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Estimation of electrical transformer 
parameters with reference 
to saturation behavior using 
artificial hummingbird optimizer
Mohamed F. Kotb1*, Attia A. El‑Fergany2 & Eid A. Gouda1

This paper offers an efficient tool to define the unknown parameters of electrical transformers. The 
proposed methodology is developed based on artificial hummingbird optimizer (AHO) to generate 
the best values of the transformer’s unknown parameters. At initial stage, the parameters’ extraction 
of the transformer electrical equivalent is adapted as an optimization function along with the 
associated operating inequality constraints. In which, the sum of absolute errors (SAEs) among many 
variables from nameplate data of transformers is decided to be minimized. Two test cases of 4 kVA 
and 15 kVA transformers ratings are demonstrated to indicate the ability of the AHO compared to 
other recent challenging optimizers. The proposed AHO achieves the lowest SAE’s value than other 
competing algorithms. At advanced stage of this effort, the capture of percentage of loading to 
achieve maximum efficiency is ascertained. At later stage, the performance of transformers utilizing 
the extracted parameters cropped by the AHO to investigate the principal behavior at energization of 
these transformer units is made. At the end, it can be confirmed that the AHO produces best values 
of transformer parameters which help much in achieving accurate simulations for steady-state and 
inrush behaviors.

The power transformers are one of the essential and major equipment in power systems. Transformers can 
transfer energy form generation plants to distribution areas via transmission lines with high efficiency reaches 
99% based on its parameters and the related losses1. Several research have been introduced to envisage trans-
former parameters as to minimize its losses, improve its performance and minimize the operational cost. The 
unknown transformer parameters are nonlinear because of their frequency dependance which makes the trans-
former modelling accurateness more complex2. Transformer parameters estimation became an immense and 
mandatory challenge for optimal transformer design to realize compulsory standards and specifications3,4. The 
transformer non- linear performance has been addressed as in2,5. The determination of transformer unknown 
parameters is affected by the state of its operation; steady or transient conditions5,6. These parameters can be 
estimated using different methods: the well-known tests; no-load and short circuit tests7,8, physical sizing of 
transformer9, manufacturer’s data10, and under various load information7. Primarily, the analytical methods have 
been used for fast evaluation of the transformer physical sizing based on finite element analysis (FEA). Recently, 
non-conventional exploratory and/or evolutionary calculation algorithms have been applied11. The evolutionary 
algorithms have high capability to solve the optimization problems as it can randomly achieve the objective7. The 
optimization methods have been utilized to extract transformer unknown parameters as well as other electrical 
devices as electric motors, fuel cells, and storage units in addition to find out the electrical operation parameters 
as optimal load flow and distribution management systems12–15. The accuracy of the optimization algorithms 
is tested by comparing the extracted parameter values against the actual ones16–18. A gray box model has been 
proposed to estimate transformer parameters and study its terminals behaviors at frequencies between 20 kHz to 
1 MHz via particle swarm optimization (PSO). This method depends on evaluating the physical dimensions to 
define winding inductance, capacitance, and loss parameters6. The data driven from load testing has been used 
to extract both single and three phase power transformer parameters via PSO12 and Forensic-Based algorithm1 
has been applied only for single-phase transformer (SPT). Also, slime mold optimizer has been applied to both 
single and three phase transformers parameter estimation and compared with other optimizers19. The 4 kVA 
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SPT parameters have been extracted using the data driven from load testing via Forensic-based investigation 
and PSO1 and bacterial foraging20 algorithms and by means of input data through chaotic optimization7. The 
no load losses have been included in the objective function (OF) using manta rays foraging optimizer (MRFO) 
and chaotic MRFO3. Other optimizers have been proposed to evaluate transformer parameters and conducted 
practical tests for confirmation as coyote optimizer for three and single transformers21, and Jellyfish search opti-
mizer, gravitational search algorithm (GSA) and machine learning approach for SPT with 4 kVA rating in10,22,23. 
Multi-objective evolutionary optimization has been adapted to evaluate the transformer parameters, improved 
using the FEA and verified by comparing the results with the actual measures and behavior11. Online transformer 
parameters evaluation using practical measurements, different slow frequencies and involving transformer turns 
ratio have been applied to get fast results and save the need for high frequency instruments24. Straightforward 
black-box algorithm through an optimization method with the help of transfer functions estimated by measured 
voltage ratios has been introduced to extract distribution transformers parameters at frequency between 1 kHz 
and 1 MHz and in time domain25.

