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Fluctuating insect diversity, 
abundance and biomass 
across agricultural landscapes
Axel Hausmann1, Werner Ulrich2, Andreas H. Segerer1, Thomas Greifenstein3, 
Johannes Knubben3, Jerôme Morinière4, Vedran Bozicevic4, Dieter Doczkal1, Armin Günter3, 
Jörg Müller5,6 & Jan Christian Habel7*

Habitat destruction and deterioration of habitat quality caused a severe decline of biodiversity, such 
as insect diversity. In this study, we analyze insect diversity and biomass across agro-environments. 
We collected flying insects with 20 malaise traps across a landscape mosaic consisting of organic (eight 
traps) and conventional (four traps) farmland, as well as across agricultural land that has been recently 
converted from conventional to organic farming (eight traps). Sampling was conducted over 2 years, 
in 2019 and 2020, with in total 340 sampling events. We measured the dry weight of the captured 
organisms and identified species diversity by analyzing Operational Taxonomic Units (OTUs) and 
Barcode Index Numbers (BINs) via metabarcoding. The results obtained show temporal dynamics. 
The number of OTUs were always higher than the number of BINs. OTUs and BINs were moderately to 
highly correlated, while the number of OTUs and BINs were only moderately positively correlated with 
dry biomass. OTUs and BINs as well as biomass were highest in the recently transformed farmland if 
compared with pure organic and conventional farmland sites, which showed no significant differences 
in respect of insect diversity. OTU and BIN numbers but not the OTU/BIN ratio significantly decreased 
with increasing distance from the nearest forest fringe. The numbers of OTUs, BINs and the OTU/BIN 
proportion, as well as OTU and BIN/biomass proportions varied strongly over seasons, irrespective of 
agricultural practice. Based on our findings, we suggest to combine data on insect species richness and 
biomass measured over a period of time, to derive a largely complete and meaningful assessment of 
biodiversity for a specific region.

Habitat destruction and the deterioration of habitat quality are the main drivers causing worldwide biodiversity 
loss1. Hereby, the transformation of natural ecosystems into agricultural fields, pastures and plantations caused 
severe losses of natural and extensively used semi-natural habitats, with negative effects on biota. Central Europe 
suffers particularly under ongoing agricultural intensification and subsequent landscape homogenization, as well 
as under the abandonment of former extensively used land2. These trends leads to the vanishing of heterogeneous 
and species rich ecosystems, which provide important habitats to many species. In consequence, most species 
groups are suffering by a reduction of species richness3, species abundance4, biomass of flying invertebrates5, and 
qualitative changes of species community structure6. These changes subsequently impact various interactions, 
such as plant–insect interactions7 as well as insect-animal relationships8,9.

Various studies documented the gradual loss of species richness10. Arthropods suffer particularly under the 
intensification of agricultural land-use. Studies have shown that loss of once extensively used habitats leads to 
the fragmentation of the remaining habitats, most of which are small, geographically isolated and provide only 
limited long-term habitats and resources for many species11,12. In addition, habitat quality suffers strongly from 
various anthropogenic activities, such as nitrogen loads13–15. In addition, the influx of various toxic substances 
such as pesticides have detrimental effects to the quality of habitats and have lethal effects on many plants and 

OPEN

1Bavarian Natural History Collections (SNSB-ZSM), 81247  Munich, Germany. 2Department of Ecology and 
Biogeography, Nicolaus Copernicus University Toruń, 87100  Toruń, Poland. 3HIPP, 85276  Pfaffenhofen 
(Ilm), Germany. 4Advanced Identification Methods GmbH (AIM), 04179  Lepizig, Germany. 5Field Station 
Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, 
Rauhenebrach, Germany. 6Bavarian Forest National Park, Grafenau, Germany. 7Evolutionary Zoology, Department 
of Environment and Biodiversity, University of Salzburg, 5020  Salzburg, Austria. *email: Janchristian.habel@
plus.ac.at

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-20989-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17706  | https://doi.org/10.1038/s41598-022-20989-9

www.nature.com/scientificreports/

animal species16,17. These multiple drivers lead to the vanishing of local populations and thus to significant reduc-
tions of species richness, abundances and biomass of arthropods, as recently reported18.

