configuration since it doesn’t take into account the performance of each 
CPE configuration across all experiments. So, in order to choose the best CPE edge type and centrality ranking, 
we look at the distributions of test BSRs for each edge type and centrality ranking across experiments. The box 
plot from this investigation is in Fig. 1. We believe that the best CPE configuration should have the lowest vari-
ance across experiments and time bins while maintaining one of the highest median test BSR. By this criteria, 
we see pre-computed, directed edges with PageRank centrality is the “best” CPE configuration.

Comparing pathway selection methodologies.  We perform two pathway selection experiments using 
two data sets: 1) 4 studies (the training data for the 4 to 2 and the 4 to 3 experiments) and 2) 6 studies (the train-
ing data for the 6 to 1 experiments).

In these experiments, we compare the pathways that are selected by the pathway expression methods to the 
pathways selected by standard pathway ranking algorithms, ORA and CePA, as well as a list of influenza related 
pathways (labeled Flu) from Reactome. We find this list of influenza related pathways by simply searching for 
influenza on the Reactome website. We do not expect high overlap with these influenza pathways since they 
are likely only activated at later time points during infection. For methodological consistency in these Jaccard 
plots, we use the same edge and centrality methods for CePa and CPE, namely pre-computed, directed edges 
with PageRank centrality.

For comparison, we use the Jaccard/Tanimoto similarity coefficient as a measure of overlap between these 
two sets of pathways. These comparisons for the 6 study features are shown in Fig. 2. The Jaccard similarity plot 
for the features from the 4 training study experiments are in Supplementary Information.

Over all methods and experiments, we notice LPE and CPE have a high Jaccard similarity, and CePa and 
ORA have a relatively high Jaccard similarity. CePa and ORA both have a small Jaccard similarity with LPE 
and CPE. We generally see low overlap between all methods and the influenza pathways. Generally, ORA is the 
method with the highest overlap with the influenza pathways since it detects at least twice as many pathways as 
each of the other pathway selection methods. In fact, CPE has absolutely no overlap with influenza pathways for 
the 4 study experiments. In contrast, at the 6 study experiments, we see that CPE has a higher overlap with the 
flu pathways than all other methods at the 9 to 16 and 17 to 24 time bins even though it detects less than half as 
many pathways as ORA. LPE has the highest overlap with the flu pathways at the 1 to 8 hour time bin for the 4 
study experiment even though there are only 60 LPE pathways in contrast to the 254 ORA pathways.

Next, we investigate the robustness of these selected pathways across different studies in Table 2. To do this, 
we look at the Jaccard overlap between the pathways from 4 training studies and those from 6 training stud-
ies for each method and time bin. We find that pathways found by ORA are the most robust to this change in 
training data. Generally, the overlap between the pathway expression pathways is half of that from ORA. The 
CePA overlap is far smaller than the other methods and generally 10 times smaller than the overlap from ORA.

Top CPE pathways.  So far, we have seen that CPE generally produces the highest classification rates in our 
experiments over all methods examined in Table 1. For this entire section we will be using the CPE configura-
tion with pre-computed, directed edges/ PageRank centrality. We use the SSVM weights on the training data to 
determine the top pathways for each experiment. Figure 3 is a heatmap of these SSVM weights for the union of 
the selected pathways from each experiment and time bin. The most discriminatory pathways on the training 
data are the pathways with the highest SSVM weights. We notice that some pathways remain activated across all 
times and studies. This is indicated by a dark streak in one column which persists across all rows.

The top pathways from CPE across all experiments are found by adding the SSVM weights across all experi-
ments and time bins are in Table 3. This amounts to adding the values of each column in Fig. 3 to compute a 
pathway score for each selected pathway. A plot of these sorted scores is in the Top CPE Pathways subsection 

Figure 1.   The distribution of BSR across experiments for each CPE configuration. Notice pre-computed, 
directed edges with PageRank centrality has the one of the highest BSRs while maintaining the lowest variance. 
All experiments apply LIMMA using subject identifier to the data.
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of the “Results” section in Supplementary Information and is used to determine a total SSVM weight threshold 
of 0.7 to identify the pathways listed in Table 3. A brief discussion of the relationships between the pathways in 
Table 3 and influenza appears in the “Discussion” section.

