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Investigation of fragment 
separation during a circular 
saw blade cutting rock based 
on ANSYS/LS‑DYNA
Zhiwen Wang1, Qingliang Zeng1,2*, Lirong Wan1, Zhenguo Lu3 & Jun Zhou1

Circular saw blades are widely used in stone processing. The circular saw blade cutting hard rock 
numerical simulation model based on ANSYS/LS-DYNA was established to investigate the complex 
dynamic problem in rock cutting. The failure mechanism of the rock and the influence of cutting 
parameters on the cutting force and rock fragments were studied by numerical simulation. The results 
demonstrated that the failure modes of the rock were mainly tensile failure with some shear failure 
and compressive failure. The cutting force and the number of fragments increased with the feed speed. 
With the increasing circular saw blade rotational speed, the cutting force and the number of fragments 
decreased and tended to stabilize. With the distance between the circular saw blades increasing, the 
cutting force and rock fragments number increase and then maintain basic stability, and when the 
distance between double circular saw blades reaches 25 mm, it will form a completed rock plate and 
the interaction of circular saw blades will decrease. The numerical simulation can accurately simulate 
rock breakage and force when a circular saw blade cuts rock.

Circular saw blades are frequently used in many industries, such as those that cut hard rock, concrete and glass. 
For hard rock formations, the method of rock breaking and the cutting force during the rock cutting process with 
circular saw blades are essential for researchers designing circular saw blades and other cutting tools.

Many researchers have conducted many theoretical studies and experimental trials and adopted various 
numerical simulation methods to consider the cutting force in the process of cutting rock with a circular saw 
blade. Xu et al. carried out a series of experiments to study the cutting characteristics and the force ratio in 
circular sawing1 and investigated the energy and forces of circular saw blade grinding of granite2. Huang et al. 
proposed a predictive model of sawing power based on tangential force3. Aslantas et al. researched the effect 
of axial cutting force on a circular saw blade used for cutting marble4. Karakurt applied the Taguchi method 
to determine a circular saw blade’s cutting force and operational variables5. Specific cutting energy is a critical 
evaluation index of circular saw blade cutting performance. Aydin et al. used an experiment to research the 
influence of the operating variables and rock properties on specific energy6. Yurdakul et al. studied specific 
cutting energy prediction by statistical methods7. Ersoy et al. investigated the effects of rock parameters on the 
cutting property of circular saw blades with different feed rates and cutting depths8. Kahraman et al. established 
models that used to evaluate slab production and rock properties with a series of performance measurements 
of large-diameter circular saws9.

Many scholars have studied the sawability, damage, rock fragments and wear of circular saw blades. Güney 
established a model to predict the performance of a large-diameter saw based on rock surface hardness, which 
can be used to predict the sawability of carbonate10. Fener et al. used single and multiple regression analysis to 
research the correlations between sawability and rock properties 11. Ersoy et al.12 and Aydin et al.13 researched 
the influence of operating parameters and the characteristics of the cut rock on the wear of a circular saw. Zeng 
et al.14 studied the influence of cutting parameters on coal and rock damage with circular saw blade cutting. 
Tang et al.15 and Liu et al.16 researched rock damage based on a statistical rock damage constitutive model. 
The fragments of rock were studied by Lu et al. based on LS-DYNA17. Aydin et al.18 investigated the saw blade 
performance prediction based on the artificial neural network and regression analysis. Tumac et al. had studied 
the cutting performance with the large diameter circular saw blade19 and the prediction of the large diameter 
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sawability performance20. Turchetta et al.21 studied the cutting force and wear of the circular saw blade under 
high-speed. Wang et al.22 investigated the circular saw blade cutting rock with numerical simulation method. 
However, the paper studied the cutting parameters of the saw blade influence on rock damage and cutting force, 
in the process of circular saw blade cutting rock with constant cutting depth. But there is less research about the 
rock fragment with circular saw blade cutting, and they have investigated the cutting parameters of the flexible 
saw blade influence on the saw blade deformation and rock damage without the rock fragment in the process 
of circular saw blade cutting into rock vertically23. Lu et al.24 have investigated the conical pick breaking rock 
plate which is formed by the circular saw blade cutting rock, but there is no investigation about the circular saw 
blade cutting rock. Tao et al.25 studied the circular saw blade cutting stone with the nonlinear dynamics finite 
element simulation method, the paper studied the movement rule and wear mechanism. Wicaksana et al.26 have 
investigated the pick cutter breaking rock in cutting process with numerical simulation method considering rock 
dynamic properties, in the paper, the investigation is considering dynamic properties of rock.