Most of the studies on insect diversity examined one a single measure, such as biomass or proxies expressing 
the level of diversity, such as species richness4,19. However, modern sampling methods and subsequent analyses, 
such as metabarcoding allow a standardized and simultaneous collection of various data to evaluate e.g. species 
richness, abundance, and biomass. The revolution in DNA sequencing enables the molecular detection of single 
species and its abundances from the captured biomass of flying insects20,21. Thus, extensive data series can be 
collected easily from various sampling sites in parallel, with standardized collecting methods, and over several 
months and years.

In this study, we analyze species richness, abundance and biomass of arthropods. We collected flying insects 
with 20 malaise traps set across a heterogeneous agricultural landscape during the years 2019 and 2020. Sam-
pling was conducted across organically and conventionally farmed land, as well as at sites, which have been 
recently converted from conventional to organic treatment. The material collected was dried and weighted, and 
subsequently analyzed using the metabarcoding technique. For the DNA sequences obtained, we calculated 
Operational Taxonomic Units (OTUs) and Barcode Index Numbers (BINs). Based on these data we will answer 
the following research questions:

1.	 Do values and relationships vary among OTUs, BINs and biomass?
2.	 Do values and relationships between diversity and biomass change over months and seasons?
3.	 Do environmental conditions such as agricultural treatment and local conditions impact arthropod diversity 

and biomass?
4.	 What can we conclude from our results obtained for the development of future biodiversity monitoring 

schemes?

Results
In each trap, we found at least 800 different OTUs per year (Appendix 1). In each single sampling event, the 
numbers of BINs and OTUs exceeded 100 (Fig. 1a,b, Appendix 2: Fig. 1). Both, numbers of OTUs and BINs as 
well as biomass were highest in the recently transformed farmland sites (Table 2), although these differences 
among different agricultural practices were not significant after accounting for covariates (Table 3). The num-
ber of OTUs were always higher than the number of BINs (Fig. 1c), and both proxis were moderately to highly 
correlated (2019: r = 0.48; P < 0.001; 2020: r = 0.87, P < 0.001). We found marked differences in the OTU/BIN 
proportion between the two study years (Fig. 1c, Tables 1, 2). Average OTU/BIN proportions were significantly 
higher in 2019 than in 2020 (Fig. 1c, Appendix 2: Fig. 1).

The numbers of OTUs and BINs were only moderately positively correlated with dry biomass (Fig. 1, Table 3). 
These correlations were highest for the organic and insignificant for the conventional farmland sites (Fig. 1a,b). 
OUT and BIN numbers peaked between 25 and 28 g dry biomass (Fig. 1a,b). Only in one sample from the con-
ventional farmland sites we found a total dry biomass > 30 g (Fig. 1a,b). Furthermore, OTU and BIN numbers, 
but not the OTU/BIN ratio, significantly decreased with increasing distance to the forest edge (Table 3, Appendix 
2: Fig. 2a–c).

The BIN/biomass (Fig. 2a) and OTU/biomass (Fig. 2b) relationship was generally lowest in the organic farm-
ing sites during spring and summer, although we observed strong annual variation in these proportions (Fig. 1). 
Numbers of OTUs, BINs and the OTU/BIN proportion varied strongly between the seasons and were highest 
during the summer months, irrespective of agricultural practice (Fig. 2c, Table 3: highly significant squared 
sampling date factor).

Figure 1.   Relationships between numbers of BINs (a), OTUs (b), OUT/BIN (c) and total biomass. Green 
data points: organic farming, orange: recent change from conventional to organic farming, red: conventional 
farming. Quadratic least squares regression lines in (a,b) (with respective coefficients of determination r2) peak 
between 25 and 28 g (except for BINS of conventional farming in a). Above the 25 g threshold numbers of BINs 
and OTUs tend to decrease with increasing biomass (marked by ovals). The black line in (c) divides data mainly 
from 2019 (above) and those obtained in 2020 (below).
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Table 1.   Overview of all sampling sites. The corresponding farm, the abbreviation for the respective sampling 
point, distance to the forest edge, and the exact GPS coordinates are given.