Now we present the top pathways from CPE for each experiment in Table 4. We define these top pathways 
as those pathways with the highest SSVM weight in the feature selection process for their experiment and time 
bin. We notice that R-HSA-74713 appears in two time bins for the 4 study experiment. From our searches on 
Reactome, none of these pathways are directly labeled as influenza pathways. However, the Jaccard overlap 
heatmap in Fig. 2 suggests that the pathways selected using this CPE configuration contains some of the influ-
enza virus signal because they have the highest overlap with the influenza pathways out of all pathway selection 
techniques at the 9 to 16 and 17 to 24 hour time bins. Therefore, we suggest investigation into R-HSA-8939242 
and R-HSA-9694631 pathways and their relationship to respiratory viruses. Additionally, R-HSA-3595177 and 
R-HSA-74713 appear in the both Tables 3 and 4 and therefore we suggest further research into the connection 
between the R-HSA-3595177 and R-HSA-74713 pathways and respiratory viruses.

(a) 1 to 8 time bin, 6 studies (b) 9 to 16 time bin, 6 studies

(c) 17 to 24 time bin, 6 studies (d) 25 to 32 time bin, 6 studies

Figure 2.   Jaccard overlap between the selected pathways for different methodologies. Pathways are selected 
using the 6 training studies. Each plot is for a different train/test experiment with LIMMA using subject 
identifier. The CPE configuration is pre-computed, directed edges with PageRank centrality.
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Table 2.   Jaccard overlap between the selected pathways across the 4 study and the 6 study pathways LIMMA 
was used to normalize the data for subject identifier. The final two columns are the number of pathways 
selected by the method using the stated training dataset (4 or 6 studies). The CPE configuration is pre-
computed, directed edges with PageRank centrality.

Method Time bin Jaccard overlap 4 studies 6 studies

CPE 1–8 0.0877 81 167

LPE 1–8 0.0588 60 138

CEPA 1–8 0.0169 60 60

ORA 1–8 0.2095 254 635

CPE 9–16 0.1014 75 153

LPE 9–16 0.0885 81 128

CEPA 9–16 0.0169 60 60

ORA 9–16 0.2288 227 507

CPE 17–24 0.1408 113 203

LPE 17–24 0.1186 89 175

CEPA 17–24 0.0435 60 60

ORA 17–24 0.3574 363 552

CPE 25–32 0.0846 74 144

LPE 25–32 0.1196 67 139

CEPA 25–32 0.0256 60 60

ORA 25–32 0.2222 235 502

Figure 3.   SSVM weights for the 4 and 6 study training datasets by pathway. The CPE configuration with pre-
computed, directed edges/ PageRank centrality.

Table 3.   The pathways with the highest magnitude SVM weights summed over all experiments and times. 
CPE configurations are pre-computed, directed edges with PageRank centrality. All experiments apply LIMMA 
using subject identifier to the data.

Reactome ID Pathway name

R-HSA-163680 AMPK inhibits chREBP transcriptional activation activity

R-HSA-264876 Insulin processing

R-HSA-8937144 Aryl hydrocarbon receptor signalling

R-HSA-5676594 TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway

R-HSA-9634635 Estrogen-stimulated signaling through PRKCZ

R-HSA-5603037 IRAK4 deficiency (TLR5)

R-HSA-74713 IRS activation

R-HSA-3595177 Defective CHSY1 causes TPBS
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Discussion
In the results we provided a comparison between pathway expression and gene expression methods with the 
same linear feature selection and classification methodology on train/test partitions of the GSE73072 data set. 
Both methods selected features (pathways or genes) using influenza training data then use these selected features 
in a LOSO (Leave One Subject Out) cross validation experiment with an SVM classifier on testing data. In these 
experiments, we found that pathway expression (CPE and LPE) methods generally produce higher test BSRs 
than gene expression methods. Specifically, we found that pathway expression produced higher test BSR than 
gene expression on 10 out of 12 classification experiments.