Previous studies have attained many advancements in circular saw blades. Most researchers have studied the 
cutting force, specific cutting energy, rock sawability and circular saw blade wear in the process of circular saw 
blade cutting rock. And there are many researchers researching breaking rock (stone) with other cutter. There 
is less investigation about the circular saw blade cutting rock forming many fragments and the rock damage. 
Therefore, the manuscript has investigated the cutting parameters of circular saw blade cutting into rock verti-
cally influence on rock fragments and rock damage with numerical simulation method. And the numerical 
simulation is modified with the circular saw blade cutting rock experiment. The feed speeds of the circular saw 
blade are set as 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, 0.26, 0.28 and 0.30 m/min, the rotational speeds are 
set as 1000, 1400, 1800, 2200, 2600 and 3000 r/min, and the distance of double circular saw blades are set as 10, 
15, 20, 25, 30, 35, 40, 45, and 50 mm, to investigate the influence of cutting parameters on circular saw blade 
cutting performance and the rock fragments in the process of circular saw cutting rock. Therefore, the simula-
tion results could guide rock processing.

Methods
The mathematical expression of the cutting force.  In the circular saw blade cutting rock process, the 
cutting force is composed of the normal force, tangential force, and axial force, as shown in Fig. 1. The normal 
force is formed by the compression between the circular saw blade and rock. The relative sliding friction between 
the saw blade and the rock forms the tangential force. The axial force is formed by extruding fragments between 
circular saw blade and rock wall. And the effect of the diamond abrasive particles of a diamond saw blade on 
the cutting force during rock cutting is shown in Fig. 1. Comparing with the cutting force, normal force and the 
tangential force, the axial force is too small to simplify the solving model. Therefore, the equations for solving 
the tangential and normal forces during the circular saw blade cutting rock are shown in formulas (1) and (2)27.

where ls is the arc length of a single segment, lw is the arc length of a single flume, δ is the continuous ratio of the 
saw blade, and δ = 0.713.
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Figure 1.   The circular saw blade cutting hard rock model.
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where C is the number of effective abrasives on a single block, Aa is the number of diamond abrasives cutting 
per unit area, η is the ratio of the effective abrasive particles to the diamond abrasive particles actually involved 
in cutting and generally is 2/3, and b is the section width of the circular saw blade.

where lc is the sawing arc length, D is the blade diameter, and β is the sawing arc angle.

where Cp is the single diamond abrasive cutting depth.
The maximum cutting depth of a single diamond abrasive is presented as formula (7),

where θ is half of the angle at the cutting bottom and is taken as 60 degrees, Vf  is the feed speed, and Vr is the 
rotation speed.

According to the Fig. 1, the solutions of tangential and normal forces can be expressed as follows:

where Ft is the tangential force, Fn is the normal force, Fx is the horizontal force, and Fy is the vertical force. 
Among them, the contact arc length of the circular saw blade and the rock determined the value of k ; however, 
k is a dynamic variable.

The rock constitutive model.  The rock is a quasi-brittle heterogeneous material. The RHT constitutive 
model is applied to simulate the rock, which can be used to research rock damage with circular saw blade cutting. 
The RHT constitutive model can simulate the rock performance, which has 34 parameter and most parameters 
can be tested and calculated accurately. The RHT model can be applied to describe the failure strength, initial 
yield strength and residual strength of rock with load. The RHT model includes three cap surfaces, residual 
strength surface, failure surface and elastic limit surface, which helps the constitutive model to express the rela-
tionship between the hydrostatic pressure, failure strength and elastic limit.