Site Abbrev Distance to forest Lat Long

E-Hof E1 0 48.5073° N 11.5401° E

E-Hof E2 15 48.5077° N 11.5400° E

E-Hof E3 0 48.5043° N 11.5397° E

E-Hof E4 15 48.5045° N 11.5399° E

E-Hof E5 50 48.5040° N 11.5402° E

E-Hof E6 110 48.5032° N 11.5399° E

E-Hof E7 100 48.5029° N 11.5403° E

E-Hof E8 80 48.5028° N 11.5402° E

Hagl-Hof H1 0 48.5091° N 11.5317° E

Hagl-Hof H2 15 48.5090° N 11.5314° E

Hagl-Hof H3 0 48.5080° N 11.5294° E

Hagl-Hof H4 15 48.5079° N 11.5295° E

Hagl-Hof H5 40 48.5079° N 11.5298° E

Hagl-Hof H6 130 48.5063° N 11.5319° E

Hagl-Hof H7 110 48.5063° N 11.5321° E

Hagl-Hof H8 70 48.5063° N 11.5326° E

Reim-Hof R1 0 48.4847° N 11.5449° E

Reim-Hof R2 15 48.4835° N 11.5481° E

Reim-Hof R3 100 48.4939° N 11.5354° E

Reim-Hof R4 100 48.4938° N 11.5353° E

Table 2.   Summary data on numbers and relationships of BINs, OTUs, and biomass (in grams). N number of 
samples. Errors refer to standard errors.

Year N Agricultural practice OTU BINs OTUs/BINs Biomass OTU/biomass BIN/biomass

2019 80 Organic 402 ± 15 255 ± 7 1.58 ± 0.04 13.16 ± 1.16 40.2 ± 2.0 27.0 ± 1.5

2019 80 Conv ⟶ Org 448 ± 16 287 ± 7 1.55 ± 0.04 12.84 ± 0.92 43.6 ± 2.1 30.0 ± 1.8

2019 40 Conventional 414 ± 17 259 ± 10 1.68 ± 0.09 11.49 ± 1.13 48.4 ± 4.9 32.9 ± 4.0

2020 56 Organic 428 ± 22 343 ± 16 1.23 ± 0.02 12.12 ± 1.19 51.1 ± 5.7 41.5 ± 4.8

2020 56 Conv ⟶ Org 487 ± 27 360 ± 18 1.33 ± 0.02 14.47 ± 0.93 39.9 ± 2.8 29.4 ± 1.9

2020 28 Conventional 454 ± 29 338 ± 18 1.33 ± 0.03 13.52 ± 1.59 42.7 ± 4.4 31.9 ± 3.1

Table 3.   Nested general linear modelling (study year nested within agricultural practice) identified 
major drivers in the number of BINs and OTUs. Given are partial η 2- and β -values and the coefficient of 
determination r2 of the whole model. N = 340. df degrees of freedom. Parametric significances: *P < 0.05, 
**P < 0.01, ***P < 0.001.

Variable df

BIN OTU OTU/BIN BIN/biomass OTU/biomass

partial η 2 β -value partial η 2 β -value partial η 2 β -value partial η 2 β -value partial η 2 β -value

Study year 3 0.17*** – 0.03** – 0.12*** –  < 0.01 –  < 0.01 –

Agricultural practice 2 0.01 – 0.02 – 0.01 –  < 0.01 – 0.01 –

Distance to woody plants 1 0.11*** − 0.36 0.05*** − 0.26  < 0.01 0.09  < 0.01  < 0.01  < 0.01 0.05

Sample day 1 0.04*** − 0.21 0.02** − 0.12  < 0.01 0.09 0.01* − 0.15  < 0.01 − 0.12

