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Current sensorless 
position‑tracking control 
with angular acceleration error 
observers for hybrid‑type stepping 
motors
Seok‑Kyoon Kim1, Kwan Soo Kim2, Dong Kyu Lee2 & Choon Ki Ahn2*

This paper exhibits an advanced observer-based position-tracking controller for hybrid-type stepping 
motors with consideration of parameter and load uncertainties. As the main contribution, a current 
sensorless observer-based pole-zero cancellation speed controller is devised for the outer loop 
position-tracking controller including the convergence rate boosting mechanism. The features of 
this study are summarized as follows; first, the pole-zero cancellation angular acceleration error 
observer for the inner loop speed controller, second, the pole-zero cancellation speed control forcing 
the order of the controlled speed error dynamics to be 1, and, third, the outer loop position control 
incorporating the first-order target tracking system with its convergence rate booster. The resultant 
effectiveness is verified on a 10-W stepping motor control system.

The major advantages of stepping motors are the elimination of brushes and the use of a simple position regula-
tion method to count the pulse numbers. These allow various industrial position control applications, such as 
computerized numerical control (CNC) machines, nuclear reactor control rods, robot arms, and printers1–7.

Implementing position and speed regulation with stepping motors is possible without any feedback sensors 
by counting the pulse numbers and adjusting the pulse frequency; however, their precision is predominantly 
reliant on the teeth numbers. At high-speeds, a stepping motor can experience mechanical problems such as 
step-out, resonance, and reversal of speed8. To overcome these, a micro-stepping technique with a partial closed-
loop structure was proposed that determines the voltage update law statically while assuming the current-loop 
transfer function as 1. The corresponding closed-loop control precision and performance are dependent on the 
current controller. A proportional-integral-derivative (PID) control constitutes the current-loop for each phase 
with a well-tuned feedback gain using Bode and Nyquist techniques8–12. To maintain the desired performance 
across a large operation range, the resultant feedback gain must be magnified by increasing the motor speed, 
which is proportional to the back-electromotive force (EMF) disturbance. Parameter-dependent feed-forward 
compensators deal with this problem by canceling the motor-speed-dependent disturbance, which can achieve 
significant performance improvement in the high-speed mode13. A novel current-control technique was proposed 
based on the incorporation of a disturbance observer (DOB) in the sliding-mode control (SMC) to improve 
the feed-forward terms by reducing the parameter dependence; the proof of closed-loop convergence was pre-
sented by the Lyapunov stability theorem14. Another recent study established the elimination of current feedback 
sensors by combining feedback-linearization (FL) control and a passive observer driven by the position error, 
which included closed-loop stability analysis15. The level to which parameters depend on these techniques can 
be lowered by using the novel online parameter identifiers as in16–21. Interestingly, the position dynamics were 
considered, which transformed the entire machine dynamics into a linear-time varying system that could be 
stabilized by an H2 controller with a passive observer22.

Unlike the aforementioned approaches (designed in the a-b axis), the introduction of a rotational d-q trans-
formation simplifies the controller design task considerably by removing of the nonlinearities of the model 
that rely on the motor position23. This method also enables to enlarge the operation range by controlling the 
negative d-axis current24. Moreover, several recent techniques for three-phase permanent machines, as in25–30, 
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can be considered as stabilizing solutions. In FL methods31,32, the position regulation task was transformed into 
a third-order nonlinear dynamics stabilization problem that required inverse dynamics with perfect machine 
parameter knowledge. Parameter updating mechanisms have been incorporated into an FL controller to reduce 
the regulation errors with the closed-loop system order increment33. The energy-shaping approach combining the 
two techniques of flatness and passivity alleviates the dependence on inverse dynamics and parameters, using the 
function of open-loop energy34. Sliding mode control (SMC) that forces closed-loop dynamics into the desired 
surface with the suppression of disturbances from model-plant mismatches is available; here, a discontinuous 
function with a conservative gain is used in the feedback loop35–37. Closed-loop performance improvement can 
be achieved by incorporating a learning part for the feedback-loop in the back-stepping controller that minimizes 
the cost-function using a learning algorithm38. Another learning control was suggested with compensation for 
the q-axis current reference using a repetitive space-learning technique. The tracking performance improvement 
for sinusoidal references was only observed from numerical simulations39. The recent DOB-based proportional-
type positioning technique tried to robustly provide boosting to the closed-loop cut-off frequency in its transient 
periods, which requires current feedback and could limit the closed-loop performance limitation due to the 
absence of integral actions40,41.