Experimental measures of the nonlinear characteristics of inrush current have been used to calculate trans-
former parameters with the aid of no-load tests with the help of logic function and load tests via PMU in26.

Each one of the metaheuristic optimizers has advantages and some difficulties to solve all the problems. 
Although, genetic algorithm (GA) can solve the multifaceted problems, but it has some drawbacks as it has early 
convergence, and its precision depends on many selected terms27. PSO overcomes the slow convergence, but it 
has the obstacle of local optima for large scale problems and comparatively affects its control parameters28. Ant 
colony optimizer succeeded in solving dynamic problems, but it has long time for convergence and complicated 
investigations29,30. Artificial bee colony succeeded in making stability between exploration and exploitation but 
failed in solving the early convergence problem in last iterations and sometimes inaccuracy31. Cuckoo search 
introduced a better performance than PSO and GA for the sophisticated optimization problems32 but it has 
unsatisfactory convergence and local search capability33,34.

The main goal of this work is to accurately identify the optimum SPT unknown parameters via new prom-
ising metaheuristic optimizer and to study its performance at steady state and inrush conditions. Artificial 
hummingbird optimizer (AHO)35 has been adapted to represent and investigate the SPT. The AHO simulates 
hummingbirds’ skills and behaviour in looking for its food. It exceeds other meta-heuristic optimizers in reach-
ing objectives with higher precision using lesser control parameters. It has a unique property in its specific 
environmentalism experience35. Zhaoa and el al. have successfully assessed the AHO by applying three tests: 
fifty mathematical functions with complex characteristics, the IEEE CEC 2014 benchmark functions and ten 
engineering design problems which proofed the effectiveness of the algorithm35.

In this work, the AHO is applied to 15 kVA7 and 4 kVA1 SPTs, its performance has been studied and compared 
with other recognized optimizers and works. For more confirmation, the 4 kVA transformer has been simulated 
using MATLAB/Simulink, comprehensive study has been conducted at steady state and inrush conditions and 
compared with the calculated well-known behaviour. Also, Interior search algorithm (ISA) has been utilized 
to investigate the same two cases and held an extensive comparison between the proposed AHO optimizer and 
other well-known optimizers. The results prove AHO accurateness and its superiority between other optimizers.

The paper contains seven parts: Part 1 declares the Introduction, In Part 2, the SPT mathematical model is 
introduced. The transformer optimization problem is expressed and adapted in Part 3. In part 4, the AHO pro-
cedures are expressed and summarized. The application and assessment of the proposed algorithm to represent 
SPT and extract its unknown parameters is tested in Part 5. Also, the performance of the proposed algorithm at 
steady state and at the inrush condition is examined in Part 6. Finally, the remarkable outcomes and conclusions 
of this search are highlighted in Part 7.

Mathematical modeling of single‑phase transformer and statement
The equivalent circuit of SPT refereed to the primary side is shown in Fig. 1. The modelling contains six variable 
parameters ( R11 , R21 , X11 , X21 , Rm1 , Xm1 ) which are described as follows:

The primary and secondary winding’s resistances, primary and secondary reactance’s, core resistance and 
magnetizing reactance all of them refereed to primary side, respectively36,37 as framed in Fig. 1.

The primary windings impedance (Z11) , secondary windings impedance (Z21) and magnetizing impedance 
(Zm1) can be calculated from the following (1) to (3):

Figure 1.   Transformer modelling circuit.
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If the transformer is loaded by impedance (ZL21) , with input supply voltage (V11), the equivalent transformer 
impedance referred to the primary side 

(

Zeq1
)

 , the primary current (I11) , load current (I21) , load output voltage 
(V21) and voltage regulation (ε) can be formulated by (4) to (8):

Also, the input power (Pin) , output power (Pout) , and the corresponding efficiency η are given by (9) to (11).