(Sample day)2 1 0.02** − 0.19 0.11*** − 0.41 0.10*** − 0.43 0.10*** 0.41 0.04*** 0.27

ln-biomass 1 0.02** 0.19 0.03*** 0.21  < 0.01 0.07 – – – –

r2 0.46*** 0.43*** 0.38*** 0.21*** 0.09***
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Discussion
OTUs, BINs, biomass.  We found differences between quantitative and qualitative data collected over time. 
The number of OTUs was always higher than the number of BINs, as expected. Both proxies were correlated, 
while the numbers of OTUs and BINs were only moderately positively correlated with dry biomass. We have 
to consider various limitations when interpreting and comparing trends based on OTUs, BINs and biomass. 
OTUs frequently produce significant overestimates of species numbers if compared with BINs because many 
intraspecific genetic polymorphisms might come into play. The algorithm used for BINs is much more realistic 
in terms of species numbers22,23. But of course, we can only detect what is already represented by a haplotype 
sequence representative in the reference library (in this case BOLD) in order to acquire a BIN. The value of 
unambiguously assigned BINs essentially depends on how many species are given in the reference library and 
can be recognized24–29. For example, in the BIN analyses, Diptera and Hymenoptera are usually underrepre-
sented (which might underestimate the total number of species assessed, but only if we include BINs > 97%). In 
our study, the 2019 and 2020 data analyses were both based on the reference libraries of BOLD and GenBank, 
and a RDP classifier trained on CO1 data30. At times, OTUs are recovered there in only one of the two libraries 
and a classifier. Therefore, a “consensus taxonomy” was applied from combined results. We identified only few 
differences between BOLD and GenBank, mainly due to misidentifications on GenBank (as the BOLD taxon-
omy of the German fauna is on a very good level after GBOL projects), and because Genbank (and the classifier) 
do not account for BIN sharing species, such as BOLD.

In addition to these challenges, individual species representing a mass occurrence, and species which are 
underrepresented in the DNA reference library (“dark taxa”, often belonging to smaller dipterans and hymenop-
terans) will create non-realistic OTU/BIN proportions. During years with only low levels of insect abundances 
due to unfavorable weather conditions for most arthropods, many rare species should be cut away from the low 
end of the abundance distribution, and the OTU/BIN proportion should be lower. However, in 2019, a year with 
unfavorable environmental conditions for most insects compared with the year 2020, the OTU/BIN proportion 

Figure 2.   Annual time series of the BIN/biomass (a), OTU/biomass (b) and OTU/BIN (c) relationships for 
biological farming (green), recent change from conventional to organic farming (orange), and conventional 
farming (red). Continuous lines: 2019 sampling, broken lines: 2020 sampling.
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was higher. It seems important to consider that the OTU/BIN proportion, i.e. the rate of hits in the genetic refer-
ence library strongly depends on the completeness of the library and the analytical settings.

Temporal dynamics.  Our results show a typical progression of biomass and species diversity development 
over time, with a rapid build-up of biomass and diversity during spring, followed by a gradual leveling off over 
late summer, and fall towards autumn (Fig. 2). Similar seasonal trends in biomass and diversity of insects have 
been documented in other studies31. Our results show that BINs, OTUs, and biomass vary greatly, spatially as 
well as temporally, across years as well as over short periods of time (accounting for individual collection events). 
These fluctuations are very evident for the 2 years of observation, but significant fluctuations also occur within a 
study year (Table 2, Fig. 2). Fluctuations in insect populations can be very strong and mostly depend on weather 
conditions and the densities of parasites and predators. Studies on ground beetles have shown that local popula-
tions of invertebrates can fluctuate by up to three orders of magnitude19. This could result in it being extremely 
difficult to detect specific species during short monitoring periods, and thus the validity of assessments made at 
a particular time is highly questionable32.

Our results also demonstrate a significant divergence in the temporal trajectories of biomass and species 
diversity (Fig. 1c). Also conspicuous are strong outliers of certain parameters (here biomass) at certain points in 
time. A closer examination of the collected insect individuals evidenced that these are mainly some few heavy 
and highly mobile nocturnal lepidopteran or dipteran species, which had flown into the trap in larger quantities 
at the corresponding time and thereby significantly increased the biomass, but did not lead to an increase in 
species diversity (AH, unpublished data). An example is Autographa gamma, a migratory moth species which 
together with the moth species Luperina testacea and Triodia sylvina on September 13, 2020, in the “HaglHof 
7” Malaise trap were responsible for more than 50% of the NGS reads and caused the lowest measured diversity 
value (BINs/biomass) of all 340 samples (AH, unpublished data). In many other cases, such incongruences 
between biomass and diversity were correlated, with extreme amounts of NGS-reads for comparatively heavy 
and/or invasive species like Delia platura (Anthomyiidae), Botanophila fugax (Anthomyiidae), Triodia sylvina 
(Hepialidae), Chrysotus cilipes (Dolichopodidae) and others, apparently occurring in massive abundance. Such 
events have to be taken into account when applying automatic insect monitoring and when using biomass as an 
indicator of biodiversity.