Elastic limit surface function equation:

While the cap of the yield surface is represented by

where P0 is the elastic limit of the material; Y∗
cla is the ratio of the elastic strength to the ultimate strength of the 

material; P∗ is the normal hydrostatic pressure.
The corresponding g failure function Y∗

fail of the failure surface is expressed as follows:

where σ ∗
eq is the normalized equivalent stress and normalized as
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where FRATE(ε̇) is the dynamic strain rate enhancement factor, shown as the following equation.

where R3(θ) is the radial radius corresponding to any stress angle and the radial meridional radius ratio, shown 
as the following equation.

in which, θ = cos−1
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/3 , 0 ≤ θ ≤ π/3,

which, 0.51 ≤ Q2 ≤ 1.0, which A, N, ∂ , δ,Q2 and BQ are the material parameters.
The residual strength surface is described below,

where, B is the residual failure surface constant; and M is the residual failure surface index.
The front description is as follows: If the front is located between the elastic limit and the maximum failure 

surface, then

where, εpl,eq and εplhard/eq are the plastic strain corresponding to the current failure surface and the maximum 
failure, respectively.

When the front is located between the maximum failure surface and the residual failure surface, the failure 
surface depends on the amount of damage D.

where, εf ,min is the minimum plastic strain at the time of material failure, taking 0.01, D1 and D2 are the material 
damage constants; εP is the plastic strain.

The rock damage model.  The cracks inhomogeneous propagation in the space causes the derived materi-
als anisotropy, and the anisotropic behavior needs to be considered to build the constitutive damage relation 
with the external load action. Each crack is given a damage value to describe the crack state, with considering 
the nork vector discreteness. The fracture families damage variables are defined as a set, which is expressed as 
formula (25), di is the damage internal variable of the i-th crack.

It should be considered that the rock matrix contains a single group of fractures firstly to simplify. Assuming 
that the normal vector of the group fractures is n, and the d = d(n) , used to represent the fracture distribution 
density, that is, the damage variable in generally. It is necessary to determine the fracture matrix system free 
energy expression to build a damage mechanics model based on thermodynamics. Only considering the energy 
dissipation of crack propagation, the strain-free energy of the system is the function of the macroscopic variable 
ε and the damage variable d, as plotted in function (26)

where, Chom(d) is the damaged material effective elastic tensor.
Which can be obtained by deriving the free energy from the internal variables. Firstly, establish the macro 

stress–strain relation as shown in formula (27),

The thermal force related to the damage variable is obtained, which is, the damage drive force.
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According to the second thermodynamics law, the energy dissipation caused by fracture propagation is non-
negative, and it satisfies the Eq. (29)

In the framework of the thermodynamics, the damage criterion based on the strain energy release rate is 
usually adopted, shown as Eq. (30)

where, R(d) is the resistance function of damage evolution (crack propagation), For the damage criterion (31). 
The loading conditions are as follow:

Assuming that the rock is orthorhombic material, the damage evolution obeys the orthogonalization criterion.

where, �d is the damage multiplier.
Similar to the classical plastic theory, the damage evolution equation considering loading and unloading 

condition is as follow,

The damage multiplier �d can be determined by the damage consistency condition (g = 0 and ġ = 0 ), as follow,

In addition, the stress–strain relationship in the form of rate can be established based on the damage evolu-
tion criterion. Firstly, the macroscopic stress–strain relationship is expressed in differential form as the Eq. (35)

And there is the following relation, shown as (36)

And then get the equation as (37)

where, Ctan is the tangential elastic tensor of the material, the specific expression as (38)

among them, the damage hardening parameters Hd = −∂g/∂d.

The geometric model and boundaries.  A three-dimensional model of cutting rock with a circular saw 
blade is shown in Fig. 2. The rock and circular saw blade were simplified as an 800 × 300 × 300 mm cuboid, and 
the circular saw blade model has a 600 mm diameter and 5 mm thickness with 24 U-shaped teeth. The circular 
saw blade was brazed to the periphery of a circular steel core. The material model RHT and the 8 node-hexa-
hedral SOLID_164 are applied to mesh the rock model, element size is set as 1 mm by the MeshTool. The paper 
mainly studies the rock fragments and cutting force of the circular saw blade, the circular saw blade is meshed 
with RIGID material. The key parameters of rock are shown as Table 1. The key material parameters of rock 
constitutive model and the saw blade model are applied in the numerical simulation model, presented in Tables 2 
and 3. The whole constraint was added to the bottom surface of the rock, restricting the displacement in the x, 
y, z directions (to the right and left of the surface and in front and behind of the surface). The non-reflection 
boundaries, which are not cut, were added to the rock’s surface to simulate the actual rocks accurately. Aim to 
solve the interaction problem between the circular saw blade and the rock, the automatic Lagrange/Lagrange 
coupling was applied28. The y and z-directions displacement constraints and the x-axis and y-axis rotation con-
straints were used for the circular saw blade. The linear motion in the y-direction and rotation around the x-axis 
were applied to the circular saw blade. The time step was set as 0.01 s to output calculation file. The k file was 
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when Fd < R(d), ḋ = 0, (fracture without expandion)

when Fd = R(d), ḋ > 0,
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(35)σ̇ = Ċhom : ε + Chom : ε̇.