The inrush current can be generated due to the change of the transformer magnetization voltage. It can be 
induced if transformer is energized at no load. The magnitude of inrush current can be considered as high fault 
current38,39. Modelling of the inrush current is mandatory to understand the performance of transformer at 
energizing operation as has been introduced by Vanti et al.40 and expressed as following (12) and (13).

where R11 , L11 , and Rm1 are series resistance, series inductance, and the core losses resistance, respectively. m1 
and m2 are constants which defined the transformer magnetization curve .

By considering a sinusoidal source as V(t) = Vmsin(ωt + θ) the corresponding current can be formulated 
in time steps as in (14).

Where �τ = tj − t
j−1

 is the time step, ρ = (Rm1 + R11)/L11 , γ = Rm1/L11 , ϕ = arctg( ω
ρ
) , and h

(

tj−1

)

 is calcu-
lated by (15).

The flux calculation is formulated by the formula shown in (16).
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Where

Optimization of transformer parameters identification
The key goal of the Transformer modeling is to find the proper equivalent circuit to simulate it precisely for 
imitating practical operations. This should be done at a minimum error level between the experimental and the 
calculated dataset points. The OF ( Fobj) is defined as minimizing the sum absolute errors (SAEs) among estimated 
and measured dataset points which is expressed in (17) as follows:

where I11act , I21act , V21act , and ηact are the actual data of the primary current, load current, load output voltage, 
and transformer’s efficiency, respectively. The problem min/max constraints are characterized in (18) for the 6 
parameters ( R11 , R21 , X11 , X21 , Rm1 , Xm1 ) to be optimally extracted.

where,R11−min and R11−max are the min/max values of R11 , R21−min and R21−max are the min/max of R21 , X11−min 
and X11−max are the min/max limits of X11 , X21−min and X21−max are the min/max of X21 , Rm1−min and Rm1−max 
are the min/max of Rm1 , and Xm1−min and Xm1−max are the min/max limits of Xm1,

AHO optimizer procedure
AHO is an original optimizer stimulated based on the amazing behaviour of one of the smallest birds all over 
the world “Hummingbirds”35. This bird feeds on mosquitoes, weevils, and aphids. It could shatter its wings 
with high frequency reaches 80 times/second to follow and hunt its prey. So, the hummingbird is in bad need 
of plentiful energy that is provided by sucking large amounts of flower syrup and sweetened fluid inside plants. 
The hummingbird movement, behaviour, skills, and memorization capability have been studied and followed to 
represent the suggested optimizer. The hummingbird activities can be categorized as three ways for food search-
ing, retention of food resources task and the bird flying forms. A certain number has been proposed for each 
food resource with a specific plant category. The syrup re-suction rate from the food resource is signified by the 
value of the OF. The higher fitness value, the higher the syrup re-suction rate and vice versa. Each hummingbird 
is allocated to a certain location with defined food resource. The location, syrup and sweetened fluid re-suction 
rate are saved in bird mind and shared with the remaining birds within the population. Also, the location of the 
unused food resources by the bird can be defined by itself and shared with the others in the population. Each 
food resource utilization and the last time it was used for a specific bird are registered in a lookup table is initiated 
and updated. The highest utilization of the food resources is taken as indicator to the better resources to be used 

(16)
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(17)Fobj = minimize (|I11 − I11act | + |I21 − I21act | + |V21 − V21act | + |η − ηact |)

(18)
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Figure 2.   AHO food search classification performance.
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for high syrup re-suction rate. AHO search performance can be classified into three major categories; directed 
food search, regional food search, and relocation food search Fig. 2.

Initialization.  The hummingbird initial location LOCi of food supply “i” can randomly be estimated using 
(19):

where L and H are lower and higher limits for multi-dimensional problem and Ran is the random matrix of 
values lie between 0 and 1. The food supply lookup table can be initialized as indicated in (20). Null means the 
hummingbird is fed from its own food supply and zero means the kth hummingbird is fed from jth food supply.