From this literature survey, the accurate machine model information and current feedback remain as the 
practical problems to be handled in this study. The machine parameters are decomposed as their nominal and 
variations to lower the system model dependence for controller design task. The acceleration error observer 
removes the requirement of the current feedback loop without any machine model information. The contribu-
tions of this study are as follows:

•	 The proposed observer estimates the angular acceleration error by adopting the specially structured observer 
gain to invoke the first-order pole-zero cancellation for the estimation error dynamics, independent from 
the machine model information,

•	 The inner loop controller robustly stabilizes the speed and estimated acceleration errors in accordance 
the first-order dynamics, involving the order reduction property obtained from the pole-zero cancellation 
through the active damping compensation, and

•	 The outer loop adopts the convergence rate booster to reinforce the position-tracking performance by increas-
ing the target system feedback gain proportional to the tracking error.

The prototype control system including a commercial 10-W hybrid-type stepping motor validates the effective-
ness of the proposed technique in various scenarios.

Hybrid‑type stepping motor model
The stator of the stepping motors includes a- and b-phase, whose phase current and voltage are denoted as ix 
and vx , x = a, b , respectively. Applying the orthogonal coordinate transformation with the rotor position θ and 
each phase teeth number Nr , respectively, it holds that9,10,42

∀t ≥ 0 , with the state variables : θ - rotor position (rad), ω - rotor speed (rad/s), and ix , x = d, q - current 
(A) and control variable : vx , x = d, q - voltage (V). The output torque Te(iq) (Nm) is proportional to the q-axis 
current as Te(iq) :=Kmiq with the torque coefficient Km . The load torque TL (Nm) acts as the mismatched distur-
bance depending on the operation conditions. The disturbances px(id , iq,ω) in modeling the back-EMF effect are 
defined as pd(id , iq,ω) := LNrωiq and pq(id , iq,ω) := − (LNrid + Km)ω with the stator inductance L (H). The 
remaining machine parameters are given by: J - inertia moment of the rotor (kgm2 ), B - viscous friction (Nm/
rad/s), and R - stator resistance ( �).

To deal with the variations of parameter and load torque, nominal parameters denoted as (·)0 are introduced 
for the speed and current dynamics (2)–(3) to be expressed as

x = d, q , with Te,0(iq) :=Te(iq)|Km=Km,0 , px,0(id , iq,ω) := px(id , iq,ω)|L=L0,Km=Km,0 , and lumped disturbances 
d̄ω , d̄d , and d̄q . The following section presents the development of the position regulation law with the dynamics 
(4) and (5).

Position‑tracking control law
This study adopts the target position tracking behavior denoting θ∗ (different from the actual position measure-
ment θ ) as the first-order system given by

(1)θ̇ = ω,

(2)Jω̇ = −Bω + Te(iq)− TL,

(3)Li̇x = −Rix + px(id , iq,ω)+ vx , x = d, q,

(4)J0ω̇ = −B0ω + Te,0(iq)+ d̄ω

(5)L0 i̇x = −R0ix + px,0(id , iq,ω)+ vx + d̄x ,
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for the error θ̃∗ := θref − θ∗ , reference trajectory θref  , and convergence rate ωpc > 0 (constant). The system (6) 
accomplishes the tracking objective; that is limt→∞ θ∗ = θref  , exponentially for any reference trajectory θref  
according to the convergence specification ωpc . Therefore, the tracking controller is designed to guarantee the 
control objective: limt→∞ θ = θ∗ , exponentially, which is proved by analyzing the closed-loop dynamics in 
“Analysis” section.