Spatial heterogeneity.  Our results show that different agricultural management had no significant effect 
on invertebrate biomass and diversity in the study years 2019–2020. This seems to contradict other comparative 
studies analysing the effects of agricultural management on biodiversity18,33–35. In general, biodiversity (such as 
species number, abundance and biomass, as well as functions) is significantly higher on land that is managed by 
organic farming. And in fact, a clear difference in biodiversity was also recorded for our study area in a previous 
study comparing conventional agriculture and organic agriculture, with 80% more biomass of flyable arthro-
pods, and about 50% more species diversity of flyable arthropods21. This lack of a potential effects from land 
management on biodiversity in our study could be due to the strong landscape heterogeneity and the mosaic of 
fields and grasslands treated organically and conventionally. Thus, potential effects of each land use type could 
become blurred by negative edge effects from conventionally farmed land, as well as positive spill-over effects 
from organic farmland. In addition, the flight-capable insects surveyed by the malaise traps are highly dispersive 
and thus potential local effects might become blurred due to the fact of the high nobility of insects and subse-
quent intermixing of individuals across mosaicking landscapes. Landscape configuration (e.g. field size) might 
be of even higher relevance for biodiversity than the degree of agricultural management intensity36. Our data 
and results extend a strong correlation between BINs and OTUs on organic farmland, while this relationship is 
less pronounced on conventionally farmed land. This animates that in conventional farming, biomass usually 
consists of only a few species.

Some of the study areas were only recently converted from conventional to organic farming. Here, an increase 
in diversity and biomass was shown for both species diversity and biomass. This positive development occurred 
immediately and without any time delay (time lacks frequently apply to ecosystem dynamics37). However, it can 
be assumed that the colonization of ecologically demanding and rare species takes much longer, as these species 
are often sedentary and do not colonize newly created habitats very quickly38. For application-oriented nature 
conservation, this means that the time factor must be taken into account. Therefore, flowering areas should be 
maintained as such for as long as possible and not be plowed up again after only a few years, since rare species 
usually only settle after a few years—at a time when most newly created habitats are destroyed again.

While the type of agricultural use showed minor effects on biomass and diversity of invertebrates, habitat 
structures in the immediate vicinity of the sampling sites show a large effect. The greatest biomass and diversity 
was measured at the edge of forest, while comparably low values were obtained in the middle of meadows. 
Numerous studies have already demonstrated that the immediate supply of ecological niches provided by adja-
cent habitat diversity has a large effect on species diversity36,39. Transitions between open land and forest provide 
valuable transitional habitats for species from both open land and forest40,41. In addition, many flying insects 
disperse along linear structures, such as forest fringes, and thus accumulate there—and in malaise traps set close 
to the forest edge42.

Conclusion
Our data show that OTUs, BINs and biomass correlate only to a limited extent, and that local as well as temporal 
variations are very common. Therefore, it is essential to record different parameters in the field in parallel and 
over a certain period of time21,42. In order to conduct biodiversity monitoring on a large spatial scale, metabar-
coding approach offers the basic prerequisite for processing large collections. However, it must be kept in mind 
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that this approach can only provide limited information about the abundance of individual species. And, species 
community analysis can be invented using metabarcoding data based on presence-absence information of species 
only to a limited extent; the abundance of individual species is a crucial value for making statements about the 
structure of a species community. Therefore, aside of metabarcoding, also classical collections for meaningful 
species groups as well as for problematic groups for DNA barcoding (such as Syrphidae28) needs to be carried 
out. Hereby, not exclusively ‘aerial plankton’ (which by nature already moves over sometimes large spatial scales 
and thus does not represent potential effects of local management practices very well), but also less dispersive 
species groups (such as soil-and ground-dwelling fauna) should be considered.