We used the distributions of test BSRs across experiments and time bins to conclude that pre-computed, 
directed edges with PageRank centrality is the “best” centrality configuration. We found that CPE with pre-
computed edges and PageRank centrality produced the highest test BSR out of all CPE configurations for most 
experiments and time bins. Consequently, we reported the pre-computed, directed edges with PageRank central-
ity CPE configuration in all our classification rates and pathway ranking comparisons.

In addition to the feature selection and classification experiments, we compared these selected pathways from 
pathway expression methods to two standard gene expression pathway analysis methods: CePa and ORA. We 
found that the pathways selected from pathway expression methods generally have little similarity to pathways 
from these gene expression methods. This suggests that the pathway expression methods along with SSVM feature 
selection provides a unique pipeline that selects discriminatory pathways which are not detected by standard 
pathway analyses on gene expression data.

Pathway expression methods are also pulling out some respiratory virus signal since LPE produced a non-
zero overlap with influenza pathways on 6 out of 8 experiments and time bins and CPE (with pre-computed, 
directed edges and PageRank centrality) had a non-zero overlap with the influenza pathways for each time bin 
in the 6 study experiment while sporting the highest overlap in 2 out of these 4 time bins. Since CPE has a non-
zero overlap with the influenza pathways for the each of the time bins in the 6 study experiments, we suggest 
investigation into the links between respiratory viruses and the top pathways from this method, R-HSA-2485179, 
R-HSA-8939242, R-HSA-9694631 and R-HSA-5218921. The pathways R-HSA-8939242 and R-HSA-9694631 
have the most promise to be interesting since they were the top pathways at the time bins where CPE had the 
highest overlap with the influenza pathways out each one of the tested methods.

When we look at both the highest magnitude SVM weight pathways from CPE by experiment and overall, we 
see that R-HSA-74713 and R-HSA-3595177 appear in both lists. Therefore these are the most discriminatory of 
the pathways listed in the Results section. In fact, the R-HSA-74713 pathway appeared in more than one experi-
ment and time bin. Our methods detected two insulin-related pathways: R-HSA-74713 and R-HSA-264876. 
R-HSA-74713 is a mediator of insulin signaling events and R-HSA-264876 is an insulin processing pathway. 
Insulin signaling is related to the influenza virus because the influenza virus impairs insulin signaling and down-
regulates the expression of genes in the insulin pathway which supports our detection of the28,29. Additionally, 
R-HSA-3595177 is involved in the synthesis of chondroitin sulfate which has been shown to be involved with 
pulmonary immune response to influenza infection by Brune et al.30.

Many of the other pathways found to have the highest total SSVM weights across all experiments and time 
bins have links to the influenza virus. The R-HSA-163680 pathway involves AMPK signaling which is known to 
be significant in the modulation of viral infections31. Aryl hydrocarbon receptor (ARH) signaling (the R-HSA-
8937144 pathway) is important part of the immune system, and ARH specifically regulates the immune response 
which is directly related to infection32,33. We find that the R-HSA-5676594 pathway is related to NF-κ B which is 
known to activate during RSV infection, especially early during the infection34,35. The R-HSA-9634635 pathway 
involves signaling through PRKCZ and it was found in one study that suppressing the expression of PRKCZ 
reduces RSV infection which suggests that the two are linked to some extent36. The R-HSA-5603037 pathway is 
involved with IRAK4 deficiency. Kim et al. found that IRAK4 kinase activity is suggested be involved with TLR-
dependent immune responses and influenza virus is dependent on IRAK4 kinase activity37.