Directed food search.  Hummingbird can fly in omnidirectional, diagonal, and axial to look for the food as 
in Fig. 3. The used directions diri for the food source i can be recorded in a matrix and taken as a guide for the 
birds as represented in (21).

where iǫm ,   Randi{1,m}  and Rand_trans(p)  produce random integer number from 1 to m and from 1 to k 
respectively but Ran1 is a random number from 1 to 0.

Skills of hummingbird leads to reach its food supply goal and nominate the new updated one from the avail-
able surrounding sources. The directed food search can be represented as in (22) and (23).

where µi(IT + 1) is the updated location of the ith food supply at iteration (IT + 1) , LOCi(IT) is the existing 
location of the ith food supply, and g is the directed factor according to normal distribution ND(0, 1) with the 
mean value zero and the standard deviation one. The general form of the updated location based on the fitness 
function can be reformulated as in (24).

(19)LOCi = L+ Ran.(H − L) ∀i ∈ n

(20)LUTk,j =

{
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Figure 3.   Hummingbirds flying behavior: (a) axial fight, (b) diagonal flight, and (c) omnidirectional flight.
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Equation (24) shows that the searching for high quality of food resources may start with long distances, but 
the algorithm tries to go through shorter distances with increasing number of iterations. Hummingbirds is used 
to transfer to the goal resources with advanced investigations preventing apparent local solutions.

Regional food search.  After sucking the available syrup and food at the existing source, the hummingbird 
starts to look for other sources in the same surrounding as in (25) and (26).

where h is the regional factor based on the normal distribution ND(0, 1) when the mean value is zero and the 
standard deviation is one.

Relocation food search.  When the modified location (MLOC) in the presented region became poor with 
the food resources, the hummingbird begins to transfer to other locations to search for the required food. Also, 
if the number of iterations became larger than the relocation factor, the hummingbird located at the positions 
with lower visit rates will be transferred to a new food resources randomly selected through the hall search area 
as in (27) and look up table to be revised.

where LOClow−rate is the location of the food source with the lower visit rate by hummingbird.
The number of population and iterations are the two important limits affect the process of the AHO. If no 

replacement food resource is found, the algorithm will start going again to all food resources according to look 
up table.

At bad conditions, hummingbird may change its food resource goal after two times number of iterations by 
go to the relocation search stage as per (28).

The complete procedures of the AHO35 are summarized as depicted in Fig. 4.

(25)µi(IT + 1) = LOCi,goal(IT)+ h.dir. LOCi(IT)

(26)h ∼ ND (0, 1)

(27)LOClow−rate(IT + 1) = L+ Ran.(H − L), ∀ i ǫ n

(28)RLOCT = 2k

Initialization of AHO’s positions and Look up 
table randomly using (19)-(20)

Set AHO’s parameters: 
k, ITM , L  & H 

Identify the flying direction using 
(21)

While  IT ≤ 1:ITM

Calculate the fitness of the 
hummingbird for the guided food 

resources as per (22)

For k = 1:n

ƒ(μi(IT+1))>ƒ(LOCi(IT))?

LOCi(IT+1) = LOCi(IT)

Yes

 Update the lookup table as per (24)

No

Calculate the fitness of the 
hummingbird  for the regional food 

resources as per (25)

LOCi(IT+1) = μi(IT+1)

ƒ(μi(IT+1))>ƒ(LOCi(IT))?

LOCi(IT+1) = LOCi(IT)

Yes

 Update the lookup table as per (24)

No

LOCi(IT+1) = μi(IT+1)

MLOCT(IT+2k)=0?
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Calculate the fitness of the hummingbird using 
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Figure 4.   AHO’s flow chart.
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Applications and validations
The precision of the AHO optimizer to extract the unknown parameters of SPTs is assessed by applying it to two 
test cases: 4 kVA and 15 kVA SPTs1,7, respectively. For more verifications, the established ISA optimizer is also 
applied to the two cases and the results of both AHO and ISA compared to other published results in addition to 
the actual transformers parameters values. Five optimizers are used for the comparisons: PSO16, GA16, imperialist 
competitive algorithm (ICA)10, chaotic optimization approach (COA) 10, and GSA10 for test case 1. On the other 
hand, comprehensive comparisons among PSO1, forensic-based investigation (FBI)1, JS21, GA17, ICA10, GSA10, 
black-hole optimization (BHO)41, and hurricane optimization algorithm (HOA)42 to the AHO for test case 2.