Outer loop.  Convergence rate boosting mechanism.  The time -varying convergence ratio ω̂pc replaces its 
constant version ωpc in (6) as

where ω̂pc(0) = ωpc , ω̃pc :=ωpc − ω̂pc , and two design parameters γpc > 0 and ρpc > 0 determine the convergence 
rate booting and restoring natures, respectively. The time-varying nature of ω̂pc by the rule (8) makes the stability 
issue questionable, which is addressed in “Analysis” section with the boundedness property ω̂pc ≥ ωpc , ∀t ≥ 0.

Position control.  The manipulation ω = ωref − ω̃ with ω̃ :=ωref − ω and error θ̃ := θ∗ − θ give the error 
dynamics as ˙̃θ = −ωref + ω̃ + θ̇∗ , ∀t ≥ 0 , whose stabilization can be established by the proportional-type sta-
bilizing law:

with the adjustable convergence rate �pc > 0 . Note that the compensation term θ̇∗ is obtainable from the imple-
mentations of (7) and (8) such that θ̇∗ = ω̂pc θ̃

∗ + θ̇ref  . The proposed stabilizing solution (9) results in the con-
trolled position dynamics:

through the substitution of (9) to the open-loop error dynamics ˙̃θ = −ωref + ω̃ + θ̇∗ , which is used in “Analysis” 
section to analyze the whole system stability and convergence properties considering all control dynamics in 
“Outer loop” and “Inner loop speed control” sections.

Inner loop speed control.  This section presents the stabilizing solution for the second-order speed error 
dynamics given by

with the coefficient cω,0 := J0L0
Km,0

 (known) and lumped disturbance dω :=R0iq + (L0Nrid + Km,0)ω − d̄q+
B0L0
Km,0

ω̇ − L0
Km,0

˙̄dω + J0L0
Km,0

ω̈ref  , which is obtained using the open-loop speed and current dynamics (4)–(5). The sta-
bilization of the open-loop dynamics (11) requires angular acceleration error ( ̃a := ω̇ref − ω̇ ) feedback; however, 
this is not available online without the direct differentiation associated with high-frequency noise magnification. 
Therefore, an angular acceleration error observer is proposed without requiring any plant true parameter values.

Angular acceleration error observer.  It follows from the definition ã := ω̇ref − ω̇ that ˙̃ω = ã , ∀t ≥ 0 , where the 
uncertain acceleration error ã is decomposed as its DC ( ̃a0 ) and AC ( �ã ) components such that ã = ã0 +�ã . 
This representation yields the open-loop system in the chain form, independent from the machine model (2)–
(3):

where w :=� ˙̃a and |w| ≤ wmax , ∀t ≥ 0 , which corresponds to the genuine idea of this work to solve the model 
dependence problem in the observer design task. Defining the observer errors eω̃ := ω̃ − ω̃obs and eã := ã− ãobs 
with their estimates ω̃obs and ãobs , an acceleration error observer is proposed as

with observer gains lobs,d > 0 (for disturbance attenuation level) and lobs,c > 0 (for estimation error convergence 
rate), whose pole-zero cancellation property results in the exponential convergence property limt→∞ ãobs = ã 
according to the first-order dynamics ėã = −lobs,ceã with a sufficient large lobs,d > 0 . See “Analysis” section for 
details specifying the admissible range for lobs,d.

(6)˙̃
θ∗ = −ωpc θ̃

∗, ∀t ≥ 0,

(7)˙̃
θ∗ = −ω̂pc θ̃

∗,

(8)˙̂ωpc = γpc((θ̃
∗)2 + ρpcω̃pc), ∀t ≥ 0,

(9)ωref = �pc θ̃ + θ̇∗, ∀t ≥ 0,

(10)˙̃
θ = −�pc θ̃ + ω̃, ∀t ≥ 0,

(11)cω,0 ¨̃ω = −vq + dω , ∀t ≥ 0,

(12)˙̃ω = ã,

(13)˙̃a = w, ∀t ≥ 0,

(14)˙̃ωobs = (lobs,d + lobs,c)eω̃ + ãobs ,

(15)˙̃aobs = lobs,dlobs,ceω̃ , ∀t ≥ 0,
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Control law.  A proposed stabilizing solution for the second-order open-loop dynamics of (11) is given by

with the two design factors kd > 0 and �sc > 0 . The disturbance estimate d̂ω comes from the observer-based DOB:

∀t ≥ 0 , with design factor l > 0 . Figure 1 shows the controller structure.