Not only does our implementation of pathway expression produce interesting pathways, it also is robust to 
perturbation in theory and in practice. Linear pathway expression for a given pathway, is robust to perturbation 
of the gene expression levels in a pathway by mean 0 noise because it is a mean of gene expression levels in a 

Table 4.   The pathways with the highest magnitude SVM weights from CPE for each experiment and time. 
CPE configurations are pre-computed, directed edges with PageRank centrality. All experiments apply LIMMA 
using subject identifier to the data.

Experiment Time (h) Reactome ID Pathway name Genes Probes

4 studies 1-8 R-HSA-74713 IRS activation 5 10

4 studies 9-16 R-HSA-74713 IRS activation 5 10

4 studies 17-24 R-HSA-2179392 EGFR Transactivation by Gastrin 9 22

4 studies 25-32 R-HSA-3595177 Defective CHSY1 causes TPBS 8 21

6 studies 1-8 R-HSA-2485179 Activation of the phototransduction cascade 11 20

6 studies 9-16 R-HSA-8939242 RUNX1 regulates transcription of genes involved in differentiation of 
keratinocytes 8 25

6 studies 17-24 R-HSA-9694631 Maturation of nucleoprotein 16 27

6 studies 25-32 R-HSA-5218921 VEGFR2 mediated cell proliferation 21 53
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pathway. Centrality pathway expression is only approximately robust to such an addition of noise since it is a 
weighted mean of gene expression levels. In our experiments we found pathway expression methods proved to 
be more robust to subject batch effect than gene expression methods. Linear pathway expression was the path-
way expression method that was the least affected by subject batch affect. The plot to support this claim is in the 
Results section in the Supplementary Information.

We also examine the robustness of pathway expression with regards to the pathways selected using SSVM 
feature selection on pathway expression data. We do this by comparing these selected pathways to those selected 
using gene expression features along with standard pathway ranking methods. Specifically, we look at the overlap 
between the pathways found with 4 studies and those found with 6 studies. We find that the pathways selected 
by ORA have the highest overlap, the pathway expression method have the second highest and CePa has the 
lowest overlap. It is expected that this overlap is somewhat proportional to the number of pathways that were 
selected by each method since we are sampling from a background set of pathways. In an extreme example, if 
the each of the two pathway sets have more than half of the total pathways, then they must overlap. We see this 
proportionality of the number of pathways selected and the overlap for each of the methods. Additionally, the 
viruses in the 4 study training dataset are H3N2 and H1N1), and the viruses in the 6 training dataset are H3N2, 
H1N1, RSV and HRV. We note that the relatively high overlap in the pathways detected by ORA indicates that 
this method pulls out the general respiratory virus signal but does not detect the differences between the different 
viruses in the training datasets. On the other hand, the low overlap for CePa suggests that this method detects 
the difference between the datasets but does not capture the overall respiratory virus signal. Pathway expression 
methods take the middle ground since their overlap is between the standard pathway analysis methods (ORA 
and CePa). That is to say, the pathways found using pathway expression encapsulate the difference between the 
viruses in the training datasets while still maintaining the overall respiratory virus signal.

Returning to analysing our methodologies, CPE and LPE are simple linear models for translating gene expres-
sion data to pathway expression data which result in improved BSR of our tested machine learning models. 
The linear nature of our implementation of pathway expression, especially LPE, makes it possibly one of the 
simplest methods available for transforming vectors from the gene space to the pathway space. A different non-
linear pathway expression formulation may improve upon the results with pathway expression presented in this 
paper. One non-linear modification of LPE has been done by using the absolute values of the entries in the gene 
expression matrix instead. This modification collapses the gene expression data into the positive hyper-octant 
and results in a loss of information. However, there are many possible variants of non-linear pathway expression 
that require further investigation.