To assure the stabilization of the AHO’s performance, 1000 population members, 1000 iterations and 10 
independent trials are used using Intel(R) Core (TM) i7-4710HQ CPU@ 2.5GHZ, and 8 GB RAM PC.

Test case 1.  The proposed AHO is executed and applied to 15 kVA SPT based on the nameplate data: 15 
kVA, one-phase, 2400 V/240 V, and 50 Hz. The measured transformer currents and voltages at full load are: I11act 
= 6.2 A, I21act = 6.2 A, V21act = 2383.8 V, and ηact = 99.2%7,10.

Comparisons between the transformer parameters obtained by different algorithms previously published 
results of ICA, GSA, and COA in10, and PSO and GA in16 are arranged in Table 1. The OF represented by (17) 
is applied considering the values referred to the primary side of the transformer using standard Z-circuit and 
short-circuit tests.

Table 2 indicates the four terms of the OF resulted from AHO and ISA optimizers against other recognized 
optimizers. It can be concluded that the errors sum is very close to zero where it is in the range between nearly 
6 to 12 for the other optimizers. The results prove the superiority of the proposed AHO-based approach for the 
parameter estimation of a SPT. For more assessment of the of the applied optimizers, the convergence for case 1 is 
depicted in Fig. 5. The proposed optimizer produces the minimum SAE’s value which equals to 0.033514. on the 
other hand, the ISA optimizer error is equal to 0.0335284 which assures the high-quality outcome of the AHO.

Test case 2.  The capability of the proposed AHO optimizer to evaluate the SPT parameters is also tested 
by applying it to 4 kVA, one-Phase, 250/125 V, 50 Hz and the obtained parameters compared with other docu-
mented works as shown in Table 3. Also, the nominal load currents, voltage, and efficiency at full load of the 
test system are estimated and compared with the well-known optimizers as in Table 4. It can be observed that 

Table 1.   Estimated parameter for the 15 kVA transformer.

Method R11[Ω] X11[Ω] R21[Ω] X21[Ω] Rm1[Ω] Xm1[Ω]

Actual5,6 2.4500 3.1400 2.0000 2.2294 105,000 9106.00

ICA10 2.0000 3.0000 1.8000 2.0000 120,000 9200.00

GSA10 2.0000 3.1100 1.8100 2.2600 104,281 9094.87

COA10 1.9854 2.6117 1.4851 1.5203 131,010 10,074.00

PSO16 2.2500 4.0820 2.2000 1.8526 99,517 9009.00

GA16 2.7600 3.4140 1.6800 1.8460 97,001 8951.00

ISA 1.5350 5.000 0.81252 2.21821 200,000 10,000.00

AHO 2.2461 5.0000 0.1000 2.2556 200,000 10,000.00

Table 2.   Comparison between the proposed AHO optimizer and other optimizers for 15 kVA transformer. 
NR   not reported.

