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Developing a hybrid time‑series 
artificial intelligence model 
to forecast energy use in buildings
Ngoc‑Tri Ngo1*, Anh‑Duc Pham1, Thi Thu Ha Truong2, Ngoc‑Son Truong1 & Nhat‑To Huynh1

The development of a reliable energy use prediction model is still difficult due to the inherent complex 
pattern of energy use data. There are few studies developing a prediction model for the one-day-
ahead energy use prediction in buildings and optimizing the hyperparameters of a prediction model 
is necessary. This study aimed to propose a hybrid artificial intelligence model for forecasting one-
day ahead time-series energy consumption in buildings. The proposed model was developed based 
on the integration of the Seasonal Autoregressive integrated Moving average, the Firefly-inspired 
Optimization algorithm, and the support vector Regression (SAMFOR). A large dataset of energy 
consumption in 30-min intervals, temporal data, and weather data from six real-world buildings 
in Vietnam was used to train and test the model. Sensitivity analyses were performed to identify 
appropriate model inputs. Comparison results show that the SAMFOR model was more effective than 
the others such as the seasonal autoregressive integrated moving average (SARIMA) and support 
vector regression (SVR), SARIMA-SVR, and random forests (RF) models. Evaluation results on real-
world building depicted that the proposed SAMFOR model achieved the highest accuracy with the 
root-mean-square error (RMSE) of 1.77 kWh in, mean absolute percentage error (MAPE) of 9.56%, 
and correlation coefficient (R) of 0.914. The comparison results confirmed that the SAMFOR model 
was effective for forecasting one-day-ahead energy consumption. The study contributes to (1) the 
knowledge domain by proposing the hybrid SAMFOR model for forecasting energy consumption in 
buildings; and (2) the state of practice by providing building managers or users with a powerful tool for 
analyzing and improving building energy performance.
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LR	� Linear regression
LSSVM	� Least-squares support vector machine
SCA	� Sine cosine algorithm
RBF	� Radial basis function
AIW	� Adaptive inertia weight
FA-SVR	� Firefly algorithm – support vector regression
LD	� Learning data
OF	� Objective function
Y	� Historical energy consumption in 30-min intervals
T	� Outdoor temperature
H	� Outdoor humidity
DoW	� Day of the week
HoD	� Hour of the day
PSO	� Particle swarm optimization

The building sector is one of the significant energy consumers, which consumes about 40 percent of the world’s 
energy use and 30 percent of carbon dioxide generation1–3. Energy demand is still increasing due to rapid eco-
nomic development and urban expansion4,5. Sustainable development of energy is an important concern for many 
countries6. Occupant behaviors in buildings may force energy efficiency and can save about 50 percent of the total 
global energy usage7. Energy use reduction in buildings is beneficial to society in terms of economy and ecology.

Future prediction of energy data is a method of projecting future data based on historical time-series data. 
Energy consumption prediction of households is difficult because it is affected uncertainly by occupant`s 
behaviors8. Because the nature of the energy use exhibits the complex and seasonal pattern, the unreliable fore-
cast may result in an additional production or waste of resources9. For example, the prediction of the household 
electricity use is vital for smart grid development and the energy market10. Therefore, a reliable prediction method 
is important for proper investment planning of energy generation and distribution6. Accurate prediction results 
are valuable for decision-makers in planning energy demand and in saving energy proactively.

Building energy data is recognized as time-series data that vary along with various timestamps such as daily, 
hourly, 30-min, 15-min, or 5-min intervals. Statistics-based methods and machine learning (ML) methods have 
been developed for predicting time-series data. An autoregressive integrated moving average (ARIMA) is an 
example of powerful statistical method11. In the ARIMA model, an autoregressive (AR) part regresses on previous 
values, a moving average (MA) part regresses on a purely random process while an integrated part renders the 
data via differencing12. For time-series data with seasonality herein, the ARIMA is not effective to capture data 
patterns. Meanwhile, a seasonal autoregressive integrated moving average (SARIMA) is used for energy demand 
prediction13 and sales forecasting14. However, these two models are suitable for modeling the linear relationship 
between the predictors and dependent variables.

Deb et al.15 and Wang and Srinivasan16 have reviewed the artificial intelligence (AI) techniques for building 
energy prediction. The gradual maturity of AI can create an opportunity in recording big data and understanding 
the insights behind data. AI-based modes have been developed recently to improve the performance of regression 
problems17 such as the prediction of the hydro-power production capacity18. They have confirmed the powerful 
approach for solving complex problems19–21 such as the prediction of stock market indices22, and hydro-power 
production capacity18. Seyedzadeh et al.23 developed a machine learning model for predicting building energy 
loads to support building design and retrofit planning.

Artificial neural networks (ANNs) and support vector regression (SVR) models are two widely used models in 
the energy domain. The ANNs was integrated with the particle swarm optimization (PSO) in predicting building 
electricity consumption24. The integration of ANNs and ARIMA models was proposed for predicting time-series 
data25. Although the ANNs model can obtain relatively high predictive accuracy, it has several limitations such 
as the difficulty of controlling variables, overfitting issues, and uncertain solutions12.

The SVR models have been used in solving regression problems. For example, the SVR was used to forecast 
the hourly cooling energy demand in office buildings26 and to predict the water temperature of the reservoir27. 
The SVR was combined with the genetic algorithm (GA) to forecast energy use28. However, the SVR is relatively 
slow in dealing with huge data29 and has a high computational burden30. The least-squares SVR (LSSVR)31, an 
improved variant of the SVR, is also widely used for prediction problems because it can reduce the computational 
effort32. The LSSVR model is more effective than the SVR model because the LSSVR model solves linear equations 
rather than quadratic programming problems and employs a squared loss function31.

However, optimizing hyperparameters of the LSSVR model is concerned by researchers to enhance the predic-
tive performance in predicting energy consumption. Fine-tuning LSSVR`s hyperparameters is an optimization 
problem that can be solved by the nature-inspired metaheuristic optimization algorithms33, differential evolution 
(DE) algorithm34, PSO35, and firefly algorithm (FA)36. Because of the capabilities of automatic subdivision and 
addressing of multimodality, the FA has been confirmed as an effective optimization algorithm33. It is widely 
used to solve various problems in many domains36,37. Therefore, the FA was used to optimize the LSSVR`s 
hyperparameters in this study.