The pathway expression methods in this paper are meant to re-inspire a wide variety of investigations into 
the pathway expression pipeline including batch correction, pathway expression generation and downstream 
pathway expression analyses. Investigation into the robustness of pathway expression methods to batch effects 
could be done by running experiments with corrections for study or strain effects. In this paper, we applied batch 
normalization to gene expression vectors before calculating pathway expression. Another interesting experiment 
in future work could be to apply batch normalization to the pathway expression vectors themselves. Within the 
framework of CPE, different methods for network generation, and centrality measures still need to be tested. 
LPE and CPE are arguably the simplest pathway expression methods since they are effectively an averaging of 
gene expression levels. From a bird’s eye view, pathway expression methods are any method to transform a gene 
expression matrix to a pathway expression matrix. Therefore any type of pathway transition matrix, as well as a 
non-linear transform, can be applied to gene expression data to produce pathway expression data. This leaves 
the door wide open to the use of other central prototypes for generating pathway expression matrices. Pathway 
expression data can be seen as just a pre-processing step. Hence, any machine learning algorithm that has been 
used on gene expression data can be used on pathway expression data to select pathways, classify pathways, 
cluster pathways, etc. Hence, the opportunity for novel work with pathway expression can include an investi-
gation into pathway expression pre-processing, batch correction techniques, methods for pathway expression 
generation, and downstream pathway expression analyses using statistics, machine learning algorithms and more. 
The bottom line is, creativity and/or applying sound biological principles while designing a pathway expression 
workflow will be key in selecting meaningful pathways and perhaps improve classification rates.

Our 4 to 2, 4 to 3 and 6 to 1 classification experiments in the results are designed to mimic the experiments 
that were done by Aminian et al.3. For a direct comparison of best CPE results between this paper to the gene 
expression results using SVM from Aminian et al. see Table 5. Our results with LPE, CPE and GE generally 
produce lower SVM BSRs than those from the same experiments in Aminian et al. This is not surprising since 
the feature selection technique in this paper is far more simple and less robust than what was done by Aminian 
et al. However, at the 25 to 32 hour time bin, the pathway expression methods produce higher BSR than the 
classification results in Aminian et al. by 1 to 4 percent in BSR in two out of three experiments. The higher clas-
sification BSRs at the latest time bin are consistent with the concept that genes generally don’t work in concert 
in pathways during the early hours after infection. A PCA of all the probes related to genes in immune response 
pathway, α/β Interferon, by Aminian et al. highlights the inactivity of the pathway during early hours of infection 
and activation of the pathway during later hours after infection. Perhaps by running experiments at later time 
bins and/or using the same feature selection technique that was used by Aminian et al. we’d see that these novel 
pathway expression methods produce even higher BSRs. Additionally, any biologically informed modification 
of the pathway expression pipeline presented in this paper could increase test classification rates while detecting 
even more biologically informative pathways. We choose to include this table and it’s analysis for completeness 
and to inspire future work on improving pathway expression transformations and optimization of downstream 
ML feature selection and classification architectures with CPE and LPE.

Overall, the pathway expression analysis framework developed in this work provides a concise approach for 
characterizing the biological processes associated with the host response to infection. Although we produce lower 
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classification rates than those in Aminian et al, in a head to head comparison with gene expression, we see that 
CPE and LPE improve classification rates. Moreover, we envision that pathway selection using this approach 
may provide additional insights into biological mechanisms associated with the host response to infection. The 
pathways detected using CPE are connected to the immune response and to some specific respiratory viruses. Our 
preliminary experiments addressing time-evolving human clinical data provide some insight into the pathway 
activity for humans infected with respiratory viruses. Finally, we offer a python package for computing CPE, 
LPE and CePa https://​github.​com/​nmank/​Pathw​ayAna​lysis.

Methods
In this section we detail the models, metrics, experiments, and data sets used in this paper. We run two mirrored 
classification and pathway selection pipelines on pathway expression data and gene expression data.