Variable ICA10 GSA10 COA 10 PSO 16 GA 16 ISA AHO

I11act 6.2000 6.2000 6.2000 6.2000 6.2000 6.2000 6.2000

I11 6.2051 6.2081 6.2079 6.1979 6.1993 6.22572 6.2257

|I11 − I11act | 0.0051 0.0081 0.0079 0.0021 0.0007 0.02572 0.0257

I21act 6.2000 6.2000 6.2000 6.2000 6.2000 6.2000 6.2000

I21 6.1784 6.1781 6.1843 6.1672 6.1678 6.20781 6.20781

|I21 − I21act | 0.0216 0.0219 0.0157 0.0329 0.0322 0.00781 0.00781

V21act 2383.8 2383.8 2383.8 2383.8 2383.8 2383.8 2383.8

V21 2375.5 2375.3 2377.7 2371.1 2371.412.4 2383.8 2383.8

|V21 − V21act | 8.3000 8.5000 6.1000 12.7000 12.4000 0 0

ηact 99.2% 99.2% 99.2% 99.2% 99.2% 99.2% 99.2%

η NR NR NR NR NR 99.2% 99.2%

|η − ηact | NR NR NR NR NR 0 0

SAEs 8.3267 8.53 6.1236 12.735 12.4205 0.03353 0.03351
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the value of SAE achieved by the AHO (i.e., 1.12e-5) is the smallest one among the other algorithms. Figure 6 
depicts the convergence trends of both AHO and ISA methods for the tested SPT. In addition to that, compre-
hensive comparisons among PSO1, FBI1, ICA10, GSA10, GA17, JS21, BHO41, and HOA42 to the AHO as indicated 
in Tables 3 and 4.

Figure 5.   Convergence of the applied optimizers for test case 1.

Table 3.   Comparisons between estimated parameter of AHO and others for 4 kVA transformer at Full load.

Method R11[Ω] X11[Ω] R21[Ω] X21[Ω] Rm1[Ω] Xm1[Ω]

Actual1 0.400 0.200 0.400 2.000 1500.00 750.00

PSO1 0.487 0.299 0.326 1.756 1530.00 621.00

FBI1 0. 414 0.1722 0.4233 1.725 1508.00 653.00

ICA10 0.430 0.202 0.394 2.500 1200.00 700.00

GSA10 0.425 0.203 0.415 2.399 1426.00 750.30

GA17 0.598 0.226 0.336 1.957 1410.00 707.00

JS21 0.405 0.205 0.395 1.987 1520.00 712.00

BHO41 0.4512 0.2492 0.378 1.702 1478.78 684.89

HOA42 0.4254 0.2017 0.3468 2.1945 1532.90 748.22

ISA 0.3714 0.3727 0.4658 1.4261 1896.27 351.10

AHO 0.3220 0.9030 0.4690 1.234 1407.91 666.32

Table 4.   Comparisons between errors of the AHO and other optimizers for 4 kVA transformer at Full load. 
NR  not reported.

Variable PSO1 FBI1 ICA10 GSA10 GA17 JS22 BHO41 HOA42 ISA AHO

I11act 15.2825 15.2825 15.2825 15.2825 15.2825 15.2825 15.2825 15.2825 15.2825 15.2825

I11 15.2824 15.282 15.2449 15.2091 15.1714 15.2825 15.2826 15.2825 15.2825 15.2825

|I11 − I11act | 6.54e-4 6.3223e-8 0.0376 0.0734 0.1111 0.0000 1E-04 0.0000 0.0000 0.0000

I21act 15.0782 15.0782 15.0782 15.0782 15.0782 15.0782 15.0782 15.0782 15.0782 15.0782

I21 15.0782 15.0782 14.9881 15.2091 14.9574 15.0782 15.0782 15.0782 15.0782 15.0782

|I21 − I21act | 0.0000 4.5772e-8 0.0901 0.1309 0.1208 0.0000 0.0000 0.0000 0.0000 0.0000

V21act 235.5967 235.5967 235.5967 235.5967 235.5967 235.5967 235.5967 235.5967 235.5967 235.5967

V21 235.5968 235.5967 234.189 234.2083 233.709 235.5967 235.5967 235.5967 235.597 235.597

|V21 − V21act | 4.244e-5 7.1519e-7 1.4077 1.3884 1.8877 0 0 0 0.0003 0.0003

ηact 94.07% 94.07% NR NR NR 94.07% NR NR 94.07% 94.07%

η 94.01% 94.32% NR NR NR 94.08% NR NR 94.07% 94.07%

|η − ηact | 0.064 0.255 NR NR NR 0.0106 NR NR 0.0000 0.0000

SAEs 0.0647 0.255 NR NR NR 0.0106 NR NR 1.12e-5 1.12e-5



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19623  | https://doi.org/10.1038/s41598-022-24122-8

www.nature.com/scientificreports/

Transformer simulation and performance
For more proof of the precision of the AHO, the transformer model is simulated in MATLAB/Simulink using 
the extracted parameters by algorithm as in Fig. 7. The simulation is utilized to study case 2 transformer perfor-
mance, compare the results with the calculated values, actual performance, and another recognized papers with 
trusted optimizers at steady state and inrush conditions. Figure 7a–b shows the simulation main components 
and internal components, respectively while Fig. 7c indicate the transformer simulator resistive loading steps.