(36)Chom : ε =
∂Chom : ε

∂d
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imported into ANSYS/Slover for calculation with the workstation, 40 computing cores. This paper investigated 
the rock fragmentation mechanism with circular saw blades during the rock cutting process.

Modification of the numerical simulation.  Established the circular saw blade cutting rock test bench 
to conduct the circular saw blade cutting into rock vertically. The circular saw blade cutting rock test bench is 
shown as Fig. 3. The high-speed camera is applied to photograph the circular saw blade cutting rock, the force 
sensor and the force signal acquisition system are applied to collect the circular saw blade cutting rock force. The 
circular saw blade cuts into rock vertically, with rotational speed of 1000 r/min and feed speed of 0.20 m/min.

The experimental results of circular saw blade cutting into rock vertically, are presented in Fig. 4 (1). The 
cutting force, normal force, tangential force and axial force of the experimental and numerical simulation results 

Figure 2.   The circular saw blade cutting rock numerical simulation model.

Table 1.   The key parameters of rock properties.

Density(kg/m3) Compressive strength (MPa) Tensile strength (MPa) Poisson’s ratio

2564.76 108.45 6.67 0.209

Table 2.   The key material parameters of rock properties in the numerical simulation.

Parameter symbols Value Parameter symbols Value Parameter symbols Value Parameter symbols Value

ρ 2670 kg/m3 β c 0.0107 A3 9.04e10 T2 0

fc 1.0848e8 β t 0.0157 B0 1.22 G 2.51e10

α 0 1.18 A1 3.57e10 B1 1.22 ε̇c
0

3.0e−5

pel 3.4e7 A2 1.64e11 T1 8.71e9 ε̇t
0

3.0e−6

ε̇c 3e19 D1 0.04 D2 1 g∗t 0.7

A 1.6 ε̇t 3e19 n 0.61 f ∗t 0.18

f ∗s 0.13 B 0.0105 εmp 0.01 pcomp 6e8

N 3.0 Af 1.6 Q0 0.6805 NF 0.61

Table 3.   The key material parameters of circular saw blade properties in the numerical simulation.

Parameter Value Parameter Value Parameter Value

Density 7800 kg/m3 Shear modulus 2.1e12 Pa Poisson’s ratio 0.3



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17346  | https://doi.org/10.1038/s41598-022-22267-0

www.nature.com/scientificreports/

error is less than 0.05, therefore the numerical simulation is accurate. And the results of the experiment and 
numerical simulation are shown in Fig. 4 (2), the results of the numerical simulation indicated that the rock 
breaking forming several fragments with the circular saw blade cutting. And the results of experiment shown 
that there are several rock fragments. The results of the circular saw blade cutting rock experiment modified the 
numerical simulation which helps to improve the accuracy of numerical simulation.

Results and discussion
The process of dynamic rock fragmentation.  The numerical simulation results of the rock fragmenta-
tion process when cutting rock with a circular saw blade at an advanced speed of 0.3 m/min and a rotational 
speed of 3000 r/min are shown in Fig.  5. In the process of rock cutting, the circular saw blade compresses 
the rock, the damage field of the rock formed and propagated in the initial stage, and then the damage zone 
expanded. The damage region of rock was generated at the contact position around the circular saw blade, 
as depicted in Fig. 5a. The elements behind the circular saw blade were first affected by the saw blade, which 
resulted in damage and strain. The obvious strain appeared in the front center of the contact area of the circular 
saw blade and rock, and closer to the front of the centre of the contact position of the circular saw blade and rock 
failure, the rock element strain was distinct, with the edge of the saw blade segment exerting the cutting force on 
the rock elements, as shown in Fig. 5b. Most of the elements on both sides of the circular saw blade did not fail 
primarily because the rock generated elastic deformation. As shown in Fig. 5c, the damage field extended with 
the continuation of the rock cutting, and some elements in the damage field failed. The rock element deforma-
tion occurred at the position of the circular saw blade cutting rock. While the saw blade rotated, the element’s 
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deformation contacting the edge of the saw blade segment was obvious. As the cutting depth increased, the 
contact area of the circular saw blade and the rock increased, and the damage field length increased; however, 
the width of the damage field decreased. The number of failure elements increased as the circular saw blade cut 
rock, plotted in Fig. 5d. The damage area decreased with the circular saw blade cutting rock, and the rock broke 
up to form fragments, as shown in Fig. 5e. By comparing Fig. 5d,e, it is apparent that the damage field on both 
sides of the circular saw blade decreased and the number of failure elements increased.