Our pipeline used in the pathway expression (CPE and LPE) classification experiments is the following: 

1.	 Batch normalize via LIMMA each train and test partition separately by subject ID.
2.	 Select pathways, viewed as features, in pathway expression data using the training data (LPE-SSVM or CPE-

SSVM).
3.	 Run a LOSO classification experiment using SVM on test pathway expression data restricted to the selected 

pathways (generated by LPE-SSVM or CPE-SSVM) and record mean test statistics (eg. BSR).

For pathway selection using pathway expression we simply use the pathways selected by SSVM on the training 
data and rank these selected pathways by their SSVM weights.

The pipeline for the GE classification experiments is: 

1.	 Batch normalize via LIMMA each train and test partition separately by subject ID.
2.	 Select genes, viewed as features, using the training data using SSVM.
3.	 Run a LOSO classification experiment using SVM on test gene expression data restricted to the selected 

genes and record the mean test statistics (eg. BSR).

For pathway selection using gene expression data we use the genes selected by SSVM on the training data as input 
ORA or CePa pathway selection. ORA is implemented using the p-value from the analysis.identifiers function 
reactome2py, (https://​github.​com/​react​ome/​react​ome2py). CePa is implemented in the GLPE.simple_transform 
function in the PathwayAnalysis package (https://​github.​com/​nmank/​Pathw​ayAna​lysis). Details on the ORA 
and CePa methodologies are provided in Pathway Ranking Using Gene Feature Sets in the Methods section of 
the Supplementary Information.

Data set (GSE73072).  In this paper we perform experiments on the GSE73072 data set2 from the NCBI 
Gene Expression Omnibus (GEO). This data set is a microarray gene expression data set for human subjects 
challenged with the influenza virus. These data were collected from 7 studies by Duke, UVA and hVIVO and 
was funded by the Defense Advanced Research Projects Agency (DARPA). The entire data set consists of 22277 
probe identifiers and 148 human subjects infected with four different types of respiratory viruses: HRV, RSV, 
H1N1 and H3N2. The data samples are collected at irregular time intervals from 38 hours before infection to 680 
hours after infection. The data can be found here https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE73​
072.

We run two binary classification experiments with GSE73072 data set that are copies of experiments by 
Aminian et al.3. In these experiments we classify between control subjects and shedding subjects. Our control 
group consists of all subjects between, and including, 38 to 0 hours before infection. We define (early) shedders 
as pre-symptomatic subjects within 32 hours after infection who will eventually be characterized as shedders 
over the course of the immune response. We break our data sets down further into 4 sets of shedders from evenly 

Table 5.   Classifications balanced success rates of SVM in a LOSO experiment on test data across different 
experiments within 32 hours after infection. The highest values for each experiment and time bin are in bold. 
All experiments in this table use LIMMA normalization on subject identifier. The majority of the best results 
from this paper are using CPE.

Time bin Paper 4–2 4–3 6–1

1–8 This paper 80.04 73.45 89.44

1–8 Aminian et al. 84.74 82.06 87.97

9–16 This paper 82.13 80.84 89.44

9–16 Aminian et al. 93.21 90.37 100.00

17–24 This paper 77.07 77.27 80.35

17–24 Aminian et al. 81.58 78.82 86.36

25–32 This paper 92.49 82.83 90.91

25–32 Aminian et al. 88.21 85.46 89.44

https://github.com/nmank/PathwayAnalysis
https://github.com/reactome/reactome2py
https://github.com/nmank/PathwayAnalysis
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73072
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73072
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spaced time bins within 32 hours after infection. Our train/test splits are described in Supplementary Informa-
tion using the format: study identifier (virus).

For data pre-processing, we perform two steps which follow the experimental design of Aminian et al. so 
that we can make a faithful comparison of classification rates3. First, we normalize the entire data set using the 
robust multi–array average (RMA)38 method. We then correct for subject differences by applying normalization 
across subject identifier using the LIMMA package39 to each train/test partition separately.