Transformer steady‑state operation.  The steady state performance of case 2 transformer with the 
parameters estimated by the AHO as arranged in Table 3 at unity power factor (UPF) is studied when loading 
is varied using the mentioned simulator. The effects of load changes on transformer load voltage V21 , current, 
input/output power, voltage regulation ε and efficiency η are studied as shown in Fig. 8.

Figure 6.   Convergence of the applied optimizers for case 2.

Figure 7.   Transformer simulation.
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The same data and analysis are done using the mathematical model in "Mathematical modeling of single‑phase 
transformer and statement" Section considering unity, 0.8 lagging and 0.8 leading power factors and shown 
in Fig. 9. The transformer performance under unity, and 0.8 lagging PF loading conditions are announced in 
Tables 5 and 6. The behaviours of η, V21 and ε of case 2 transformer using the parameters extracted by the AHO 
and the simulator is like results calculated by the mathematical model and recognized behaviour which assures 
the optimizer capabilities. It can be observed from Fig. 9a that the maximum efficiency is achieved at about 
45% loading at UPF, and 0.8 lagging PF. As well-known, the transformer loading percentage with respect to full 
load can be obtained as per (29) and maximum efficiency attained when the cupper losses (Pcu) is equal to iron 
losses (Pir)43.

A closer look to Tables 5 and 6, it can be observed that the calculated loading ratio at UPF and 0.8 lagging 
PF nearly equals 45% same as noticed from Fig. 9a which proves the perfection of the results generated by the 
AHO. To avoid lengthy article, the Table for leading PF is not shown, however, the plot trends are indicated in 
Fig. 9a–c like other cases with different loading%. The reader may note that the values of voltage regulations 
have a positive value for UPF and 0.8 lagging and a negative value under capacitive loading (i.e., 0.8 leading) as 
indicated in Fig. 9c.

The same performance of the mentioned transformer using the parameters estimated by recognized papers 
using trusted optimizers are compared to the performance using the AHO proposed optimizer as shown in 
Fig. 10. It can be observed that AHO could not only extract transformer parameters with the lowest error but 
also lead to performance close to the performance delivered based on the actual readings.

(29)Loading% =

√

Pir

Pcu
∗ 100

Figure 8.   Transformer performance at varied load and UPF as produced by Simulink.
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Transformer operation at inrush conditions.  Case 2 transformer inrush current is investigated con-
sidering the transformer inrush data in Table 7 including extracted parameters by the AHO. λ0 is the initial flux 
linkage value. It is well-known that the study of the inrush current behavior of electric transformer is essential 
for proper sizing of protective devices to avoid the nuisance tripping during the energization.

The obtained results for current, flux linkage and magnetization curves are shown at Figs. 11, 12 and 13 and 
14 which match the expected inrush performance.

In addition to the above, the inrush current behaviour of the 4 kVA transformer using results of another 
optimizers (e.g., PSO, FBI, JS, and ISA) are compared against the AHO and actual values as depicted in Fig. 14. 
It can be observed that all of them are close to the actual inrush behaviour.

Figure 9.   Case 2 transformer performance analysis utilizing AHO’s extracted parameters.

Table 5.   Case 2 transformer performance for different loading% at UPF.