Analysis
Subsystem properties.  Lemma 1 proves that the time-varying subsystem (7) is stable by augmenting the 
convergence rate boosting system (8).

Lemma 1  The convergence rate booster (7) and (8) guarantees the stability and exponential convergence 
limt→∞ θ∗ = θref .

Proof  The equivalent form of (7) given by

and the update rule (8) turn the Lyapunov function candidate

with xm :=
[

θ̃∗ ω̃pc

]T and Pm := diag{1, 1
γpc

} ( γpc > 0 for the update rule (8)) into

with Qm := diag{ωpc , ρpc} ( ω̂pc(0) = ωpc > 0 and γpc > 0 for the update rule (8)) and αm := 2�min(Qm)
�max(Pm)

 ( �min((·)) 
and �max((·)) representing the minimum and maximum eigenvalues of the square matrix (·) , respectively), which 
completes the proof. 	�  �

Lemma 2 shows that the subsystem comprising (7) and (8) increases the convergence ratio ω̂pc from its initial 
value ω̂pc(0) = ωpc(> 0) , which provides the rationale for a better tracking behavior than the original tracking 
system (6).

Lemma 2  The convergence rate booster (7) and (8) achieves the lower bound on its initial value ωpc . i.e.,

Proof  Consider the another form of (8) given by

whose solution obtained by the both side integration above has a lower bound as

(16)vq = kdãobs + cω,0�sc ãobs + kd�scω̃ + d̂ω , ∀t ≥ 0,

(17)σ̇ = −lσ − l2cω,0ãobs + lvq, d̂ω = σ + lcω,0ãobs ,

˙̃
θ∗ = −ωpc θ̃

∗ + ω̃pc θ̃
∗

Vm :=
1

2
xTmPmxm, ∀t ≥ 0,

V̇m = θ̃∗(−ωpc θ̃
∗ + ω̃pc θ̃

∗)− ω̃pc((θ̃
∗)2 + ρpcω̃pc)

= −xTmQmxm

≤− αmVm < 0, ∀t ≥ 0,

ω̂pc ≥ ωpc , ∀t ≥ 0.

˙̂ωpc = −γpcρpcω̂pc + γpcρpcωpc + γpc(θ̃
∗)2, ∀t ≥ 0,

+

−

refω ω+

−

refθ *θ

ω

qv

obsa dω

0dv =

+

−

pcω

ˆ pcω
+

−

θ

Figure 1.   Controller structure.
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which completes the proof. 	�  �

Lemma 3 analyzes the observer error behavior used for the closed-loop convergence analysis.

Lemma 3  The acceleration observer driven by (14) and (15) guarantees the exponential convergence

where the target trajectory e∗
ω̃

 satisfies

for a given lobs,c > 0 and a sufficient large lobs,d > 0 such that 2wmax
lobs,d

≈ 0.

Proof  Consider the vector form of observer errors defined as eobs :=
[

eω̃ eã
]T , which results in the state-space 

representation for the observer error dynamics using the open-loop system (12)–(13) and the proposed observer 
(14)–(15) as

where r := 0 , w = � ˙̃a , Aobs :=

[

−(lobs,d + lobs,c) 1
−lobs,dlobs,c 0

]

 , b1 :=
[

lobs,c lobs,dlobs,c
]T , and b2 :=

[

0 1
]T . This state-

space representation and the definition of the observer output with respect to cobs :=
[

1 0
]

 as 
yobs := cobseobs(= eω̃) , ∀t ≥ 0 , yields that

and

where the proposed observer gain structure causes the pole-zero cancellation in the first calculation result above. 
These two calculation results give the Laplace transformed observer error output yobs as

with Yobs(s) , R(s), and W(s) being the Laplace transforms of yobs , r(= 0) , and w, respectively, and 
WF(s) :=