Some fragments formed as the cutting depth increased and the damage area decreased. Some elements in 
the damage field did not fail, primarily due to the rock-generated elastic deformation and compressive stress. 
Figure 5f shows that many fragments fell off the rock, and the damage zone decreased. The position of the crack 
was random owing to the rock is a kind of heterogeneous material, as shown in Fig. 5d–f. As plotted in Fig. 5f, 
more fragments appear without regularity, forming some fracture regions. In the circular saw blade’s front and 
rear damage regions, the elements failed to simulate the rock-forming rock fragments as the saw blade cut the 
rock. The fragments were mainly formed in the middle part of the cutting area, and the larger fragments were 
separated from the intermediate area of the intersection zone of the circular saw blade and the rock.

Comparing Fig. 5d–f, with the cutting depth increasing, it is apparent that the damage field decreased, the 
elements failed, and some fragments formed in the rock cutting area. As the cutting depth increased, the damage 
area declined, and the number of failure elements and fragments increased. Deletion of failure elements caused 
some elements that did not reach the failure criteria to separate from the rock and form fragments. Most frag-
ments were formed at the middle part of the cutting area on both sides of the circular saw blade. The circular saw 
blade cut rock with a high rotational speed, and many fragments formed, becoming the medium of the interac-
tion of the saw blade and the rock on both sides of the saw kerf, which was the main reason for the development 
of the axial force. The force applied on both sides of the saw slot is more significant in the middle of the cutting 
area, causing serious breakage and a larger damage field.

To research the damage distribution of the rock, different cross-sections were used, as shown in Fig. 6. Six sec-
tions in the y-direction and one section in the x-direction indicated that the rock fragmentation and the damage 
were distributed along the circular saw blade in the rock interior. The main damage zone was distributed along 
the arc and on both sides of the circular saw blade. The damage field was distributed randomly, and the rock did 
not fail or form fragments falling off the rock. Comparing the six profiles (Fig. 6b–g) corresponding to Fig. 6a, it 
can be concluded that the distribution of the damage field along the longitudinal depth of the saw blade is closely 
related to the rotational speed and feed speed. The damage zone is not uniformly distributed in Fig. 6a; the dam-
age field increases from the left to the middle and decreases from the middle to the right with an anticlockwise 
rotational speed and downward feed speed. The area with the greatest damage is in the middle, and the left side 
has the least damage. Due to the effect of the simulated rotational speed and feed speed on rock, the saw blade 
damage to the rock is enhanced. The damage area on the right side is larger than that on the left side owing to 
the fragment pair formed by the saw blade cutting. The damage field is distributed randomly at the upper part 
of the arc edge of the saw seam, and the rock fragments are mainly at the upper surface.

The distributions of the different cross-sections clearly showed the different erosion distances between the 
two sides of the saw blade and the rock at different depths. The circular saw blade cutting depth has a significant 
influence on cutting performance. At a larger cutting depth, there are many cracks intersecting and forming too 
many fragments are caused by the isotropy and continuity of the rock. It is indicated that the numerical simula-
tion of rock cutting with a circular saw blade can reproduce the rock fragmentation process.

(a) (b) (c) (d) (e)

(f) (g)

Figure 5.   The circular saw blade cutting rock with a cutting depth of 10 mm, feed speed of 0.3 m/min, 
rotational speed of 3000 r/min.
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The rock failure mode.  To investigate the rock fragmentation mechanism for the interaction between the 
circular saw blade and rock, five failure elements were selected in the crushing field at the first contacting point 
between the circular saw blade and rock during the circular saw blade cutting into rock vertically, as presented 
in Fig. 5, to gauge the stress, pressure and damage value versus time to research the failure in rock cutting with 
a circular saw blade, as shown in Fig. 7. A positive value of the pressure indicates compressive stress, while a 
negative value indicates tensile stress. There may be three different kinds failure modes occurring in the circular 
saw blade cutting rock process, including compressive, tensile and shear failure. The research method is the 
similar with the reference22 and likely to reference25. While the element tensile stress reaching 18.2 MPa, indi-
cated tensile failure, the shear stress reaching 39.7 MPa predicted shear failure, otherwise, the element exhibits 
compressive failure.