To the best of the authors’ knowledge, there are few studies performing the one-day-ahead energy use pre-
diction in buildings in the literature. The one-day-ahead energy consumption with 30-min intervals was used 
because it can provide insights for users to adjust actions on reducing their energy use. Studies on selecting 
optimal inputs for prediction models are still limited in literature. In addition, the length of the learning data 
has an impact on the performance of prediction models. Optimizing hyperparameters of prediction models is 
necessary. These are the research gaps in previous studies. All these concerns are addressed in this study. This 
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work aims to propose a hybrid artificial intelligence prediction model for forecasting one-day ahead time-series 
energy consumption in buildings toward sustainable development. The proposed model was developed based 
on the integration of the Seasonal Autoregressive integrated Moving average, the Firefly-inspired Optimization 
algorithm, and the support vector Regression (SAMFOR).

In the proposed SAMFOR model, hyperparameters of the SAMFOR model will be optimized by the FA to 
enhance the predictive accuracy. As part of this study, selecting appropriate inputs and size of the learning data 
will be performed in section “Sensitivity analysis” (sensitivity analysis) and they can improve the predictive 
accuracy of the prediction models. A large dataset of energy consumption was collected in a 30-min interval for 
two years from six buildings in Danang city in Vietnam. This dataset was used to train and test the performance 
of the proposed model. By validating with various datasets, the proposed model shows generalization in doing 
an energy use prediction in buildings.

The first contribution of this work is the proposed effective prediction model in accurately forecasting the 
one-day-ahead energy consumption with 30-min intervals in buildings. Compared to the traditional method 
and individual machine learning models, the proposed hybrid SAMFOR model enables us to learn the linear and 
nonlinear profiles of building energy use, which can significantly improve the prediction accuracy. In addition, 
the model can consider the impact of the temporal data (i.e., day of the week and hour of the day), weather data 
(i.e., outdoor temperature and humidity), and historical energy data as the inputs for the future energy use predic-
tion in buildings. For practical contribution, the prediction results provide building owners, building managers, 
and users with insights and references to adjust their behavior and reduce energy use and energy management.

The remainder of this paper is organized as follows. Section “Literature review” presents the literature review, 
and section “Hybrid prediction model based on SARIMA and optimized SVR” describes the proposed model and 
its implementation. Section “Data collection and analytical results” presents the dataset and analytical results. 
Section “Conclusions” provides concluding remarks and future work.

Literature review
Various prediction models were developed based on a single machine learning model38, ensemble ML models 
such as XGboost, the feedforward deep networks (FDN)10, AdaBoost39, ensemble models40, and hybrid ML 
models9. The SVR model was applied to implement energy use prediction and diagnosis of public buildings41. 
Energy-saving solutions in buildings have attracted the interest and concerns of various researchers10,42. Engie 
North America has applied AI and machine learning to enhance data governance and quality43. They proposed 
automated and an analytics system to assess energy use data. Their system can improve risk determination and 
provide flexible pricing strategies. Besides, Patel44 has an in-depth analysis of artificial intelligence’s role in the 
power sector. He mentioned unbiased and technically sound assessment of AI methods is extremely important 
to the industry.

Day-ahead subentry energy use in the building sector has been predicted using fuzzy C-means clustering and 
nonlinear regression in39. Particularly, hourly heating ventilation air-conditioning (HVAC) subentry and hourly 
socket subentry in an office building were used to validate their method. Pham et al.42 presented an application of 
the random forests (RF)—based ML model for forecasting short-term electricity use patterns in buildings. Five 
sets of time series data of energy consumption were applied to build and test the RF model in comparison against 
the M5 model trees and random tree. Various scenarios were used to test the energy prediction accuracy of the 
RF model and it confirmed that the RF`s outstanding performance with the enhancement up to 49.95 percent 
in the mean absolute error compared to the base models in the 12-steps-ahead electricity use42.

Chen et al.10 proposed an ensemble ML that combines the FDN and extreme gradient boosting (XGboost) 
forest for predicting annual building electricity use. The XGBoost was developed by Chen et al.11 that combines 
a set of regression trees45. The number of boosts and maximum tree depth is two main hyper-parameters in the 
XGboost model that represent the number of regression trees and the maximum tree depth of each single regres-
sion tree developed in the XGboost model, respectively. The structures of these above-mentioned base models 
were designed optimally and determined by varying combinations of their parameters. The ensemble model can 
improve the predictive accuracy with 30% in the root mean square error.

Ngo46 has investigated the effectiveness of various single and ensemble approaches for building energy simu-
lation and prediction. Individual ML models consist of ANNs, SVR, CART, and LR while the ensemble models 
were developed upon these individual ML models in the voting, bagging, and stacking methods. The ensemble 
models yielded 0.98–0.99 in the correlation coefficient and 6.17–12.93 percent in the mean absolute percent-
age error (MAPE). The ensemble ANNs with the bagging method obtained the best performance among all 
investigated models.

Kaytez6 hybridized ARIMA and least-squares support vector machine (LSSVM) to produce a prediction 
model of long-term energy use. The ARIMA`s parameters were adjusted to predict the trend component in 
time-series energy data while the SVM was to model the residual component. Historical data of gross electricity 
generation, population, installed capacity, import, export, and total subscribership were collected from 1970 to 
2017 and used as predictors for long-term energy consumption prediction. The multiple linear regression model 
and a single ARIMA model were used as a baseline for performance comparison. Their findings indicated that 
the ARIMA-LSSVM was more realistic and reliable than the baseline model such as the multiple linear regres-
sion and single ARIMA6.

Li et al.9 integrated the sine cosine algorithm (SCA) and SVM to propose the SCA-SVM model for short-term 
electricity demand prediction in which the SCA was used to optimize the penalty factor and the kernel function 
of the SVM. For pre-processing time-series data, Fourier decomposition was utilized to extract the fluctuation 
characteristics, and data seasonality was eliminated before feeding to the prediction model. The evaluation results 
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from four datasets revealed that the proposed hybrid model is powerful in short-term electricity prediction. Liu 
et al.39 used holt-winters and extreme learning machines to predict residential electricity consumption.

Shen et al.8 improved the performance SVR model in forecasting electricity consumption in a residential 
building under various intervention strategies. The Gaussian radial basis function (RBF) was applied in the 
kernel function and fine-tuned by a GA. Historical data of occupant behaviours, personality traits, demographic 
and building attributes, and weather conditions were used as inputs for the SVR model for future energy use 
prediction. The model can determine the suitable intervention option and forecast the maximum energy savings 
in households. The results revealed that an average saving amount was 12.1 percent in electricity consumption 
with the traditional behavioural intervention8.

