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N7‑methylguanosine 
methylation‑related regulator 
genes as biological markers 
in predicting prognosis 
for melanoma
Jiehua Deng 1,4, Jiahua Lin 2,3,4, Chang Liu 1, Jiasong Li 1, Jun Cai 1, Xiyu Zhou 1 & Xiong Li 1*

The aim of this study is to find those N7-methylguanosine (m7G) methylation-related regulator genes 
(m7GMRRGs) which were associated with melanoma prognosis and use them to develop a prognostic 
prediction model. Clinical information was retrieved online from The Cancer Gene Atlas (TCGA) and 
the Gene Expression Omnibus (GEO). R software was used to extract m7GMRRGs by differential 
expression analysis. To create a prognostic risk model, univariate and multivariate Cox regression 
analyses were employed for the evaluation of the prognostic significance of m7G methylation 
modifiers. Internal validation using cohort from TCGA (training set) and external validation using 
cohort from GEO (validation set) of the model were carried out. The model’s predictive performance 
was confirmed by using the Kaplan–Meier, univariate, and multivariate Cox regression, and receiver 
operating characteristic curve (ROC) by constructing column line plots incorporating clinical factor 
characteristics. Immune infiltration analyses were performed to assess the immune function of 
m7GMRRGs. Drug sensitivity analysis was conducted to study chemotherapeutic drug treatment cues. 
Prognostic models using four m7GMRRGs (EIF4E3, LARP1, NCBP3, and IFIT5) showed good prognostic 
power in training and validation sets. The area under the curve (AUC) at 1, 3, and 5 years for GEO-
melanoma were 0.689, 0.704, and 0.726, respectively. The prediction model could distinctly classify 
patients with melanoma into different risk subgroups (P < 0.001 for TCGA-melanoma and P < 0.05 for 
GEO-melanoma). Clinical characteristics were taken into account in Cox regression and AUC analysis, 
which highlighted that the risk score served as an independent risk factor determining the prognosis 
of patients with melanoma. Immuno-infiltration analysis showed that m7GMRRGs could potentially 
regulate CD8+ T cells as well as regulatory T cells (Treg cells). Results of our study indicate a association 
between m7GMRRGs and melanoma prognosis, and the prognostic prediction model using m7GMRRGs 
may predict the prognosis of patients with melanoma well. Nevertheless, these results may provide a 
clue for potential better options of melanoma treatment but need further validation in futural studies.

Melanoma is regarded as one of the most aggressive cancers1,2. Individuals with melanoma usually have a poor 
prognosis since the cancer cells are highly invasive, migratory, and could metastasize at an early stage3. Although 
some progress has been made in recent years with targeted drug therapy and immunotherapy4,5, these treat-
ments have not achieved significant success. Drug resistance is one of the factors that may stall good prognosis 
of melanoma patients6. Diagnosis in early stage of melanoma is essential as it may lead to a good prognosis with 
early treatments.

Previous studies have demonstrated that factors like tumor thickness, presence of anterior lymph node metas-
tases, and presence of combined ulcers are strongly linked to the prognosis of individuals with melanoma7,8. 
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However, only depending on clinical staging and histology to predict the prognosis of individual tumors has lim-
ited success9,10. The understanding of tumor biology at the molecular level has improved due to the advancement 
of high-throughput techniques which facilitates the identification of specific biomarkers and prognostic models. 
This may help more patients in early diagnosis and accept the corresponding treatment for better prognosis.

N7-methylguanosine (m7G) is the most prevalent internal modification that occurs in transfer RNA (tRNA) 
and non-coding RNA (ncRNA)11. m7G modifications usually occur at position 46 of the variable region, com-
monly occurring in fungi12, eukaryotes, archaea, and mammals13. It is crucial in regulating transcription and 
ribosomal RNA (rRNA) homeostasis. tRNA (m7G46) methyltransferase is shown to regulate m7G methylation. 
m7G46 forms a tertiary base pair with C13-G22 and stabilizes tRNA14. The regulators of m7G are linked to 
several pathological disorders and illnesses, according to numerous studies. m7G methyltransferase has been 
associated with the developing resistance to aminoglycoside antibiotics in Streptomyces tenebrarius13. In addi-
tion, m7G methyltransferase increases the infectivity of thermophilic bacteria by regulating the amount of tRNA 
modification15.