1
s+lobs,d

W(s) . The inverse Laplace transform obtains the time domain expression as

with wF denoting the inverse Laplace transform of WF(s) , which yields the performance error for εω̃ := e∗
ω̃
− eω̃ 

as (using (18))

Define the Lyapunov function candidate as

which gives along the performance error dynamics (19) using Young’s inequality (e.g., xy ≤ ε
2
x2 + 1

2ε
y2 , ∀ε > 0 ) 

as

with a positive constant wmax satisfying |w| ≤ wmax , ∀t ≥ 0 . Then, the selection of κwF :=
1

lobs,d
( 1
lobs,c

+ 1) removes 
the indefinite term in the upper bound as

ω̂pc = e−γpcρpc tωpc +

∫ t

0
e−γpcρpc(t−τ)(γpcρpcωpc + γpc(θ̃

∗)2)dτ

≥ ωpc , ∀t ≥ 0,

lim
t→∞

eω̃ = e∗ω̃

(18)ė∗ω̃ = −lobs,ce
∗
ω̃ , ∀t ≥ 0,

ėobs = Aobseobs + b1r + b2w, ∀t ≥ 0,

cobs(sI− Aobs)
−1b1 =

lobs,c(s + lobs,d)

(s + lobs,c)(s + lobs,d)
=

lobs,c

s + lobs,c

cobs(sI− Aobs)
−1b2 =

1

(s + lobs,d)(s + lobs,c)
, ∀s ∈ C,

Yobs(s) = cobs(sI− Aobs)
−1b1R(s)+ cobs(sI− Aobs)

−1b2W(s)

=
lobs,c

s + lobs,c
R(s)+

1

s + lobs,c
WF(s), ∀s ∈ C

ėω̃ = −lobs,ceω̃ + wF , ẇF = −lobs,dwF + w, ∀t ≥ 0,

(19)ε̇ω̃ = −lobs,cεω̃ − wF , ẇF = −lobs,dwF + w, ∀t ≥ 0.

Vε :=
1

2
ε2ω̃ +

κwF

2
w2
F , κwF > 0,

V̇ε = εω̃(−lobs,cεω̃ − wF)−
κwF lobs,d

2
w2
F − κwF

(

lobs,d

2
w2
F − wwF

)

≤−
lobs,c

2
ε2ω̃ −

(

κwF lobs,d

2
−

1

2lobs,c

)

w2
F , ∀t ≥ 0, ∀|wF | ≥

2wmax

lobs,d
,
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where αe := min{lobs,c ,
1

κwF
} subject to a large gain setting lobs,d satisfying 2wmax

lobs,d
≈ 0 , which completes the proof 

by the comparison principle in43. 	�  �

Remark 1  The inequality V̇ε < 0 reveals that

for some setting lobs,d > 0 . This leads to the reasoning process using the subsystem dynamics of (15) given by

which concludes that

verifying the exponential acceleration error estimation convergence used for the remaining analysis.

Lemma 4 analyzes the disturbance estimate behavior from DOB used for the closed-loop convergence analysis 
using the result of Lemma 3.

Lemma 4  The DOB (17) ensures that

for some γ > 0 , where d̃ω := dω − d̂ω , ∀t ≥ 0.

Proof  It follows from the output of DOB in the right side of (17) that

where the DOB (17) yields the second equation and the last equation is obtained from the relationships (11) and 
(21), which completes the proof. 	�  �

Closed‑loop stability and convergence.  Interestingly, the proposed controller results in the order 
reduction of the closed-loop speed dynamics by the stable pole-zero cancellation, which is proven in Lemma 5.

Lemma 5  The proposed voltage updating law of (16) allows the speed error to be satisfied:

with the perturbations d̃ω,F and eã,F such that

for some bi > 0 , i = 1, 2, 3.