Some hybrid prediction approaches have been introduced recently for long-term and short-term energy 
consumption such as the hybridization of an autoregressive integrated moving average ARIMA and LSSVM by 
Kaytez6, the integration of the sine cosine algorithm (SCA), and support vector machine (SVM) by Li et al.9, 
GA-based improved SVR8. The effectiveness of these methods has been discussed. However, the appropriate 
inputs for prediction models and the length of the learning data used for training prediction models have few 
been considered in the literature.

Although various AI techniques have been proposed to develop the prediction models in previous works, 
few studies have combined linear ML models and nonlinear ML models. Based on the reviewed AI techniques 
and their power, this study proposed an AI-based hybrid prediction model to forecast the next 24-h energy use 
profile in buildings. The proposed model combined the SARIMA model, the SVR model, and the FA—based 
optimization algorithm. The proposed SAMFOR model is expected to address the above-mentioned issues. 
The large dataset from various buildings in Danang city in Vietnam will be used as case studies to evaluate the 
effectiveness of the proposed model. The details of the model will be presented in section “Hybrid prediction 
model based on SARIMA and optimized SVR”.

Hybrid prediction model based on SARIMA and optimized SVR
Although machine learning techniques have been applied widely for modeling building energy performance, 
the prediction of the building energy consumption is a challenging task because its profile varies quite randomly. 
To respond to the complex patterns in building energy consumption, this study proposed the hybrid model that 
combines the linear time-series prediction model and the nonlinear time-series prediction model. The hybrid 
model enables effectively modeling the linear and nonlinear energy consumption.

Linear time‑series prediction model.  SRIMA is the most commonly used linear model for predicting 
seasonal time series data in both academic research and industrial applications14. In this study, the SARIMA 
model was used to capture the linear patterns in the energy use profile. Seasonal AR and MA terms in the 
SARIMA model predict energy consumption in building yt by using data values and errors at previous periods 
with lags that are multiples of the seasonality length S. The SARIMA(p, d, q) × (P, D, Q)S, is a multiplicative model 
that consists of nonseasonal and seasonal elements. Equation (1) presents the mathematical expression of the 
SARIMA model as described in13,47. The terms of the model are expressed in11.

where p is the nonseasonal AR; d is nonseasonal differencing; q is the nonseasonal MA; P is the seasonal AR; D is 
seasonal differencing; Q is the seasonal MA order; S is the season length; B is the backward shift operator; wq(B), 
θp(B), ΘP(BS), and WQ(BS) are polynomials in B; yt is the actual value at the time t; αt is the estimated residual at 
the time t; d, q, P, D, Q are integers.

The SARIMA model forecasts the next 24-h energy consumption in buildings with the assumption of a linear 
relationship among historical data. To enhance the predictive performance, the integration of the SVR and FA 
has been combined with the SARIMA model to develop the hybrid model for energy consumption prediction. 
The SVR and FA theories were presented in section “Nonlinear time-series prediction model”.

Nonlinear time‑series prediction model.  Support vector machine for regression.  The support vector 
regression (SVR)48 is a supervised ML technique based on the statistical learning theory and the principle of 
structural risk minimization. Figure 1 presents the structure of the SVR model for regression. For enhancing 
efficiency and generalization capacity, the LSSVR was developed31 to deal with large data sets such as building 
energy consumption data. Given a training data set 

{
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Firefly algorithm.  The FA49, is a nature-inspired metaheuristic algorithm that is inspired by the flashing behav-
ior of fireflies. The FA is effective to identify the global optima and local optima. The FA operation is based on 
three main principles: a firefly is attracted to other fireflies; the brightness of fireflies impacts its attractiveness 
regarding the distance among fireflies, and the brightness is affected by the search space of the optimization 
problems. An optimal solution is affected by the movement of fireflies during the optimization process. The 
movement of a firefly is expressed as Eq. (3).

where xt+1
i  is the position of the ith firefly; xti  is the position of the ith firefly; xtj  is the position of the jth firefly; 

αt is a randomization parameter; and θ ti  is random numbers; β0 is the attractiveness at r = 0; r is the distance 
between the firefly and other fireflies.

Details of the FA were presented in49. To improve the performance of the FA, this study adopted the modi-
fied version of FA that was developed by Chou and Ngo50. Figure 2 reveals the pseudocode of the modified FA. 
A Gauss/mouse map was applied to change an attractiveness parameter while a logistic map in the modified FA 
generates a diverse population of fireflies. The adaptive inertia weight (AIW) was adopted to vary the randomi-
zation parameter α, which can improve the local exploitation and the global exploration during the progress of 
the optimization process. Moreover, Lévy flights facilitate local exploitation. Figure 2 reveals the pseudocode 
of the modified FA.

Learning and test process of the proposed SAMFOR model.  Figure 3 depicts the two-stage flow-
chart of the proposed SAMFOR model in predicting time-series energy consumption in buildings. Data descrip-
tion is be presented in section “Energy consumption data and weather data”. The building energy consumption 
data were constituted by linear and nonlinear parts, as illustrated in Eq. (4). In the 1st stage, the collected histori-
cal energy use was fed into the linear time-series prediction model (i.e., SARIMA) to predict the linear compo-
nent of the building energy consumption data. For the 2nd stage, the nonlinear time-series prediction model 
(i.e., FA-SVR) was used to predict the nonlinear component of the building energy consumption.

where Yt represents the building energy consumption data, Lt and Nt represent the linear part and the nonlinear 
part in building energy consumption data, respectively.

(3)xt+1
i = xti + β0e

−γ r2ij
(

xtj − xti

)

+ αtθ ti

(4)Yt = Lt + Nt

Figure 1.   Structure of SVR model for regression.
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Equation (5) depicts the predictive results obtained by the SARIMA model in which the linear part in build-
ing energy consumption data is modeled as the predicted building energy consumption 

(

L̂t

)

 and residual values 
(Rt). As shown in Fig. 3, the inputs in the 1st stage are only time-series historical building energy consumption 
data which was in the 30-min resolution.

where L̂t are the forecasted values by the SARIMA model and Rt are the residual values.
The final prediction results of future building energy consumption were performed in the 2nd stage by the 

FA-SVR model. Inputs for this stage consists of the forecasted values L̂t , time-series historical building energy 
consumption, temporal data (i.e., day of the week—DoW and hour of the day—HoD), and weather data (i.e., 
outdoor temperature and humidity data). Therefore, the forecasted results of building energy consumption were 
presented as Eq. (6).