Loading factor 0.02 0.22 0.306 0.382 0.505 0.746 1.004 1.41

RLoad(Ω) 780 70 50 40 30 20 14.6 10

XLoad(Ω) 0 0 0 0 0 0 0 0

V11(V) 250 250 250 250 250 250 250 250

V21(V) 249.4 246.7 245.5 244.432 242.61 238.85 234.53 226.91

I11(A) 0.623 3.727 5.108 6.3082 8.285 12.14 16.269 22.9

Io1(A) 0.414 0.413 0.411 0.4102 0.409 0.406 0.4033 0.397

I21(A) 0.320 3.524 4.910 6.1102 8.08 11.94 16.064 22.6

Pcu(W) 0.173 10.297 19.713 30.33 52.78 114.39 206.3 410.48

Pfe(W) 44.215 43.824 43.641 43.47 43.194 42.59 41.9 40.63

Pin(W) 124.1 923.59 1268.78 1567.47 2057.99 3009.58 4015.75 5600.10

Pout(W) 79.713 869.47 1205.4 1493.67 1962.0 2852.58 3767.56 5149.0

η% 64.232 94.140 95.0 95.29 95.33 94.78 93.8196 91.94

ε% 0.257 1.318 1.799 2.227 2.95 4.457 6.1863 9.23
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Table 6.   Case 2 transformer performance for different loading% at 0.8 lagging PF.

Loading factor 0.016 0.174 0.242 0.300 0.396 0.579 0.772 1.078

RLoad(Ω) 780.000 70.000 50.000 40.000 30.000 20.000 14.600 10.000

XLoad(Ω) 585.000 52.500 37.500 30.000 22.500 15.000 10.950 7.500

V11(V) 250.000 250.000 250.000 250.000 250.000 250.000 250.000 250.000

V21(V) 249.116 244.239 242.145 240.336 237.369 231.614 225.494 215.677

I11(A) 0.651 3.162 4.243 5.174 6.695 9.627 12.715 17.609

Io1(A) 0.414 0.411 0.409 0.408 0.406 0.402 0.398 0.391

I21(A) 0.256 2.791 3.874 4.807 6.330 9.265 12.356 17.254

Pcu(W) 0.167 6.875 12.839 19.459 33.230 70.109 123.683 239.516

Pfe(W) 44.179 43.460 43.151 42.885 42.450 41.609 40.719 39.304

Pin(W) 95.267 595.732 806.506 986.525 1277.690 1828.355 2393.336 3255.878

Pout(W) 50.920 545.398 750.517 924.181 1202.010 1716.637 2228.934 2977.059

η % 53.450 91.551 93.058 93.680 94.077 93.890 93.131 91.436

ε% 0.354 2.304 3.142 3.866 5.052 7.355 9.802 13.729

Figure 10.   Case 2 transformer performance utilizing the extracted parameters using different optimizers.

Table 7.   Transformer Inrush terms.

�τ(µs) R11(Ω) L11(mH) Rm1(Ω) m1(mA) m2(Wb
−1) θ(°) λ0 (Wb)

83.333 0.322364 2.87 1407.91 63.084 2.430 0 0.826
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Human and animal rights.  This article does not contain any studies with animals performed by any of 
the authors.

Conclusions
AHO has been utilized to extract the unknown transformer parameters using its equivalent model. The actual 
transformer nameplate data is used only to achieve this objective by minimizing the sum of absolute errors (SAEs) 
among some selected variables. Two test cases have been demonstrated complete with necessary comparisons 
and further validations. The minimum obtained values of SAEs are 0.033514 and 1.12e-5 for 15 kVA and 4 kVA 
test cases, respectively. To assure the effectiveness of the proposed tool, the obtained parameters have been used 
to study the transformer behavior and compared with the well-known performance. The percentage of loading 
to realize the maximum efficiency has been assigned and the inrush behaviors of transformers have been car-
ried out. In addition to that, the performance of voltage regulations under varied loading conditions at different 

Figure 11.   Simulation Inrush current.

Figure 12.   Simulation Flux linkage.

Figure 13.   Simulation magnetization curve (flux linkage and current).
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power factors have been emphasized. The results are very close to the practical ones and proves the efficacy 
of the proposal. It may be suggested to extend this current work by utilizing the empirical and experimental 
dataset of large scales of power transformers to define more accurate models including the stray capacitors of 
the equivalent circuits.

Data avaliability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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