Proof  The controlled speed error system is obtained as

with the combination of (11) and (16) and ω̃ref := 0 . Taking the Laplace transform, it holds that

which yields that

where the pole-zero cancellation from the factorization

V̇ε ≤ −
lobs,c

2
ε2ω̃ −

1

2
w2
F

≤ −αεVε < 0, ∀t ≥ 0,

(20)ėω̃ = −lobs,ceω̃ , ∀t ≥ 0,

ëω̃ = −lobs,c ėω̃ ⇔ ( ˙̃a− ¨̃ωobs) = −lobs,c(ã− ˙̃ωobs)

⇔ ( ˙̃a− ((lobs,d + lobs,c)ėω̃ + ˙̃aobs)) = −lobs,c(ã− ((lobs,d + lobs,c)eω̃ + ãobs))

(21)ėã = −lobs,ceã, ∀t ≥ 0,

(22)˙̃
dω = −ld̃ω − lγ eã + ḋω , ∀t ≥ 0,

˙̂
dω = σ̇ + lcω,0 ˙̃aobs = −l(d̂ω − lcω,0ãobs)− l2cω,0ãobs + lvq + lcω,0 ¨̃ω − lcω,0ėã

= l(cω,0 ¨̃ω + vq − d̂ω)− lcω,0ėã

= l(dω − d̂ω)+ llãcω,0eã, ∀t ≥ 0,

(23)˙̃ω = −�scω̃ + d̃ω,F + eã,F ,

˙̃
dω,F = −b1d̃ω,F + b2d̃ω and ėã,F = −b1eã,F + b3eã, ∀t ≥ 0,

cω,0 ¨̃ω = −kdãobs − cω,0�sc ãobs − kd�scω̃ + d̃ω

= −kd ˙̃ω + cω,0�sc( ˙̃ωref − ˙̃ω)+ kd�sc(ω̃ref − ω̃)+ d̃ω + (kd + cω,0�sc)eã, ∀t ≥ 0,

(cω,0s
2 + (kd + cω,0�sc)s + kd�sc)�̃(s) = �sc(cω,0s + kd)�̃ref (s)+ D̃ω(s)+ (kd + cω,0�sc)Eã(s)

(s + �sc)�̃(s) = �sc�̃ref (s)+ D̃ω,F(s)+ Eã,F(s)
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is applied and D̃ω,F(s) =
1

cω,0

s+
kd
cω,0

D̃ω(s) and Eã,F(s) =
kd+cω,0�sc

cω,0

s+
kd
cω,0

Eã(s) , which completes the proof. 	�  �

Finally, Theorem 1 asserts the main result.

Theorem 1  The proposed controller comprising (14)–(17) ensures the exponential convergence (control objective)

for l > 0 such that 2dmax
l ≈ 0 , where |ḋω| ≤ dmax , ∀t ≥ 0.

Proof  The vector x :=
[

θ̃ ω̃ d̃ω,F eã,F
]T leads to the augmented system given by

where Ax :=







−�pc 1 0 0
0 − �sc 1 1
0 0 − b1 0
0 0 0 − b1






 , bx,d :=







0
0
b2
0






 , and bx,e :=







0
0
0
b3






 . The stability of Ax picks an unique 

solution Px > 0 such that AT
x Px + PxAx = −I , which defines the Lyapunov function candidate defined as

The above augmented system and (22) gives its time derivative along the trajectories as

with its upper bound by Young’s inequality (e.g., pTq ≤ ε
2
�p�2 + 1

2ε
�q�2 , ∀ε > 0):

Then, the selections of κd := 2
l (

�Px�
2b22

4 + 1) and κa := 1
lobs,c

(
�Px�

2b23
4 +

κ2d l
2γ 2

2 + 1
2 ) rearrange the upper bound of 

V̇  such that

where α := min{ 2
3�min(Px)

, 1
κd
, 1
κa
} , completing the proof. 	�  �

Remark 2  Based on the above analysis results, this remark finalizes this section by suggesting a tuning process 
of the proposed controller comprising the speed (inner) and position (outer) loops shown in Fig. 1 as follows: 

1.	 (speed loop for steps 1-4) Using well-working speed controller, e.g., PI controller with a constant speed 
reference ωref  , tune the observer gains lobs,c and lobc,d for a rapid estimation error convergence in accordance 
with Remark 1; for example, first, choose lobs,c such that lobs,c ≥ 50 for ėω̃ = −lobs,ceω̃ and, second, increase 
lobs,d holding lobs,d ≫ lobs,c.