High throughput sequencing has revealed several RNA covalent modifications and provided therapeutic clues 
for cancers at the genetic and molecular levels. m7G is one of the most common covalent modifications. A recent 
study has shown that METTL1 methyltransferase mediates m7G within let-7e and promotes let-7e maturation, 
thereby exerting a tumor-suppressive effect on lung cancer16. Another study has demonstrated that m7G makes 
colorectal cancer cells more susceptible to cisplatin-based drugs by modulating the miR-149-3p/S100A4/p53 
axis17. Increasing evidence has suggested a association between m7G and progression of mutiple cancers18–20. 
Nevertheless, there are few studies concerning relationship between m7G and prognosis in melanoma at present21.

Thus, multiple bioinformatics analyses were used on data collected from TCGA and GEO databases to inves-
tigate the possible association between m7G methylation-related regulator genes (m7GMRRGs) and melanoma 
prognosis and develop a prognostic prediction model using those genes for patients with melanoma, aiming to 
provide potential better options of melanoma treatment.

Methods
Data collection.  The expression of RNA and clinical data of the melanoma patients was retrieved from the 
Cancer Genome Atlas (TCGA, https://​tcga-​data.​nci.​nih.​gov/​tcga/) and the Gene Expression Omnibus (GEO, 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/) databases. TCGA database was utilized to develop the clinical prediction 
models, while the GEO database was employed for validation of the clinical prediction models. Clinical charac-
teristics between the training and validation cohorts were collected and compared (Table 1).

Table 1.   Comparison of clinical characteristics between the training and validation cohorts. T tumor stage, N 
lymph node, M distant metastasis.

Total (n = 597) Training cohort (n = 447) Validation cohort (n = 150) P value

Gender, n (%) 0.243

Female 235 (39.4) 182 (40.7) 53 (35.3)

Male 362 (60.6) 265 (59.3) 97 (64.7)

Age, n (%) 0.428

≥ 60 211 (35.3) 162 (36.2) 49 (32.7)

< 60 386 (64.7) 285 (63.8) 101 (67.3)

Stage, n (%) 0.319

I 104 (17.4) 85 (19) 19 (12.7)

II 209 (35) 152 (34) 57 (38)

III 265 (44.4) 195 (43.6) 70 (46.7)

IV 19 (3.2) 15 (3.4) 4 (2.6)

T, n (%) 0.891

T0 38 (6.4) 30 (6.7) 8 (5.3)

T1 78 (13) 56 (12.5) 22 (14.7)

T2 124 (20.8) 92 (20.6) 32 (21.3)

T3 149 (25) 110 (24.6) 39 (26)

T4 208 (34.8) 159 (35.6) 49 (32.7)

M, n (%) 0.109

M0 571 (95.6) 431 (96.4) 140 (93.3)

M1 26 (4.4) 16 (3.6) 10 (6.7)

N, (%) 0.907

N0 337 (56.4) 254 (56.8) 83 (55.3)

N1 118 (19.8) 86 (19.2) 32 (21.4)

N2 76 (12.7) 56 (12.5) 20 (13.3)

N3 66 (11.1) 51 (11.5) 15 (10)

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
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Identification of differentially expressed m7GMRRGs in melanoma.  In total, 447 and 150 malig-
nant tissues of melanoma from TCGA and GEO with their clinical information were acquired. From previ-
ous systematic reviews and the Molecular Signatures Database (MSigDB) database, a total of 29 m7GMRRGs 
(METTL1, WDR4, NSUN2, DCP2, DCPS, NUDT10, NUDT11, NUDT16, NUDT3, NUDT4, NUDT4B, AGO2, 
CYFIP1, EIF4E, EIF4E1B, EIF4E2, EIF4E3, GEMIN5, LARP1, NCBP1, NCBP2, NCBP3, EIF3D, EIF4A1, EIF4G3, 
IFIT5, LSM1, NCBP2L, SNUPN) were extracted13,20. The edgeR package was utilized to detect differentially 
expressed genes across melanoma and normal tissues.