As shown in Fig. 7a, the test point 1 (element 124,123) pressure reached 55.1 MPa; the shear stress was 
21.5 MPa, which is less than 39.7 MPa, and the tensile stress was less than the tensile strength threshold of 
18.2 MPa and the damage value reached 1, which be determined that test point 1 is a compressive failure. The 
damage value of test point 2 got 1, and the tensile stress reached 18.18 MPa due to a relatively low extraction 
value; the shear stress was 16.83 MPa, which means that failure did not result from the shear stress, indicating 
that the test point 2 failure mode was a tensile failure, shown in Fig. 7b. For test point 4, shear stress reached 
39.7 MPa; however, the tensile stress and strength stress was less than the tensile strength of 18.2 MPa, which 
indicated shear failure.

Among the five test points, 3 points exhibited tensile failure, 1 shown compressive failure, and 1 indicated 
shear failure. So, it can be summarized that the rock elements failure mode is mainly tensile failure; a few are 
compressive and shear failures, as shown in Table 4.

(b) (c) (d) (e) (f) (g)

(g)(b) (c) (d) (e) (f)

(a)

Figure 6.   The distribution of different cross-sections in the y-direction.
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Figure 7.   Pressure and corresponding damage versus time in different positions.
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The influence of the feed speed on cutting performance.  The circular saw blade cut hard rock with 
a rotational speed of 2000 r/min and feed speeds of 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, 0.26, 0.28 and 
0.30 m/min. Figure 8 shows the fragments from the circular saw blade cutting rock with feed speeds of 0.10, 0.14, 
0.18, 0.22, 0.26 and 0.30 m/min. As the feed speed increased, the number of rock fragments noticeably increased. 
When the feed speed was 0.10 m/min, the fragments were less, and the extent of the damage area of the rock 
was indistinct with increasing feed speed. The damaged elements did not fail to decrease. The higher feed speed 
accelerates the damage of the rock model; when the damage value reaches 1, the element fails and is deleted. 
When the feed speed was low, the elastic or plastic deformation of the rock element did not reach the failure 
strength of the rock element; however, when the feed speed was higher, the strain of the rock reached the failure 
strain, causing the rock element to fail and be deleted. The feed speed greatly affects rock fragment formation, 
and rock fragments increase with increasing feed speed.

Table 4.   The results of the test points.

Test point 1 2 3 4 5

Compressive stress (MPa) 55.1 32.1 23.21 27.18 24.89

Tensile stress (MPa)  − 8.7  − 18.18  − 18.19  − 16.32  − 18.16

Shear stress (MPa) 34.6 29.32 18.76 39.7 15.64

Damage 1 1 1 1 1

0.26 m/min 0.30 m/minFragments number 14 Fragments number 17

0.10 m/minFragments number 5 0.14 m/minFragments number 8

0.18 m/minFragments number 11 0.22 m/minFragments number 13

(a) (b)

(c) (d)

(e) (f)

Figure 8.   Rock fragmentation with a circular saw blade cutting at various feed speeds.
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Numerical simulations were carried out on a circular saw blade cutting rock at different feed speeds. The 
force was obtained from the results of the numerical simulation. The cutting, normal, tangential and axial forces 
were compared with different cutting speeds to investigate the feed speed influence on force. The cutting force 
increased as feed speed increased, as indicated in Fig. 9a. The normal force curves are indicated in Fig. 9b. And 
the trend of normal force changing with feed speed is the same as cutting force, and normal force increases with 
increasing feed speed. The feed speed greatly influences the force, and the cutting force increases with increasing 
feed speed. The feed speed’s tangential force and axial force curves are plotted in Fig. 9c,d, and the tangential 
force and axial force increase with increasing feed speed, which is coincided to the analysis of Ref.23.