We use the Reactome Pathway Database9 to determine pathway membership and networks. We use the R 
package graphite40 to generate pathway networks with edges. The graphite package, using the information from 
Reactome, gives protein-based edges which are then translated using Entrez gene identifiers. We also directly use 
the Reactome database information, available on the Reactome website, to ensure genes are in appropriate path-
ways and edges are within Reactome pathways only (any edges outside of a pathway are removed before analysis).

The GSE73072 data set is a microarray data set with features given as microarray probe identifiers (probe 
IDs). We choose to do all our analyses on the probe IDs rather than determine a mapping to Entrez identifiers 
(Entrez IDs) in order to retain as much feature information as possible. However, this means that the pathway 
membership and network edge information needs to be converted to probe IDs. We use the following mapping 
from Entrez ID pathway networks to probe ID pathway networks. Although this method results in a loss of some 
information, we retain all the probe IDs that correspond to Entrez IDs from in affymetrix platform file. The edges 
between probe IDs derived from this method are used for the edges and edge weights for the pre-computed 
directed and undirected edges for CPE and CePa workflows. 

1.	 For every probe ID in affymetrix platform file, map to the first Entrez ID it its associated list of Entrez IDs 
(in the event of multiple maps). Since some probe IDs are not mapped to Entrez IDs via the platform file, 
we loose 37.1% of the probe IDs in the original data set.

2.	 Use the pathway network information to draw an Entrez ID network
3.	 Map all the Entrez ID nodes from the pathway networks to probe IDs using this mapping. Note: this means 

some nodes are mapped to multiple probe IDs. Assign edges in the pathway networks with probe ID nodes 
according to the edges between Entrez IDs. Multiple probe IDs that map to the same Entrez ID will have 
no edges between them. Probe IDs with no Entrez ID to map to are dropped. Entrez IDs with no probe IDs 
mapping to them are dropped.

For a visual of this mapping see Fig. 4.

Pathway expression (LPE and CPE).  Pathway expression is a method to represent biological data as a 
pathway expression matrix with pathway expression levels as features. In this section we develop the mathemati-
cal underpinnings of the pathway expression methods used in this paper.

Let X ∈ R
p×n be a GE matrix with n gene expression levels for p subjects. In a gene expression matrix each 

gene is assigned a gene index and each subject is assigned a subject index. We can map X to a “pathway expression 
matrix” Y ∈ R

p×m with m pathway expression levels for p subjects. In a pathway expression matrix each pathway 
is assigned a pathway index and each subject is assigned a subject index. We define such a linear mapping in 1 
using the pathway transition matrix P ∈ R

n×m.

Let P(i,j) be the entry in the ith row and jth column of P . The most simple definition of P is pathway member-
ship in Eq. (2) and is used to compute a linear pathway expression (LPE) matrix.

A slightly more involved definition of pathway expression is centrality pathway expression (CPE) where we 
weight gene expression levels by their centrality within a pathway network. This pathway transition matrix is 
denoted Pc and called the pathway centrality transition matrix. We construct Pc using the centrality of the gene 
i in the jth pathway network cj(i) in Eq. (3) where �cj�1 =

∑n
i=1 |cj(i)|.

(1)Y = XP

(2)P(i,j) =

{

1 if gene i is in pathway j
0 otherwise.

Figure 4.   How we generate Probe ID pathway networks using the platform file and Entrez IDs pathway 
networks.
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The full CPE algorithm is in Fig. 5. For our implementations of CPE data sets, we use the same 6 combinations 
of pathway network edges and centrality measures that are used in CePa: pre-computed directed, pre-computed 
undirected or correlation edges with either out-degree (normalized by maximum out-degree) or PageRank 
centrality methods.