Material and methods
Study sites.  Our study area is located in southern Germany, 15 km distant to the city Pfaffenhofen. This 
study area is characterized by comparatively high topographical heterogeneity. The study region is located in 
the tertiary hill country, on the edge of the Hallertau region. The soils are mostly deep and fertile and therefore 
the soil fertility is high. The climate is generally warm to temperate (annual average 9.6 °C). There is significant 
precipitation throughout the year (with a total precipitation of 943 mm) (https://​de.​clima​te-​data.​org/​europa/​
deuts​chland). The farms with their cultivated areas are interwoven with each other and represent agricultural 
fields, grasslands, forest and settlements (see Fig. 3). Conventional and organic agriculture are not clearly spa-
tially separated from each other, as the fields of the different farms form a mosaic. The organic farm conducts 
extensive cow farming and grasslands. Organic farmland are mowed twice a year and without any application of 
pesticides, however with the use of organic fertilizers. The conventionally managed farmland belongs to a dairy 
farm. On these sites, mainly hay as well as silage and hops are cultivated. Conventional farmland are mowed 
several times (> 2) a year and treated with artificial fertilizers. Pesticides are applied in the conventional farmland 
area (Broadway (130 g 0.5 L/ha; 14.4.2018), Gardo Gold (3 L/ha; 27.5.2018), Callisto (0.75 L/ha; 27.5.2018) and 

Figure 3.   Study area in southern Germany (small inlet map), and locations of the 20 Malaise traps set across 
the agricultural landscape. Indicated are agricultural fields (light grey), meadows (grey), forest (dark grey), and 
settlement area. One of our Malaise traps is shown on the picture below. The map was reproduced from the 
OpenTopoMap web site (https://​opent​opomap.​org) under creative common licence CC BY-SA 3.0 (https://​creat​
iveco​mmons.​org/​licen​ses/​by-​sa/3.​0/​legal​code), with subsequent highlighting of the study area. Photographs 
were taken by AHS.

https://de.climate-data.org/europa/deutschland
https://de.climate-data.org/europa/deutschland
https://opentopomap.org
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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the shortcut Chlormequat (0.3 L/ha; 12.5.2018)). The farmland which has been recently converted from con-
ventional into organic agriculture produces hay. We established twenty traps in a landscape mosaic consisting 
of organic (8 traps) and conventional (4 traps) farmland and in farmland that has been recently converted from 
conventional into organic farming (8 traps). Distances among traps were at least 200 m to minimize potential 
effects from spatial autocorrelation. Some of the traps were set in the center of a meadow, others close to the for-
est fringe. Details of each single sampling site (Malaise trap) are given in Table 1.

Malaise traps.  We installed 20 standard Malaise traps (height front 180  cm, height rear 120  cm, length 
180 cm, width front and rear 110 cm) (B&S Entomological services). All 20 traps were activated from April till 
October during the years 2019 and 2020. All traps were southwards positioned and with similar exposure to 
wind. The traps were activated simultaneously. 600 ml sampling bottles were filled with 80% ethanol. All Malaise 
traps were emptied simultaneously to guarantee comparability every 9–36 days (mean 23.3 days) (exact dates 
are given in Appendix 1), resulting in a total of 340 single samples. The material was stored in pure alcohol until 
DNA sequencing. A complete list of raw data are given in Appendix 1.

Biomass.  Dry and wet biomass material was weighted and analyzed separately, according to Ssymank et al.42. 
Species were dried according to size selection using a sieve (in diameter: 6.5 mm) in diameter in a 70 °C oven 
over night (or at least for 8 h).

Metabarcoding.  After drying the organic material of the Malaise traps, species identification was per-
formed using DNA metabarcoding following the methodology described in Hausmann et al.21. Complete dry-
ing of the material is essential for the elimination of ethanol and successful molecular genetic processing29,43–46. 
Each single dried sample (altogether 340 samples) was homogenized in a FastPrep96 machine (MP Biomedi-
cals) using sterile steal beads in order to generate a homogeneous mixture of arthropods. Homogenized tissue 
samples were subsequently sent out for metabarcoding (conducted by AIM GmbH, Leipzig, Germany). Prior 
to DNA extraction, 1 mg of each homogenisate was weighed into sample vials and processed using adapted 
volumes of lysis buffer with the DNeasy 96 blood & tissue kit (Qiagen, Hilden, Germany) according to the 
manufacturer’s protocol. The mitochondrial DNA barcode CO1-5P target region was amplified using a 313 bp 
long mini-barcode by PCR47,48, using forward and reverse HTS primers, equipped with complementary sites for 
the Illumina sequencing tails. In a subsequent PCR reaction, index primers with unique i5 and i7 inline tags and 
sequencing tails were used for amplification of indexed amplicons. Afterwards, equimolar amplicon pools were 
created and size selected using preparative gel electrophoresis.