(5)Lt = L̂t + Rt

Figure 2.   Pseudocode of modified firefly algorithm.

Figure 3.   Flowchart of the proposed SAMFOR model.
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where DoWt is the day of the week; HoDt is the hour of the day; Tt is outdoor temperature; Ht is outdoor humidity 
data; Yt−1 is building energy consumption value at the time t−1; Yt−lag is the time (t−lag).

The nonlinear time-series prediction model was built based on the integration of the SVR model and the FA 
optimization algorithm (FA-SVR). The FA was integrated to optimize hyperparameters of the SVR model. This 
integration can significantly improve the predictive performance of the proposed model because the configura-
tion of the SVR model was optimized automatically to fit with data patterns. Figure 4 presents the implementation 
of the SAMFOR model in the 2nd stage.

The SARIMA projected the predicted linear building energy consumption in the 1st stage based on the learn-
ing data (LD). LD. In the 2nd stage, the proportion of LD (i.e., 70% of the total size of the learning data) was 
applied to train the SAMFOR model while the remaining proportion of the LD (i.e., 30%) was used to optimize 
the predictive accuracy of the proposed model via the optimization process by the FA. The FA determined the 
optimal hyperparameters of the SAMFOR in the search space via the objective function (OF). In this study, the 
root-mean-square error (RMSE) was used as the OF for the optimization problem. The RMSE is a statistical 
index that was calculated upon the collected actual building energy consumption data and predicted building 
energy consumption data. The operation of the FA was described in section “Firefly algorithm”. After the learning 
phase, the learned p model was produced. The accuracy of the learned model was then tested in the test phase. 

(6)Yt =
(

DoWt ,HoDt ,Tt ,Ht , L̂t ,Yt−1,Yt−2, . . . ,Yt−lag

)

Figure 4.   Implementation of the SAMFOR in the second stage.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15775  | https://doi.org/10.1038/s41598-022-19935-6

www.nature.com/scientificreports/

The test data include the 24-h building energy consumption data. The SAMFOR model was performed in the 
MATLAB environment which is a programming and numeric computing platform.

To provide users with a reliable prediction model, the proposed model was experienced the learning phase 
and test phase using various data sets from real-world buildings. Particularly, the proposed model was learned 
and tested multiple times. During an evaluation, the learning data were to build the time-series prediction model 
for building energy consumption in the learning phase. In this study, the suitable size of the learning data will be 
determined by the sensitivity analysis with different scenarios as stated in section “Sensitivity analysis”.

Accuracy measures.  The correlation coefficient (R), root-mean-square-error (RMSE), mean absolute error 
(MAE), and mean absolute percentage error (MAPE) measures were calculated based on Eqs. (7)–(10) to access 
the predictive accuracy of the SAMFOR model.

 where y′ is predicted energy consumption, y is te actual energy consumption, and n is size of the data sample.

Data collection and analytical results
Energy consumption data and weather data.  This study collected building energy consumption data 
from six buildings in Danang city in Vietnam. Danang is Vietnam’s third-largest city in Vietnam and is located in 
Central Vietnam. Energy consumption data were collected within two years of 2018 and 2019 in the 30-min res-
olution. Energy unit prices in Vietnam can be expected to vary along with the time of consuming energy. Thus, 
future prediction results of energy consumption can be used as a reference to shift and optimize the operating 
time of appliances, lighting, and an air conditioning system in buildings. The 30-min interval of data collection 
was selected with respect to optimization of building operational schedule in the future.

Besides, energy consumption data from buildings in Danang city was automatically collected by smart meters 
namely Automatic Meter Reading (AMR). This AMR system is capable of transmitting collected data to Operator 
Center every 30 min. Whenever enterprises receive notifications from the Load Dispatch Centre, they can reduce 
electricity consumption within 30 min. Short-term forecasting, e.g., one-day ahead, is of prime importance in 
day-to-day market operations. Thus, exactly forecasting electric consumption every 30 min will support both 
consumers and the power industry saving energy consumption. There were 35,040 data points for each building 
in 2 years. This was a large dataset that was used to evaluate the proposed prediction model in this study.

For improving the effectiveness of the prediction model, the weather data in Danang city was also recorded 
for two years of 2018 and 2019 in the 30-min resolution. Danang is belonging in the zone of typical tropical 
monsoon, temperate and equable climate.Figure 5 visualized the temperature and humidity data collected in 
2018 and 2019.
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Figure 5.   Weather data in the years of 2018 and 2019.
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For demonstrating the applicability of the proposed SAMFOR model, energy consumption data in six build-
ings was used. These datasets were selected randomly from the entire datasets. They are various types of building 
including office buildings, hotels, administration buildings, and educational buildings. They were in various loca-
tions in Danang city and have different operational characteristics. Table 1 presents their information including 
the building identification, the management identification, the station identification, the customer code, the 
locations, and their building type. Their energy use profiles for the years of 2018 and 2019 were plotted in Fig. 6, 
which reveal the complex patterns and highly random energy consumption among buildings. Figure 7 provides 
readers with two-week energy consumption profiles in six buildings.

Table 1.   Buildings in the database.

Case Building ID Building type Management ID Station ID Customer code Location / district

1 80 Office building PP0100 AD53ABCQ PP01000133789 Hai Chau

2 48 Hotel PP0100 AD53A9BB PP01000646015 Hai Chau

3 144 Administration building PP0100 AD53ABGY PP01000639871 Hai Chau

4 179 Educational building PP0300 HD53HAAK PP03000800027 Lien Chieu

5 540 Office building PP0700 VD53VACX PP07000600463 Cam Le

6 547 Office building PP0700 VD53VAFG PP07000673738 Cam Le

Figure 6.   Energy consumption in the buildings in the years of 2018 and 2019.
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Sensitivity analysis.  Sensitivity analyses were performed to select appropriate inputs for the prediction. 
Table 2 presents the descriptive statistics of data attributes that may impact energy use in buildings. They consist 
of the historical energy consumption in 30-min intervals (Y), the outdoor temperature (T), the outdoor humid-
ity (H), day of the week (DoW), and hour of the day (HoD). Identifying suitable inputs for the prediction was 
meaningful to achieving reliable and accurate prediction results.