Now we will investigate CPE further by formulating the calculation of pathway expression as an optimization 
problem. Let Y = [y1, y2, . . . , ym] where yi ∈ R

p . We call yj the pathway expression vector for pathway j. Analo-
gously, let X = [x1, x2, . . . , xn] where xi ∈ R

p where we call xi the gene expression vector for gene i. We claim

The obvious solution to this problem is the scaled average of the set {P(i,j)xi}ni=1 . But notice that this is exactly

Doing this for every j we recover Eq. (1).
This outlines a methodology for translating a data set from the gene space to the pathway space using types 

of pathway expression. The LPE and CPE methods used in this paper can be found at on GitHub in the Path-
wayAnalysis repository https://​github.​com/​nmank/​Pathw​ayAna​lysis. The code in this repository can be used 
as an out of the box method for pathway expression analysis on other data sets. We can now leverage our data 
sets in the pathway expression matrix format to determine discriminatory pathways for a classification problem.

SSVM feature selection.  In this paper we use SSVM feature selection with gene and pathway expression 
matrices to find the best genes and pathways. This is done by running SSVM on the training data, then selecting 
features based on the SSVM weights. For simplicity, the SSVM feature selection in our experiments is limited 
to a rendition of the first iteration of iterated feature removal (IFR) from O’Hara et al.6. Throughout this sec-
tion features can be genes or pathways depending on whether the experiment uses gene expression or pathway 
expression.

Our feature selection methodology starts with all the m features P1, P2, . . . ,Pm ordered with respect to their 
corresponding magnitude of their SSVM weights w1 ≥ w2 ≥ · · · ≥ wm ≥ 0 calculated on whatever classification 
experiment we are analyzing. Our goal is to take only the features that have significant weights from the SSVM 
model. To determine which weights are significant, we calculate the weight ratios ri = wi−1/wi and look for a 
“jump”, that is, we find where the weights rapidly decrease for the first time over a certain threshold. This will 
be reflected in the ratios as a large “jump” in value. For our experiments we set our “jump” ratio at 5. After we 
have isolated the top features by weight, we then add in the features that are at least .9 correlated to these features 
using their training data (either GE, LPE or CPE depending on the experiment). The number of added correlated 
features changes depending on the initial feature set.

(3)P
(i,j)
c =

{

cj(i)

�cj�1
if gene i is in pathway j

0 otherwise.

(4)yj = argmin n

n
∑

i=1

P(i,j)�z − xi�
2
2.

(5)yj =

p
∑

i=1

P(i,j)xi .

Figure 5.   The workflow for CPE.

https://github.com/nmank/PathwayAnalysis
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Evaluation.  For comparison between sets of pathways, we use the Jaccard/Tanimoto similarity coefficient. 
Given two sets of pathways, P and P′ , the Jaccard/Tanimoto similarity coefficient between these two sets is 
defined in Eq. (6).

We evaluate the novel linear pathway expression data by using SVM to classify between controls and shed-
ders in a LOSO experiment on the test data set using the only the pathways that were selected on the training 
data. We use the mean test BSR, precision, recall and accuracy of these SVMs to determine the “best” method.

We compute mean test BSR for these LOSO experiments on test data in three steps. (1) Compute a confu-
sion matrix for each subject’s SVM experiment on the test data. (2) Sum all the subject confusion matrices. (3) 
Compute the average of the true positive rate and the true negative rate. This metric provides a better model 
assessment than accuracy on data sets with imbalanced class sizes. Precision, recall and accuracy are computed 
in a similar manner leveraging the sum of all the confusion matrices across experiments. Note: that standard 
deviation for these statistics is not available since we are computing them from a sum of the confusion matrices 
across the LOSO experiments.

These pathway expression results are compared to results using the same workflow on gene expression data. 
We run an SSVM feature selection on the training gene expression matrices to select discriminatory genes. Then 
we restrict the gene expression matrices of the test data to the discriminatory genes and run a LOSO SVM experi-
ment on the test data set and use the BSR to compare against the BSRs from the LPE methods.

Data availability
The data sets analysed during the current study are available on NCBI, https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​
acc.​cgi?​acc=​GSE73​072. The code for the experiments in this paper is available in GitHub in the PathwayAnaly-
sisPaper repository https://​github.​com/​nmank/​Pathw​ayAna​lysis​Paper.
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