The influence of the rotational speed cutting performance.  The fragments of the circular saw blade 
cutting rock at different rotational speeds of 1000, 1400, 1800, 2200, 2600 and 3000 r/min at a feed speed of 
0.20 m/min are plotted in Fig. 10. Figure 10 shows that the number of rock fragments decreases with the increase 
in rotational speed. It is evident that the rotational speed significantly influenced fragment formation and the 
damage field. The rock damage field change trend is similar with the Ref.22, however, the rock fragments with 
various parameters have not been investigated. The rock fragment is related to rock damage. Therefore, the rock 
fragments and rock damage should be discussed together. The rock damage area with the circular saw blade 
decreased with increasing rotational speed, while the number of rock fragments decreased.

The influence of the rotational speed on force is shown in Fig. 11. As the rotational speed increased, the force 
noticeably decreased, and the range of the decrease also reduced. With the increase in the rotational speed, the 
units of the circular saw blade advanced, the number of rotational cycles increased, the amount of cutting of 
the hard rock by one process decreased, and the interaction force between the circular saw blade and the hard 
rock decreased. In addition, the amount and volume of rock fragments decreased, and the amount of cutting 
per cycle decreased. The rotational speed of the circular saw blade increased, causing the damage zone on both 
sides of the saw kerf to decrease. With increasing rotational speed, the amount of scraping between the circular 
saw blade and the rock wall on both sides of the saw slot decreased; the interaction between the saw blade and 
the rock walls on both sides of the saw slot decreased, causing a decrease in the axial force.

A three-dimensional force cloud image with different feed and rotational speeds was compared and analysed. 
The influence of the feed speed on force is more noticeable than that of the rotational speed. The rotational speed 
decreased as the feed speed increased, causing the force to increase. Figure 12 shows that the cutting force of 
the circular saw blade increases as feed speed increase and rotational speed decreases. The cutting parameters 
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Figure 9.   The force responses under different rotational speeds.
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have a great influence on force. A larger rotational speed and a smaller feed speed are selected to cut hard rock 
to reduce the force. However, the lower feed speed and greater rotational speed decrease the cutting efficiency.

The effect of the distance between the double circular saw blades on the cutting perfor‑
mance.  Double circular saw blades cutting hard rock with a feed speed of 0.3 m/min; a rotational speed 
of 3000 r/min; the spacings between the double saw blades of 10, 15, 20, 25, 30, 35, 40, 45, and 50 mm were 
compared. The rock fragmentation results are plotted in Fig. 13. When the distance was small, no rock slab was 
formed between the saw blades; the rock was broken entirely, and the number of rock fragments formed by 
interaction with the circular saw blade was small. Small spacing between double circular saw blades resulted in 
the overlapping of the force exerted by the circular saw blades on the rock, which reached the failure strength of 
the rock and removed the failed rock, forming a larger saw gap. When the spacing between the double saw blade 
was small, it was difficult to form a complete slab between the double circular saw blades. When the distance 
between the double saw blades reached 15 mm, a section of rock slab was formed between the double saw blades. 
Because of the superposition of the saw blade force, the middle part of the rock slab failed and was broken, and 
there were many rock fragments formed, as shown in Fig. 13b. The amount of rock slab increased when the space 
between the saw blades reached 20 mm; the rock slab was less broken, and there were fewer rock fragments than 
when the space between the blades was 15 mm, as depicted in Fig. 13c. As the spacing between the circular saw 
blades increased, the width of the rock slab formed increased. The circular saw blade cutting rock formed many 
fragments, but as the distance between the two circular saw blades was small, the number of fragments was less.

The forces of the double circular saw blades with various spacings cutting rock are plotted in Fig. 14. The cut-
ting force increased first and then stabilized with increasing spacing. The normal and tangential force variations 

1000 r/minFragments number 16

1800 r/minFragments number 13

1400 r/minFragments number 15

2200 r/minFragments number 12

2600 r/minFragments number 11 3000 r/minFragments number 8

(a) (b)

(c) (d)

(e) (f)