The prediction accuracy of models depends on (1) input parameters such as outdoor temperature, outdoor 
humidity, historical energy consumption patterns, and temporal data; (2) length size of the learning data used 
to train models; and (3) lag values as mentioned in section “Learning and test process of the proposed SAM-
FOR model”. Therefore, three sensitivity analyses were performed in this study to configure prediction models 
as summarized in Table 3. The 1st sensitivity analysis aims to select an appropriate value of lag for time-series 

Figure 7.   Energy use profile in a week (16th–29th December 2019).

Table 2.   Data description of case studies.

Case

30-minutely energy consumption
Y (kWh)

Outdoor temperature
T (oC)

Outdoor humidity
H (%)

Day of the week—DoW Hour of the day—HoDMin Ave Max Std. dev Min Ave Max Std. dev Min Ave Max Std. dev

1 1.74 35.08 144.79 31.49 15.5 27.1 39.3 3.9 31.0 79 100 14 Mon., 0,

2 0.04 37.40 201.03 42.74 15.5 27.1 39.3 3.9 31.0 79 100 14  Tue., 1,

3 2.11 273.32 1411.52 292.01 15.5 27.1 39.3 3.9 31.0 79 100 14  Wed., 2,

4 0.02 62.94 277.62 38.69 15.5 27.1 39.3 3.9 31.0 79 100 14 Thur., …,

5 0.00 7.25 21.23 2.63 15.5 27.1 39.3 3.9 31.0 79 100 14 Fri., 22,

6 0.06 4.15 30.10 4.30 15.5 27.1 39.3 3.9 31.0 79 100 14 Sat., Sun 23
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energy use prediction in buildings. There are 48 scenarios in which the lag value varies from 1 to 48 (i.e., lag = 1, 
2, 3, …., 48). The 2nd sensitivity analysis aims to select an appropriate set of inputs for time-series energy use 
prediction in buildings. There are 6 scenarios considering the impact of a different combination of inputs among 
temporal data, weather data, and historical energy consumption data. The 3rd sensitivity analysis aims to select 
an appropriate size of the learning data for time-series energy use prediction in buildings. There are 13 scenarios 
with different lengths of learning data. The size of the learning data varies from 3 to 15 months. 67 simulations 
were performed in three sensitivity analyses.

Four measures including R, RMSE, MAE, and MAPE were used to compare the predictive accuracy of the 
SAMFOR model with different values of the lag. Figure 8 depicts the average normalized predictive accuracy 
with different lag values in the 1st sensitivity analysis. The comparisons show that the proposed SAMFOR model 
obtained the best accuracy with a lag value of 6. Thus, the lag of 6 was set in the SAMFOR model for predicting 
future energy use in buildings.

In the 2nd sensitivity analysis, the results were presented in Table 4. Using the different combinations of input 
resulted in a difference accuracy. The combination of the historical energy consumption, outdoor temperature, 
and temporal data as inputs in Scenario 5 has the best accuracy among the six scenarios. Therefore, this input 
set was applied in predicting one-day-head energy consumption in buildings. 

Table 3.   Summary of three sensitivity analyses.

Sensitivity analysis Scenario Description/aims

1. Lag selection 48 scenarios:
1 → 48 There are 48 scenarios in which the lag value varies from 1 to 48 (i.e., lag = 1, 2, 3, …., 48)

2. Inputs selection

Scenario 1 Scenario 1 considers only the historical building energy consumption Y as the input for the prediction

Scenario 2 Inputs in scenario 2 are Y, ToD, and DoW

Scenario 3 Inputs in scenario 3 are Y and T

Scenario 4 Inputs in scenario 4 are Y, T, and H

Scenario 5 Inputs in scenario 5 are Y, T, ToD, and DoW

Scenario 6 Inputs in scenario 6 are Y, T, H, ToD, and DoW

3. Size selection of learning data 13 scenarios 1 → 13 There are 13 scenarios with different lengths of the learning data. The size of the learning data varies from 3 to 15 months

Figure 8.   Average normalized predictive accuracy with different lag values.

Table 4.   Sensitivity analysis 2 for identifying the appropriate inputs. Note: ANC stands for average normalized 
accuracy; A scenario with bold numbers indicate its outstanding performance compared to others.

Scenario
Combinations of different inputs for predicting energy 
consumption

Accuracy indices with the test data ANC Rank

RMSE
(kWh)

MAE
(kWh)

MAPE
(%) R

1 Y 1.24 1.53 4.69 0.991 0.88 6

2 Y, HoD, and DoW 1.18 1.40 4.38 0.993 0.70 5

3 Y and T 1.15 1.32 4.18 0.993 0.47 3

4 Y, T, and H 1.16 1.34 4.46 0.993 0.53 4

5 Y, T, HoD, and DoW 1.07 1.14 3.42 0.995 0.00 1

6 Y, T, H, HoD, and DoW 1.08 1.16 3.53 0.995 0.06 2
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Selecting an appropriate size of the learning data is essential to reduce computational effort and improve 
predictive accuracy. The 3rd sensitivity analysis aims to select an appropriate size of the learning data. Accuracy 
indices of the proposed SAMFOR model were assessed by varying the learning data from 3 to 15 months. The 
longer the learning data is, the higher the computational effort is needed. For example, the computational time 
was about 1 min for one evaluation of the model as the 3-month learning data were applied, while it was about 
1 h as the 15-month learning data were applied. The results in Table 5 revealed that the MAPE values were less 
than 5% and the R values were greater than 0.990 for all scenarios. The model performance did not vary much 
along with the change of the learning data for the short-term energy use prediction. The comparison results 
confirmed that the model was the best in prediction when the learning data is four months. Therefore, 4-month 
historical energy use data were set for predictions.

Analytical results and discussion.  Table  6 presents the model settings for one-day-ahead building 
energy consumption in a 30-min resolution. These settings were based on the three above sensitivity analyses. 
The SARIMA model was set as SARIMA (1, 0, 1) × (48, 0, 48)48. The seasonal length was set as 48 which consists 
of a recorded number of data points in a day. The search space for C and σ were set in the range of [10−3 1012]. 
These hyperparameters were optimized by the FA throughout minimizing the objective function of the root-
mean-square error. The firefly’s population and maximum iteration were set at 50 and 25, respectively.