2.	 Tune the DOB gain l > 0 to assign the cut-off frequency ( l = 2π fl rad/s, equivalently, fl = l
2π  Hz) for the 

transfer function D̂ω(s)
Dω(s)

= l
s+l (obtained from (22) under the condition eã = 0 ); for example, choose fl ≥ 2 

Hz such that l ≥ 2π fl = 12.6 rad/s.
3.	 Using the proposed speed controller (16) with a constant speed reference ωref  (for step 3 and 4), select 

fsc ∈ [10, 30] yielding �sc ∈ [2π10(= �sc,min), 2π30(= �sc,max)] (e.g., �sc = 2π fsc rad/s and fsc = �sc
2π  Hz); the 

maximum interval value may be increased depending on the hardware specification.
4.	 Increase the active damping coefficient kd (for example, kd ≥ 0.001 ) for an acceptable speed tracking response 

ω̇ ≈ �scω̃ (some iteration between step 3 and 4 may be required).
5.	 (position loop for steps 5-7) Using the proposed position controller (9) with a constant position reference 

θref  , set γpc = ρpc = 0 and select fpc ∈ [0.1, 5] yielding [2π0.1(= ωpc,min), 2π5(= ωpc,max)] ; the maximum 
interval value may depend on the hardware specification.

6.	 Increase �pc (for example, �pc ≥ 10 ) until an acceptable position tracking response θ̇ ≈ ωpc θ̃ is obtained 
(some iteration between step 5 and 6 may be required).

7.	 Increase γpc and ρpc =
κpc
γpc

 with κpc > 0 until the peak value and restoration rate of the convergence rate are 
acceptable; for example, choose γpc ≥ 1 and κpc ≥

γpc
2 .

(cω,0s
2 + (kd + cω,0�sc)s + kd�sc) = (cω,0s + kd)(s + �pc)

lim
t→∞

θ = θ∗

ẋ = Axx + bx,dd̃ω + bx,eeã

V :=
1

2
xTPxx +

κd

2
d̃2ω +

κa

2
e2ã , κd > 0, κa > 0, ∀t ≥ 0.

V̇ = xTPx(Axx + bx,dd̃ω + bx,eeã)+ κdd̃ω(−
l

2
d̃ω − lγ eã)− κalobs,ce

2
ã − κd(

l

2
d̃2ω − d̃ωḋω)

V̇ ≤ −
1

3
�x�2 − (

κdl

2
−

�Px�
2b22

4
−

1

2
)d̃2ω − (κalobs,c −

�Px�
2b23

4
−

κ2d l
2γ 2

2
)e2ã , ∀t ≥ 0, ∀|d̃ω| ≥

2dmax

l
.

V̇ ≤−
1

3
�x�2 −

1

2
d̃2ω −

1

2
e2ã

≤− αV , ∀t ≥ 0, ∀|d̃ω| ≥
2dmax

l
,
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This process results in the controller tuning values used in “Experimental results” section.

Experimental results
This section experimentally demonstrates the position-tracking performance improvements by comparison with 
an extant controller. A 10-W stepping motor embedding an encoder for position feedback (model:NK266E-
02AT) and Texas Instrument (TI) LAUNCHXL-F28069M (digital signal processor) were used for experimental 
setup shown in Fig. 2 (see41 for more detailed configuration).