Functional enrichment analysis.  The Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontol-
ogy (GO), and the R package “clusterProfiler” were employed to study the biological role and signaling pathways 
linked to differentially expressed genes (DEGs).

Development and validation of a prognostic signature model for m7GMRRGs in mela‑
noma.  We initially assessed the relationship between m7GMRRGs and overall survival (OS) using univari-
ate Cox regression analysis. Prognosis-related moderators were those having a P value < 0.1 in univariate Cox 
regression analysis. Then, for the identification of key genes linked to prognosis and to create an optimum 
prognostic risk model, we employed stepwise multivariate Cox regression analysis.

Additionally, a risk score was derived using the following formula:

where coef (m7GRNAn) was the weak effect associated with survival and expr (m7GRNAn) was the weak effect 
of expression.

Using the median risk scores, melanoma patients were sorted into a high- and a low-risk subtype subgroup. 
The survival R package was used to do a Kaplan–Meier analysis for comparing the survival rates between the two 
subgroups. ROC curves were created to test the performance and accuracy of the prognostic prediction model.

Construction of the nomogram.  Column line graphs were constructed based on several clinical factors, 
including risk score, gender, age, and TNM staging, using the R package rms software. The column line graphs 
predicted the survival rates of individuals with melanoma at 1, 3, and 5 years. Calibration curves for the corre-
sponding column line graphs were plotted using R-pack survival rates to test the predictive power of the column 
line graphs.

Immunological analysis.  The R package "CIBERSOFT" algorithm was employed to study the tumor-
infiltrating immune cell composition or cellular immune response across the high- and low-risk subgroups 
for melanoma in accordance with m7GMRRGs. The R package was utilized to visualize the findings. We used 
single-sample set gene enrichment analysis (ssGSEA) to analyze tumor-infiltrating immune cell subpopulations 
and immune function among both subgroups. In addition, we analyzed the potential immune checkpoints using 
previous literature.

Drug sensitivity analysis.  The Wilcoxon signed-rank test was performed using the R package "pRRo-
phetic". "ggplot2" was utilized for studying the association of risk scores with sensitivity for chemotherapeutic 
agents commonly used in melanoma. P < 0.05 was considered as significant.

Data analysis.  Statistical analysis was carried out with R software(Version3.6.3).All of the R packages 
listed before were downloaded from http://​www.​bioco​nduct​or.​org. Samples with incomplete or missing data 
were excluded. The expression profiles of 29 genes in melanoma and normal tissues from the TCGA database 
were compared using univariate analysis and chi-square tests to study the link between clinical features and 
m7GMRRGs. The survival differences between two subgroups with various levels of m7G RNA expression were 
compared using Kaplan–Meier curves. The Wilcoxon test assessed the differences between clinical factors and 
risk scores between subtypes. P < 0.05 was taken as a criterion of a significant difference.

Results
Expression profiles of m7GMRRGs in melanoma.  We plotted heat maps and violin plots to under-
stand RNA expression levels of m7GMRRGs between 447 cases of melanoma and 233 cases of normal tissues 
(Fig. 1A,B) from TCGA. Red and green subscales shown in Fig. 1A signify relatively high or low RNA expres-
sion levels, correspondingly. The m7GMRRGs showed significantly higher RNA expression levels in melanoma 
when compared with normal tissues were DCP2, AGO2, LSM1, METTL1, SNUPN, CYFIP1, NUDT16, WDR4, 
DCPS, NUDT3, GEMIN5, LARP1, NCBP1, EIF4G3, NCBP2, IFIT5 (all P < 0.001). The RNA expression level of 
EIF3D and NUDT10 did not show significant differences between groups (P > 0.05). The association of the 29 
m7GMRRGs with each other were shown in Fig. 1C using Pearson correlation analysis.

Enrichment analysis.  For further exploring the possible signaling pathways, biological roles, and func-
tional analysis involved in m7GMRRGs, enrichment analysis was carried out employing GO and the KEGG. GO 
test identified biological pathways in which m7GMRRGs were involved were translation initiation and regula-
tion, regulation of cell amide metabolism, RNA cap binding, and pathways related to the biological function of 
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RNA 7-methylguanosine cap binding (Fig. 2A). KEGG enrichment analysis showed that m7GMRRGs also play a 
role in the RNA degradation, nucleocytoplasmic transport, epidermal growth factor receptor regulation, tyros-
ine kinase inhibitor resistance, longevity regulation pathway, mRNA monitoring, and insulin signaling pathway 
(Fig. 2B).