For evaluating the performance of the SAMFOR model, data from six buildings were used. Table 7 presents 
data divisions that were used for twenty-four evaluations in which four evaluations were performed for each 
building. Twenty-four evaluations were performed to test the predictive accuracy of the SAMFOR model. Data 
were divided into the learning data and test data. For example, in Table 7, the learning data were from April 
1—July 31, 2019, while test data were on August 1, 2019, for each building. The learning size was 4-month data 
which is the result of the 3rd sensitivity analysis in section “Sensitivity analysis”. As mentioned in section “Sen-
sitivity analysis”, this learning size was the best choice for learning the proposed model that can achieve the best 
prediction accuracy. Besides, in this study, the length of prediction of energy consumption was a 48-step-ahead 
prediction. The size of test data was aligned with the length of prediction of energy consumption to evaluate how 
the effectiveness of the prediction model.

Table 8 presents performance results obtained by the proposed SAMFOR model via statistical indices of 
RMSE, MAE, MAPE, and R during the learning phase and test phase. Each building was evaluated four times 
to ensure generalizability. The average accuracy measures across twenty-four evaluations in six buildings were 
1.77 kWh in the root-mean-square-error, 5.02 kWh in the mean absolute error, 9.56% in the mean absolute 

Table 5.   Sensitivity analysis 3 for identifying the appropriate learning data size. Significant values are in 
[bold].

Scenario Learning data size (months)

Accuracy indices with the test data

ANC Rank
RMSE
(kWh)

MAE
(kWh)

MAPE
(%) R

1 3 1.23 1.52 4.65 0.991 0.485 8

2 4 1.21 1.46 4.40 0.992 0.091 1

3 5 1.23 1.52 4.59 0.991 0.296 3

4 6 1.24 1.54 4.68 0.991 0.389 7

5 7 1.24 1.53 4.64 0.991 0.369 6

6 8 1.26 1.59 4.75 0.991 0.557 10

7 9 1.27 1.62 4.83 0.990 0.730 12

8 10 1.28 1.64 4.89 0.990 0.819 13

9 11 1.25 1.56 4.79 0.991 0.629 11

10 12 1.25 1.55 4.72 0.991 0.494 9

11 13 1.23 1.50 4.57 0.991 0.326 4

12 14 1.22 1.50 4.54 0.991 0.333 5

13 15 1.20 1.45 4.50 0.992 0.242 2

Table 6.   Model settings for prediction.

Parameter Setting

SARIMA SARIMA (1, 0, 1) × (48, 0, 48)48

FA-SVR C ~ [10−3 1012]; σ ~ [10−3 1012]; Population = 50; Maximum iteration = 25; βmin = 0.1; γ = 1

The learning data 4-month historical building energy consumption data in 30-min resolution

Inputs Y, T, ToD, and DoW

Lag 6
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percentage error, and 0.914 in the correlation coefficient over the test phase. For all buildings, the obtained R 
values were greater than 0.900 which shows a great agreement between actual data and prediction data by the 
proposed SAMFOR hybrid time-series model.

Figure 9 visualizes an example of the 30-min building energy consumption data between actual and fore-
casted data in building 1 at the second evaluation. They were very close to each other in the learning and test 
phases. The hybrid AI model achieved very low MAPE values through twenty-four evaluations in Table 8. The 
average MAPE values were about 4.81% for building 1, 10.49% for building 2, 12.69% for building 3, 7.06% for 
building 4, 5.69% for building 5, 16.62% for building 6. The comparisons of the prediction results produced by 
the SAMFOR model with actual data for six buildings in the test phase were visualized in Figs. 10, 11, 12, 13, 
14, and 15. The visualization in these Figures revealed the high agreement between predicted and actual data 

Table 7.   Data settings for evaluations of all buildings.

Evaluation

Period of learning data Period of test data

4 months Sample size (points)

1 January 8–May 7, 2018 5696 May 8, 2018 (Tuesday)

2 June 15–October 14, 2018 5856 October 15, 2018 (Monday)

3 April 1–July 31, 2019 5856 August 1, 2019 (Thursday)

4 August 27–December 26, 2019 5856 December 27, 2019 (Friday)

Table 8.   Performance results by SAMFOR model for six buildings in the learning phase and test phase.

Building Evaluation

Performance by SAMFOR in learning phase Performance by SAMFOR in test phase

RMSE (kWh) MAE (kWh) MAPE (%) R RMSE (kWh) MAE (kWh) MAPE (%) R

Building 1

1 1.24 1.54 6.77 0.993 1.69 2.86 5.95 0.996

2 1.54 2.36 6.63 0.995 1.40 1.97 5.20 0.996

3 1.39 1.94 5.76 0.996 1.44 2.08 4.45 0.996

4 1.27 1.61 5.22 0.995 1.11 1.23 3.65 0.995

Average 1.36 1.86 6.10 0.995 1.41 2.04 4.81 0.996

Building 2

1 0.37 0.14 8.16 0.915 0.70 0.49 11.33 0.899

2 0.69 0.48 15.94 0.917 0.61 0.38 13.51 0.951

3 2.66 7.10 9.95 0.956 2.44 5.97 8.36 0.959

4 2.56 6.56 9.93 0.956 2.15 4.60 8.75 0.843

Average 1.57 3.57 10.99 0.936 1.48 2.86 10.49 0.913

Building 3

1 3.89 15.15 10.53 0.989 5.12 26.23 13.84 0.992

2 4.43 19.65 12.68 0.992 3.98 15.81 18.89 0.842

3 4.36 18.99 12.40 0.994 4.63 21.46 8.26 0.994

4 4.08 16.68 10.74 0.993 4.23 17.94 9.76 0.989

Average 4.19 17.62 11.59 0.992 4.49 20.36 12.69 0.954

Building 4

1 2.06 4.25 25.72 0.982 2.49 6.20 6.25 0.991

2 2.16 4.67 6.43 0.984 1.91 3.66 6.90 0.868

3 2.17 4.70 9.31 0.985 1.77 3.13 7.07 0.865

4 1.91 3.65 8.91 0.983 1.71 2.94 8.02 0.890

Average 2.08 4.32 12.59 0.983 1.97 3.98 7.06 0.904

Building 5

1 0.51 0.26 24.19 0.960 0.71 0.50 6.43 0.922

2 0.64 0.41 5.17 0.933 0.55 0.30 4.87 0.904

3 0.71 0.50 8.48 0.953 0.71 0.50 7.25 0.782

4 0.70 0.49 7.09 0.958 0.48 0.23 4.19 0.955

Average 0.64 0.42 11.23 0.951 0.61 0.38 5.69 0.891

Building 6

1 0.59 0.34 13.73 0.975 0.88 0.77 14.71 0.986

2 0.76 0.58 13.57 0.983 0.54 0.29 28.92 0.407

3 0.74 0.55 14.03 0.983 0.79 0.62 13.19 0.966

4 0.57 0.33 12.71 0.975 0.47 0.22 9.65 0.946

Average 0.67 0.45 13.51 0.979 0.67 0.48 16.62 0.827

Overall average 1.75 4.71 11.00 0.973 1.77 5.02 9.56 0.914

Standard deviation 1.31 6.28 5.27 0.024 1.40 7.41 5.63 0.124
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on energy consumption. The prediction results confirmed the effectiveness of the SAMFOR in forecasting the 
short-term energy use profiles in buildings.