DNA concentrations were measured using a Qubit fluorometer, and adjusted to 40 µl pools containing equi-
molar concentrations of 100 ng DNA template each. Pools were purified using MagSi-NGSprep Plus (Stein-
brenner Laborsysteme GmbH, Wiesenbach, Germany) beads. A final elution volume of 20 µl was used. High 
Throughput Sequencing (HTS) was performed on an Illumina MiSeq (Illumina Inc., San Diego, USA) using v3 
chemistry (2 × 300 basepairs, 600 cycles, maximum of 25 million paired-end reads).

Raw FASTQ files from Illumina were bioinformatically pre-processed using VSEARCH v2.9.149,50, and as 
described in more detail in Hausmann et al.21. Briefly, paired-end reads were merged and forward and reverse 
adapter sequences removed from each read. Reads that did not contain the appropriate adapter sequences were 
discarded. The resulting reads were dereplicated and those of short length and/or low quality were filtered out. 
Chimeric sequences were removed using the de novo algorithm. Finally, reads were clustered into OTUs using 
global pairwise alignment followed by de novo distance-based greedy clustering (at 98% pairwise identity) to 
the closest centroid sequence. Centroids, defined initially as the most abundant reads at the level of the entire 
dataset, were kept as the representatives of OTUs, and the resulting OTU FASTA file used as a reference database 
to create an OTU table of read counts in each sample. OTUs were blasted using Geneious (v.10.2.5—Biomatters, 
Auckland—New Zealand) against (1) a custom, taxonomically annotated Animalia database downloaded from 
BOLD48 and (2) a local copy of the NCBI nucleotide database downloaded from ftp://​ftp.​ncbi.​nlm.​nih.​gov/​blast/​
db/(both downloaded on September 25, 2020).

Top BLAST hits for each OTU were exported from Geneious, combined with the OTU table produced by 
the pre-processing pipeline, and noise-filtered as described in Hausmann et al., 202021. Interactive Krona charts 
were produced from the taxonomic information using KronaTools v1.351.

Species identification in the Malaise trap samples was based on High Throughput Sequencing (HTS) data 
grouped to genetic clusters (OTUs), blasted and assigned to barcode index numbers (‘BINs’: Ratnasingham and 
Hebert22) which are considered to be a good proxy for species numbers22,23. In our case, the detailed analysis of 
the Lepidoptera data revealed that the frequency of ‘false positives’ (0.5%) and BIN-sharing (1.5%) obstructing 
species discrimination (but nevertheless still pointing to species complexes) played a negligible role (see results 
for details).

Statistics.  For each of the 340 Malaise trap sample data we calculated the OTU/biomass, BIN/biomass and 
OTU/BIN relationships. We used ordinary parametric least squares regression and parametric nested general 
linear modelling (as implemented in Statistica 12.0) to relate numbers of OTUs, BINs, OUT/biomass, BIN/
biomass, and OTU/BIN (response variables) to study year and agricultural practice (fixed categorical predictors, 
study year nested within agricultural practice), and to distance from forest edge, sample day, and ln-transformed 
biomass (metric predictors). As predictors were measured at different units, we report β-values and focus on 
partial η-square values as measures of effect sizes. Study sites were sampled at different days across the 2 years 
(not identical days for the years 2019 and 2020). To account for this possible bias, we included sample day and 
the squared, zero centred sample days (= (day-average sample day)2) in the model. Metric predictors were only 

ftp://ftp.ncbi.nlm.nih.gov/blast/db/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
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moderately correlated (r < 0.5). Traps operated at distances of at least 200 m guaranteeing spatial non-independ-
ence due to the relatively small sample areas of Malaise traps.
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