Identification of a prognostic prediction model using m7GMRRGs in melanoma.  Using Kaplan–
Meier analysis for prognosis on the basis of the whole TCGA dataset with 447 cases, the prognostic significance 
of differentially expressed m7GMRRGs in melanoma patients was investigated. m7GMRRGs were tested in mul-
tivariate Cox regression and stepwise regression after having a P < 0.1 in Kaplan–Meier22,23. Then four key genes 
(EIF4E3, LARP1, NCBP3, IFIT5) were finally selected to create a prognostic prediction model of m7GMRRGs 
characteristics. Hazard ratio (HR) and P values for the four genes are shown in Fig. 3A.

As per the median risk score, the patients were divided into high- and low-risk subtypes. The survival study 
revealed that the prognostic prediction model demonstrated a remarkable capacity to distinguish between good 
and poor outcomes in patients with melanoma in the training set. Patients with the low-risk subtype survived 
considerably better in comparison with those having the high-risk subtype (P < 0.001; Fig. 3B). The same model 
was used to calculate each patient’s risk score and study the relation of risk score with survival status in the train-
ing set. The validation set on the basis of the whole GEO dataset with 150 cases was used to further validate the 

Figure 1.   The profiling of m7GMRRGs in melanoma. (A) Heat map of 29 m7GMRRGs in tumor and normal 
tissues (upregulated are marked in red, downregulated are marked in green; *P < 0.05, *P < 0.01, and ***P < 0.001). 
(B) Vioplot visualization of m7G RNA methylation regulators in melanoma (red is melanoma, blue is normal 
tissue). (C) Spearman correlation analysis of 29 m7GMRRGs in melanoma. m7GMRRGs N7-methylguanosine 
methylation-related regulator genes.
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prognostic prediction model. Patients in the high-risk subgroup had substantially shorter survival in comparison 
with patients in the low-risk subgroup in the validation set (P = 0.0026; Fig. 3C). Figure 3D,E depict how risk 
scores, survival status, and RNA expression of the four m7GMRRGs were distributed between the high-risk and 
low-risk subgroups in the training and validation sets.

ROC curves were generated to study the accuracy of the prognostic prediction model. Figure 4A shows the 1, 
3, and 5-year ROC curves’ AUC values for the m7G features in the training set, which were 0.693, 0.651, and 0.69, 
respectively, whereas, Fig. 4B shows the prognostic model as 0.689, 0.704, and 0.726, respectively. Together, these 
findings show the accuracy of the four m7GMRRGs screened for prognostic prediction models for melanoma.

Correlation of the prognostic prediction model and clinical factors in melanoma.  To evaluate 
the correlation of the prognostic prediction model with clinical factors in patients with melanoma, the differ-
ences in risk scores between age, gender, tumor stage and size, lymph node, and distant metastasis were analyzed 
using the Wilcoxon test on the basis of the whole TCGA and GEO datasets with 597 cases. As shown in Fig. 5C, 
the risk score was considerably to be associated with tumor size (P = 0.037). No significant differences were 
observed in age, gender, tumor stage, lymph node, and distant metastasis (Supplementary Fig. 1). In addition, 
Kaplan–Meier analysis revealed a substantial association between age (HR = 1.020), tumor stage (HR = 1.473), 
tumor size (HR = 1.445), lymph node metastasis (HR = 1.443), and risk score (HR = 2.157; all P < 0.001) with 
poor prognosis (Fig.  5A). Multivariate Cox regression revealed that age (HR = 1.012, P = 0.037), tumor size 
(HR = 1.497, P < 0.001), lymph node metastasis (HR = 1.619, P < 0.001), and risk score (HR = 2.235, P < 0.001) 
were substantially independently associated with poor prognosis (Fig. 5B).