The optimal values of hyperparameters in the hybrid SAMFOR model and the computing time of the model 
were presented in Table 9. Most optimal C and δ were less than 1000. This suggests future settings can be nar-
rowed within 1000 to save the computational cost in terms of computing memory and elapsed CPU time. The 

Figure 9.   Actual and forecasted building energy profile in building 1 at 2nd evaluation.

Figure 10.   Actual and forecasted test data by the proposed SAMFOR model for building 1.
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model was implemented in a computer with the processor of “Intel (R) Core (TM) i7-9750H CPU @ 2.60 GHz 
2.59 GHz”, the RAM of 8.00 GB, the system type of 64-bit operating system, × 64-based processor. The elapsed 
CPU time was about 4 min for four evaluations which means a minute per evaluation. The results reveal the 
efficiency of the proposed model which is very meaningful for the short-term energy prediction.

The performance of the proposed SAMFOR model was compared to those of the linear time-series prediction 
model (i.e., SARIMA) and base nonlinear time-series prediction models (i.e., support vector regression (SVR), 
random forests (RF), and an integration of SARIMA and SVR model. These models have been widely applied for 
building energy consumption. Table 10 reveals performance by the baseline SVR and RF models. The SARIMA 
model was not stable in short-term building energy consumption prediction. It performed quite well for build-
ings 1 and 5 in which the obtained MAPE values were lower than 15%. For the remaining cases, the SARIMA 
model showed poor results with the high MAPE of from 30.44% up to 129.30%. The reason behind this poor 
result is that the SARIMA model assumed the linear relationship between future data and historical data. The 
inherent assumption limited its power in modeling the complex and nonlinear patterns in building energy use 
data. The SVR and RF models were more stable than the SARIMA model in the prediction. The overall average 
MAPE values were 9.89% by the SVR model and 10.18% by the RF model through twenty-four evaluations in 
six buildings. These good results depict the flexibility of the SVR and RF models in capturing the highly-vary 
patterns in energy data.

A performance comparison between the proposed SAMFOR model and SARIMA, SVR SARIMA-SVR, and 
RF models was presented in Table 11. Figure 16 shows comparisons of the one-day ahead prediction outputs 
among models in the scatter plots. Comparison results show that the SAMFOR model was more effective than 
the others in terms of all accuracy measures in forecasting short-term energy use in buildings. The proposed 
model has the lowest errors with 1.77 kWh in the RMSE, 5.02 kWh in the MAE, 9.56% in the MAPE, and 0.914 
in the R. The hybrid artificial intelligence approach can improve the accuracy from 7.0 to 42.3 kWh in the RMSE 
as compared to baseline models. Figure 17 visualizes the comparison of the MAPE, MAE, RMSE, and R values 
obtained by the proposed SAMFOR, SVR, RF, SARIMA, and SARIMA-SVR models. The comparison revealed 
that the performance index of the proposed SAMFOR were better that those of other investigated models. The 
results confirmed the effectiveness of the SAMFOR model in predicting energy consumption in buildings.

The accuracy of the M5P and random tree (RT) models yielded 23.88% and 40.73% in the MAPE, 
respectively42 while the SVR model in39 obtained 16.01% in MAPE in the day-ahead prediction of hourly energy 
use in buildings. The proposed SAMFOR model reached 9.56% in the MAPE in predicting one-day-ahead energy 

Figure 11.   Actual and forecasted test data by the proposed SAMFOR model for building 2.
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consumption. Compared to these studies in the literature, the SAMFOR model was very competitive and effec-
tive. The power of the hybrid approach comes from taking advantage of a linear model and a nonlinear model, in 
which an optimization algorithm was applied to fine-tune the configuration of the proposed model. Notably, in 
the proposed hybrid model, the FA was used to optimize the hyperparameters of the SVR. Moreover, appropriate 
inputs used for prediction were analyzed and selected via three sensitivity analyses. Thus, the SAMFOR model 
was an effective model for forecasting short-time energy consumption. The one-day-ahead energy consumption 
prediction results provide building owners, building managers, and network operators with insights and refer-
ences to improve energy efficiency. Particularly, the operating schedule of appliances, lighting systems, and the 
air-conditioning system can be optimized and shifted to reduce energy costs.

Conclusions
Sustainable development of energy is an important concern for many countries. Energy use reduction in buildings 
is beneficial to society in terms of economy and ecology. Challenges of energy consumption prediction include 
(1) selecting an appropriate value of lag for time-series energy use prediction in buildings, (2) identifying an 
appropriate input set for a prediction, (2) setting parameters of the prediction model, (3) selecting an appropriate 
size of the learning data for a prediction, and (4) optimizing the parameters of the prediction model.

This study proposed a hybrid artificial intelligence prediction model for forecasting time-series energy con-
sumption in buildings toward sustainable development. The proposed model, namely SAMFOR, was constituted 
by the seasonal autoregressive integrated moving average (SARIMA), support vector regression (SVR), and firefly 
algorithm (FA). A large dataset of hourly energy consumption collected from buildings in Vietnam was used 
to train and test the performance of the proposed model. The proposed model achieved a great performance in 
predicting one-day-ahead energy consumption in the 30-min intervals in buildings. The accuracy measures by 
the SAMFOR model were 1.77 kWh in the root-mean-square-error, 5.02 kWh in the mean absolute error, 9.56% 
in the mean absolute percentage error, and 0.914 in the correlation coefficient in the test phase.

Figure 12.   Actual and forecasted test data by the proposed SAMFOR model for building 3.
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The hybrid SAMFOR model can take advantage of a linear model and a nonlinear model, in which an opti-
mization algorithm was applied to fine-tune the configuration of the proposed model. Moreover, appropriate 
inputs used for prediction were analyzed and selected via three sensitivity analyses. Thus, the SAMFOR model 
was an effective model for forecasting short-time energy consumption. The proposed SAMFOR model improved 
the accuracy from 7.0 to 42.3 kWh in the RMSE as compared to baseline models of the SARIMA, SVR, and RF 
models. The results confirmed the effectiveness of the SAMFOR model in predicting energy consumption in 
buildings.