The controller tuning results are summarized as (convergence rate booster) fpc = 0.2 Hz such that 
ω̂pc(0) = ωpc = 2π0.2 rad/s, γpc = 2 , ρpc = 0.5/γpc , (control gain) �pc = 1.25 , �sc = 125.6 , kd = 0.1 , (observer 
gain) lobs,c = 100 , lobs,d = 500 , and (DOB gain) l = 20 . This study chooses the FL controllers (in30) for the com-
parison study, including the active damping and feed-forward term, given by: vx = KP,cc ĩx + KI ,cc

∫ t
0 ĩxdτ − px,0 , 

iq,ref =
1

Km,0
(−kdω + KP,scω̃ + KI ,sc

∫ t
0 ω̃dτ), (id,ref = 0) , ωref = kpc θ̃  , ∀t ≥ 0 , x = d, q , with feedback gains 

KP,cc = L0�cc , KI ,cc = R0�cc , KP,sc = J0�sc , KI ,sc = (kd + B0)�sc , and carefully tuned value kd = 0.01 . The cur-
rent cut-off frequency was tuned to �cc = 314 by applying the same settings for the position and speed loops in 
the proposed controller.

Figure 2.   Experimental setup.

Time [5s/div]
20 [Deg./div]

,: ref Degθ
( ): Proposed ControllerDegθ
( ): FL ControllerDegθ

0o

30o

30o−

Figure 3.   Position response comparison from tracking task.

Time [5s/div]
10 [mA/div]

: obsa a−: qi

Time [5s/div]
( )25 [ rad/s /div]

: di

2[rad / s ]

Figure 4.   d–q axis current and angular acceleration estimation error responses from tracking task.
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Tracking task.  For the stair position reference, Fig. 3 demonstrates an improved tracking performance from 
the convergence rate boosting mechanism and performance recovery property proved in Theorem 1. Figure 4 
presents the d-q axis current and observer error responses. Figure 5 shows the DOB and convergence rate booster 
responses. The intended convergence rate behavior improves the tracking performance as shown in Fig. 3.

Frequency response.  The proposed controller robustly forces the position motion to be the first-order 
tracking error system (7) by the beneficial capability shown in Theorem 1. This section verifies this advantage 
for the sinusoidal reference signals 0.1, 0.2, and 0.3 Hz. Figure 6 shows that the proposed controller provides the 
desired position-tracking behavior without any magnitude and phase distortion unlike the FL controller.

Regulation task.  To evaluate the regulation performance, a load torque of TL = 0.1 Nm was abruptly applied 
to the closed-loop system (by suddenly attaching the rotating wheel to the rotor) operating at θref ,Deg = 90◦ 
under the three load conditions, such as light-, medium-, and heavy-sized fan. Figure 7 presents that the pro-
posed technique accomplishes drastic regulation performance improvement under different loads compared 
with the FL controller that provides the magnified undershoots with oscillations and performance inconsistency 
for different load conditions. The corresponding q-axis current responses are compared in Fig. 8, which exhib-
its the improved current regulation performance by the proposed controller despite in the absence of current 
feedback.

1 [Value/div]

: dω

Time [5s/div] ( )1 [ rad/s /div]
Time [5s/div]

: pcω

( )0 1.25pcω =

[rad / s]

Figure 5.   DOB and convergence rate responses from tracking task.

50 [Deg./div]
: refθ ( ): Proposed Controllerθ

Time [5s/div]( ): FL Controllerθ

Figure 6.   Position responses for sinusoidal references of 0.1, 0.2, and 0.3 Hz.

Proposed Controller< >
( ): with light-sized fanDegθ
( ): with middle-sized fanDegθ

5 [Deg./div]

( ): with heavy-sized fanDegθ

Time [5s/div]

90oθ =

FL Controller< >

0LT = 0.1LT = 0LT = 0.1LT =

[Deg.]

Figure 7.   Position response comparison under regulation task for light-, medium-, and heavy-sized fan loads.
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Conclusions
The proposed current sensorless feedback system was driven by a PD-type controller incorporating the novel 
techniques, such as a convergence rate booster, angular acceleration error observer (model-free), and DOB 
without requiring the true motor parameters. This study has both proved the beneficial closed-loop properties 
and experimentally confirmed the practical advantages for tracking tasks. However, an acceptable setting for 
numerous design parameters should be identified through a systematic process, which is will be conducted in 
a future study.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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