ROC curves were utilized to study the sensitivity and specificity of the risk score in predicting prognosis with 
all the 597 cases. The 5-year ROC curves’ AUC values of the risk score was 0.737, which was greater compared 
with other clinical factors, indicative of the reliability of the prognostic prediction model on the basis of the four 
m7GMRRGs (Fig. 5D).

The three independent prognostic factors, age, tumor stage, and risk score, were combined to predict mela-
noma patients’ 1, 3, and 5-year survival rates by plotting column line plots (Fig. 6A). To test the calibration of 
the column line plots, the predicted and the actual 1, 3, and 5-year survival rates were compared. The results 
presented good agreement between the predicted and actual survival rates of the calibration curves (Fig. 6B–D).

Correlation of prognostic prediction models and immunoassays.  The CIBERSOFT algorithm and 
ssGSEA were used to compare the cellular composition and cellular immune responses between the high- and 
low-risk subgroups distinguished by the prognostic prediction model. The high-risk subgroup had significantly 
lower infiltration of B cells, CD8+ T cells, dendritic cells, neutrophils, NK cells, macrophages, mast cells, Plasma-
cytoid dendritic cells, T helper cells, T follicular helper cells, Th1 cells, Th2 cells, tumor-infiltrating lymphocytes, 
and regulatory T cells than that of the low-risk subgroup (P < 0.001; Fig. 7A). The difference in immune check 
site expression between both subgroups was explored for their potential role in immunotherapy. Remarkable 
variations were observed in the expression of a variety of immune checkpoint loci between subgroups, most 
notably in CD70, TIGIT, PDCD1 (PD-1), LAG3, and LGALS9 (P < 0.001; Fig. 7B).

A correlation analysis was also conducted between risk scores and sensitivity to common chemotherapeutic 
agents. As illustrated in Fig. 8, patients in the high-risk subgroup showed higher sensitivity to chemotherapeutic 
agents such as Bortezomib, Bosutinib, Cisplatin, Dasatinib, Gefitinib, and Lapatinib; while the patients in the 

Figure 2.   Analysis of DEGs based on GO (A) and KEGG (B). The x-axis indicates the number of m7GMRRGs 
enriched on each GO and KEGG. Rectangular colors indicate the significance of enrichment. GO gene ontology, 
KEGG Kyoto Encyclopedia of Genes and Genomes, DE-m7G differentially expressed m7GMRRGs, BP biological 
process, CC cellular component, MF molecular function, DEGs differentially expressed genes, m7GMRRGs 
N7-methylguanosine methylation-related regulator genes.
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Figure 3.   Construction of an prognostic prediction model for melanoma patients. (A) HR and P values of the 
four m7GMRRGs in the prognostic model. (B) Survival curves of patients in the high- and low-risk subgroups 
of the training set. (C) Validation of survival curves for patients in the pooled high-risk and low-risk subgroups. 
(D) Distribution of risk scores, survival status, and RNA expression of the four m7G regulator genes between the 
high-risk and low-risk subgroups in the training set. The top panel shows patients’ risk scores. The middle panel 
depicts patients’ survival status and survival time distributed by risk score. The bottom panel shows the braided 
hotspots for the four predictors by risk score. (E) Distribution of risk scores, survival status, and RNA expression 
of the four m7G regulator genes between the high-risk and low-risk subgroups in the validation set. m7GMRRGs 
N7-methylguanosine (m7G) methylation-related regulator genes.

Figure 4.   Validation of the prognostic, predictive power of four selected m7GMRRGs. (A) ROC curves of 
prognostic prediction models in the training set. (B) Validation of the ROC curves of the pooled prognostic 
prediction model. m7GMRRGs N7-methylguanosine methylation-related regulator genes.
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low-risk subgroup showed higher sensitivity to Epothilone B, Erlotinib, FTI.277, GNF.2, Imatinib, Metformin, 
RDEA119, S-Trityl-L-cysteine, Sorafenib, and other common chemotherapeutic agents as well as emerging 
drugs (P < 0.05).