The first contribution of this work is the proposed effective prediction model in accurately forecasting the 
one-day-ahead energy consumption in buildings. The proposed hybrid model takes advantages of a linear model 
and a nonlinear model, in which an optimization algorithm was applied to optimize the proposed model. The 
second contribution is that the model can consider the temporal data (e.g., day of the week and hour of the day), 
weather data (e.g., outdoor temperature and humidity), and historical energy data as the inputs for the future 
energy use prediction in buildings. For practical contribution, the prediction results provide users with references 
to adjust their behavior and to improve energy efficiency.

Figure 13.   Actual and forecasted test data by the proposed SAMFOR model for building 4.
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As limitation, the model users need to have a background knowledge of artificial intelligence. Future work 
should develop a web-based decision support system, or an easy-to-use application based on the proposed 
prediction model to provide users with a convenience. The boundary conditions for developing this model are 
described as following: (1) the model was used for predicting one-day-ahead energy consumption in buildings, 
(2) the historical energy consumption, outdoor temperature, and temporal data were considered as inputs for 
the model, and (3) the model was developed and tested using the data in Vietnam. The proposed model can be 
expanded to apply for data in other countries.

Figure 14.   Actual and forecasted test data by the proposed SAMFOR model for building 5.
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Figure 15.   Actual and forecasted test data by the proposed SAMFOR model for building 6.

Table 9.   Optimal hyperparameters of SAMFOR model and computing time.

Building Eval C δ
Elapsed CPU time 
(min) Building Eval C δ

Elapsed CPU time 
(min)

1

1 946.32 203.20 4.24

4

1 856.43 491.83 3.62

2 967.85 124.48 2 860.90 479.01

3 982.64 68.22 3 2.79 × 1010 3.55 × 109

4 965.27 134.09 4 42.57 163.03

2

1 1.46 × 109 7.01 × 107 3.64

5

1 4.60 × 107 2.89 × 109 3.65

2 16.93 66.58 2 1.02 × 109 2.51 × 107

3 1.34 × 109 4.08 × 1010 3 948.92 193.87

4 175.34 578.39 4 416.84 972.34

3

1 2.89 × 1010 6.16 × 109 3.85

6

1 877.76 429.19 4.15

2 961.69 147.36 2 956.51 166.40

3 969.42 118.57 3 950.85 186.94

4 978.21 85.25 4 946.10 204.00
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Table 10.   Predictive performance by SVR and RF models.

Building Evaluation

Performance by SVR Performance by RF

RMSE (kWh) MAE (kWh) MAPE (%) R RMSE (kWh) MAE (kWh) MAPE (%) R

Building 1

1 0.86 0.60 13.47 0.868 0.82 0.57 14.65 0.871

2 5.90 3.84 8.48 0.984 3.94 2.58 6.50 0.993

3 7.17 3.79 6.59 0.979 3.96 2.58 5.42 0.994

4 4.12 2.50 6.82 0.976 2.83 1.84 5.36 0.989

Average 4.51 2.68 8.84 0.952 2.89 1.89 7.98 0.961

Building 2

1 0.86 0.60 13.47 0.868 0.82 0.57 14.65 0.871

2 0.87 0.52 17.09 0.901 0.65 0.42 16.43 0.945

3 8.19 6.01 8.49 0.956 9.31 7.30 10.39 0.946

4 5.47 4.29 7.95 0.850 6.12 4.87 9.19 0.818

Average 3.85 2.86 11.75 0.894 4.22 3.29 12.67 0.895

Building 3

1 71.27 25.50 7.02 0.986 48.06 22.25 8.00 0.994

2 12.38 8.71 8.56 0.967 18.80 12.08 11.92 0.925

3 73.59 35.10 11.7 0.981 38.45 21.82 8.49 0.995

4 50.49 23.31 11.62 0.978 40.83 23.36 10.88 0.986

Average 51.94 23.15 9.73 0.978 36.53 19.88 9.82 0.975

Building 4

1 16.44 9.30 7.87 0.978 11.74 7.36 6.14 0.988

2 6.76 4.39 8.01 0.796 7.25 4.49 8.38 0.767

3 4.85 3.13 7.38 0.861 5.11 3.25 7.63 0.817

4 5.90 3.57 9.73 0.882 5.17 3.06 8.27 0.907

Average 8.49 5.10 8.25 0.879 7.32 4.54 7.61 0.870

Building 5

1 0.74 0.55 7.17 0.908 0.83 0.58 7.35 0.902

2 0.34 0.25 3.93 0.933 0.44 0.33 5.46 0.893

3 0.58 0.44 6.29 0.839 0.63 0.48 6.84 0.799

4 0.63 0.39 6.95 0.807 0.62 0.42 7.33 0.819

Average 0.57 0.41 6.09 0.872 0.63 0.45 6.75 0.853

Building 6

1 1.54 0.84 15.13 0.979 2.71 1.49 18.58 0.957

2 0.33 0.18 13.68 0.773 0.53 0.29 23.12 0.621

3 0.90 0.60 13.41 0.957 0.73 0.47 9.32 0.970

4 0.71 0.40 16.49 0.801 0.55 0.33 14.00 0.897

Average 0.87 0.50 14.68 0.877 1.13 0.65 16.26 0.861

Overall average 11.70 5.78 9.89 0.909 8.79 5.12 10.18 0.903

Standard deviation 21.36 9.14 3.60 0.071 13.79 7.30 4.58 0.093

Table 11.   Performance comparison among base models and proposed model.

Model/method

Performance indices Improvement by the SAMFOR

RMSE (kWh) MAE (kWh) MAPE (%) R RMSE (kWh) MAE (kWh) MAPE (%) R

SARIMA 44.08 36.94 58.19 0.806 42.3 31.9 49.6 0.108

SVR 11.70 5.78 9.89 0.909 9.9 0.8 0.3 0.005

SRIMA-SVR 13.91 9.83 10.42 0.902 12.1 4.8 0.9 0.012

RF 8.79 5.12 10.18 0.903 7.0 0.1 0.6 0.011

Proposed SAMFOR 1.77 5.02 9.56 0.914
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Figure 16.   Comparison of prediction results by all investigaged models.
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