Figure 10.   Rock fragments from the circular saw blade cutting at various rotational speeds.
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with increasing spacing were similar to cutting force. However, the variation in the axial force with saw blade 
spacing was quite different, as shown in Fig. 14d. The axial force varied, decreasing first and stabilizing with 
increasing spacing. The influence of the distance on the axial force is obvious, as presented in Fig. 14d. When the 
space reached 25 mm, the cutting, normal, tangential, and axial forces fluctuated steadily. The forces of circular 
saw blade 1, and circular saw blade 2 are different. Owing to the rock being an anisotropic material, the force of 
the saw blades had a slight difference between the two circular saw blades. The double saw blades cut the rock 
with the same rotational speed and feed speed, and the uncut area between the saw blades was superimposed by 
the same force field of the saw blade, which reduced the cutting force. However, as the distance of two circular 
saw blades increased, the stress overlap between the saw blades decreased, and the cutting force, normal force, 
and tangential force increased. The axial force of the circular saw blades decreased because the axial interaction 
between the saw blades decreased with increasing separation distance. The axial force is mainly caused by the 
extrusion of fragments between the rock and saw blade. When the distance between the circular saw blades was 
over 25 mm, the axial force of the saw blades tended to be stable.

The cutting parameters on specific cutting energy.  The specific cutting energy of the circular saw 
blade cutting into rock is an important index of the cutting performance. And the cutting parameters of circular 
saw blade have great effect on specific cutting energy. The specific cutting energy of circular saw blade is defined 
as the ratio of cutting power consumption of saw blade to the sum volume of the broken volume and the rock 
damage value of 1 volume. The research results of the circular saw blade specific cutting energy. The specific 
cutting energy curves with various feed speeds, rotational speeds and the distance between double saw blades 
are shown in Fig. 15.

The feed speed has great influence on specific cutting energy, and the relationship between specific cutting 
energy consumption and feed speed is quadratic function. With the feed speed increasing, the specific cutting 
energy increasing, as plotted in Fig. 15a. The cutting force of the circular saw blade increases with the feed speed 
increasing, which caused the circular saw blade cutting power increasing, however, the rock broken volume has 
little change. And the R2 fitting curve function is 09835, and the P value is 9.79e−4, indicated the fitting function 
is accurate and reliable. The specific cutting energy consumption declines with the rotational speed increasing, as 
shown in Fig. 15b. The R2 fitting cure function is 0.9878 and the P value is 2.24e−4, indicated the fitting function is 
accurate and reliable. The cutting power consumption declines with the rotational speed increasing, which caused 
the specific cutting energy declining with the increasing rotational speed. The distance between the double saw 
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blades influences the specific cutting energy of the saw blade greatly. The increasing distance between double saw 
blades causes the specific cutting energy increasing, however the increasing speed declining, shown in Fig. 15c. 
Comparing with the specific cutting energy of saw blade cutting rock with various cutting parameters research 
results in the Ref.22, the specific cutting energy has same coinciding variant form.

Conclusions
This paper established a three-dimensional simulation model about the circular saw blade cutting rock based 
on ANSYS/LS-DYNA to research the effect of cutting parameters on cutting performance and rock fragment 
mechanisms during vertical cutting of rock with a circular saw blade.

(1)	 The numerical simulation results indicated that the rock’s failure modes are primarily tensile failure, and 
a few modes are a shear failure and compression failure.

Figure 12.   3-D force cloud image of feed velocity and rotation speed.
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(2)	 The cutting parameters have an obvious effect on the cutting force and number of rock fragments in circular 
saw blade cutting rock process. With increasing rotational speed, the cutting force of the circular saw blade 
and the number of rock fragments decreased and then tended to be stable. However, the cutting force and 
the number of fragments increased with increasing feed speed.

(3)	 With increasing spacing between double circular saw blades, the cutting force, normal force and tangential 
force increased, but the axial force decreased. The spacing between the double circular saw blades greatly 
influenced formation of a slab between the double circular saw blades. As the spacing between the circular 
saw blades increased, the number of rock fragments increased, and the rock slab tended to be unbroken.

(4)	 The cutting parameters have great influence on specific cutting energy. With the feed speed and distance 
between double saw blades increasing, the specific cutting energy increase. But the increasing rotational 
speed causes the specific cutting energy declines.

The investigation results can be used to select the appropriate cutting parameters to guide the rock-cutting 
process with circular saw blades.

Distance 10 mmFragments number 7 Distance 15 mmFragments number 43

Distance 20 mmFragments number 30 Distance 25 mmFragments number 35

Distance 40 mmFragments number 34 Distance 50 mmFragments number 19

(c)

(b)(a)

(d)

(e) (f)

Figure 13.   Rock fragments with various spacings between double circular saw blades.
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