Discussion
Melanoma is one of the most widely known types of cancer around the globe, with a constant increase in cases 
each year24. Approximately 300,000 new cases of melanoma are added each year. Based on incidences and mor-
tality rates calculated in 2020, based on the estimate, it is believed that by 2040, 510,000 new melanoma cases 
will be added. Therefore, melanoma control prevention and treatment continue to pose a significant challenge 
globally25. Melanoma most commonly develops on the skin but may also develop in the uvea or mucosa26. 
Cutaneous melanoma is the most aggressive form of melanomas, with early metastasis, high mortality27, and a 
5-year survival rate is < 20% for patients with advanced melanoma28.

Early diagnosis and treatment of melanoma are crucial in improving prognosis and survival. However, clas-
sification based on clinical features has low accuracy in prognosis, diagnosis, and treatment of melanomas due 
to individual differences amongst the patients29. Therefore, to optimize the performance of the prediction model, 
it is essential to understand the molecular features underlying melanoma formation and metastasis. Previous 
studies have shown epitranscriptomics as a key player in cancer development and progression, making it a valu-
able candidate for diagnosis, prognosis, and therapeutics30–32.

Methylation involves the transfer of methyl group onto nucleotide by catalysis. Methylation is one of the 
essential chemical modifications of nucleic acids, which regulates gene expression and is associated with many 
diseases, such as cancer and neurodegenerative diseases e.g., Alzheimer’s disease33. RNA methylation modifica-
tions are among the most common epigenetic modifications. m7G formation results from the addition of methyl 
groups to the N7 position of guanosine13. RNA guanine-7 methyltransferase modifies mRNA by cap addition, 
which regulates mRNA responses and gene expression34. In recent studies, RNA methylation has been shown 
to be linked to tumor immunity35. WDR4 is crucially involved in promoting the proliferation of hepatocellular 
carcinoma by mediating m7G methylation36. Moreover, aberrant m7G methylation is closely linked to ischemic 
disorders37, soft tissue sarcoma38, lung cancer39,40, and gastrointestinal cancer41. Nevertheless, there is few studies 

Figure 5.   Relationship between prognostic prediction models and clinical factors in melanoma patients. (A) 
Univariate Cox analysis of clinical features based on the training cohort. (B) Multivariate Cox analysis of clinical 
features based on the training cohort. (C) Association between risk scores and clinical features of patients with 
melanoma. (D) ROC curves for risk scores and clinical factors. Clinical factors include age, gender, tumor stage, 
N (lymph node metastasis), T (tumor size), and M (distant metastasis).
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concerning relationship between m7G and prognosis in melanoma at present. Their association needs to be 
studied in detail.

First, a comparison of RNA expression levels of m7GMRRGs in melanoma and normal tissues was performed 
based on the data retrieved from the TCGA database. The outcomes revealed that the RNA expression level of 
m7GMRRGs was considerably elevated in melanoma in comparison with their RNA expression level in normal 
tissues. Enrichment analysis revealed that the m7GMRRGs are involved in pathways regulating pathways associ-
ated with innate and adaptive immune cell expression and metabolic pathways. Previous studies have suggested 
activating mutations in tyrosine kinase regions as proto-oncogenes. Tyrosine kinase inhibitors exert anti-tumor 
effects by inhibiting the expression of proto-oncogenes42. In addition, insulin can activate proto-oncogenes via 
PI3K signaling via an intracellular pathway43. Enrichment analysis reveals pathways like tyrosine kinase inhibitor 
and insulin signaling are regulated by m7GMRRGs. These findings suggests the possible role of RNA expression 
level of m7GMRRGs expression in targeted therapeutics in melanoma.

To understand the role of m7GMRRGs in melanoma prognosis in further detail, we selected four m7GMRRGs 
(EIF4E3, LARP1, NCBP3, and IFIT5) to develop prognosis prediction model. The melanoma patients were sorted 
into high- and low-risk subgroups according to the risk score results derived using univariate and multivariate 
Cox analyses. A poor prognosis was observed in patients belonging to the high-risk subgroup based on the sur-
vival analysis. Further, the Cox regression analysis indicates risk scores have the ability to predict the prognosis of 
patients with melanoma independently. In addition, The prognosis prediction model using the four m7GMRRGs 
had better predictive power when combined with the clinical factors. The above results suggested that EIF4E3, 
LARP1, NCBP3, and IFIT5 are promising prognostic markers for melanoma. Studies show EIF4E3 is a subtype 
of the eukaryotic translation initiation factor EIF4E, which competes with the pro-growth function of EIF4E by 
regulating the cap-binding activity of eukaryotic translation, thereby inhibiting the oncogenic transformation 
and cell proliferation44. Previous studies reveal a decrease in EIF4E3 expression increases tumor cell activity and 
aggressiveness in the head, and neck squamous cell carcinomas, acute myeloid leukemia, and breast cancer45–47. 
LARP1 has recently been identified as an oncogenic RNA binding protein, and studies suggest the involvement 
of LARP1 in promoting cell proliferation and invasion in lung cancers48 and colorectal cancers49. Moreover, 
LARP1 expression levels were considerably elevated in ovarian cancer and were correlated with poor clinico-
pathological characteristics in patients with ovarian cancer50. NCBP3 enhances the aggressiveness of glioma by 
inhibiting GBX2 transcription in glioma51. IFIT5 belongs to the interferon-inducible tetrapeptide repeat protein 

Figure 6.   Nomogram development and evaluation. (A) a nomogram on the basis of age, stage, and risk score 
predicts melanoma patients’ prognosis. (B–D) Calibration curves for predicting overall survival in melanoma 
patients at 1 year (B), 3 years (C), and 5 years (D).
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(IFIT) family. It is an essential component of the antiviral immune response52 and acts as a tumor suppressor 
by participating in the apoptotic pathway53. The current research describes for the first time that the risk scores 
created by EIF4E3, LARP1, NCBP3, and IFIT5 can serve as independent prognostic factors for melanoma.

A recent research has highlighted that the immune cells in the tumor microenvironment are essentially 
involved in tumorigenesis and development54. Genetic polymorphisms in melanoma lead to the formation of 
many neoantigens. Melanoma is highly immunogenic and can trigger specific anti-cancer immune responses. 
Hence immunotherapy could be an excellent candidate for treating melanoma55. Our analysis reveals lower 
immune cell infiltration in the high-risk subgroup, compared with that in the low-risk subgroup. A previous 
study suggested that CD8+ T cells are key components of the intrinsic immune response and positively correlate 
with Treg cell recruitment56 In contrast, the immune escape mechanism of tumors is associated with CD8+ T 
cell depletion57. The number of CD8+ T cells could be used as a predictor of prognosis in cancer58. Based on the 
current results and existing literature, it could be assumed that m7GMRRGs may affect the prognosis of patients 
with melanoma by modulating the immune response.

In recent years, targeted tumor immunotherapy has been successful in the treatment of aggressive 
malignancies59. Targeted tumor antigens (TAs) are key to developing safe and effective anti-cancer immuno-
therapy. However, dysregulation of RNA methylation may affect anti-cancer immunotherapy60. Partial RNA 
methylation modification inhibitors which may be a breakthrough for novel immunotherapy strategies have 
effectively controlled tumor progression61. Thus, checkpoint inhibitor-based immunotherapy may be keys to 
future melanoma treatment. We found significant variations in the expression of multiple immune checkpoints, 
such as CD70, TIGIT, PDCD1 (PD-1), LAG3, and LGALS9, between the two risk subgroups, thereby indicating 
that m7GMRRGs may have the potential to be used as an immunotherapeutic target. In addition, drug sensitivity 
analysis revealed patients in high-risk subgroup were highly sensitive to the common chemotherapeutic agents 
like lapatinib, gefitinib, dasatinib, cisplatin, bosutinib, and bortezomib.

Figure 7.   Correlation analysis of prognostic prediction models with immunological and chemotherapeutic 
drug sensitivity. (A) Correlation analysis based on risk score of subgroups with immune cell subpopulations and 
related functions. (B) Expression of immune check loci in high-risk and low-risk subgroups of melanoma.
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Results of our study indicate a association between m7GMRRGs and melanoma prognosis, and the prognostic 
prediction model using m7GMRRGs may predict the prognosis of patients with melanoma well. Nevertheless, 
these results may provide a clue for potential better options of melanoma treatment but need further validation 
in futural studies.

Data availability
The original contributions to this research are included in the article/supplementary material. Further queries 
can be directed to the corresponding author.
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