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Evaluating the efficiency of coarser 
to finer resolution multispectral 
satellites in mapping paddy rice 
fields using GEE implementation
Mirza Waleed1, Muhammad Mubeen1*, Ashfaq Ahmad2, Muhammad Habib‑ur‑Rahman3,11*, 
Asad Amin4, Hafiz Umar Farid5, Sajjad Hussain1, Mazhar Ali1, Saeed Ahmad Qaisrani1, 
Wajid Nasim6, Hafiz Muhammad Rashad Javeed1, Nasir Masood1, Tariq Aziz7, 
Fatma Mansour8 & Ayman EL Sabagh9,10*

Timely and accurate estimation of rice‑growing areas and forecasting of production can provide 
crucial information for governments, planners, and decision‑makers in formulating policies. While 
there exists studies focusing on paddy rice mapping, only few have compared multi‑scale datasets 
performance in rice classification. Furthermore, rice mapping of large geographical areas with 
sufficient accuracy for planning purposes has been a challenge in Pakistan, but recent advancements 
in Google Earth Engine make it possible to analyze spatial and temporal variations within these areas. 
The study was carried out over southern Punjab (Pakistan)‑a region with 380,400 hectares devoted 
to rice production in year 2020. Previous studies support the individual capabilities of Sentinel‑2, 
Landsat‑8, and Moderate Resolution Imaging Spectroradiometer (MODIS) for paddy rice classification. 
However, to our knowledge, no study has compared the efficiencies of these three datasets in rice 
crop classification. Thus, this study primarily focuses on comparing these satellites’ data by estimating 
their potential in rice crop classification using accuracy assessment methods and area estimation. The 
overall accuracies were found to be 96% for Sentinel‑2, 91.7% for Landsat‑8, and 82.6% for MODIS. 
The F1‑Scores for derived rice class were 83.8%, 75.5%, and 65.5% for Sentinel‑2, Landsat‑8, and 
MODIS, respectively. The rice estimated area corresponded relatively well with the crop statistics 
report provided by the Department of Agriculture, Punjab, with a mean percentage difference of less 
than 20% for Sentinel‑2 and MODIS and 33% for Landsat‑8. The outcomes of this study highlight three 
points; (a) Rice mapping accuracy improves with increase in spatial resolution, (b) Sentinel‑2 efficiently 
differentiated individual farm level paddy fields while Landsat‑8 was not able to do so, and lastly (c) 
Increase in rice cultivated area was observed using satellite images compared to the government 
provided statistics.

Rice, grown on 12% of the global cropland  area1, is a major staple food for half of the world’s population. Climate 
change impacts such as global temperatures and changing precipitation dynamics and land cover changes due 
to urbanization and industrialization negatively affect paddy rice (Oryza sativa L.) production. Rice, an impor-
tant food crop of Pakistan, is also an export product making a valuable foreign exchange. In Pakistan US$1,376 
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million were earned by exporting rice alone in 2015–162. However, on the downside, rice is a rigorous water crop 
when associated with other cereal crops. Therefore, water productivity counts a lot for a developing country like 
Pakistan, which is already a water-stressed  country3. Consequently, Small-scale farmers, intensify cropping cycles 
and increase water use to enhance crop production. Paddy crop, with its high water consumption, can also be 
linked to global water security issues in the  future4. At the same time paddy fields are a source of methane  (CH4), 
and  CH4 emissions from paddy rice cultivation have incrased from 7 to 8% worldwide between years 2000 and 
 20165. Since paddy rice fields provide habitat for free-ranging ducks and wild waterfowls, they contribute to avian 
influenza  virus1. Therefore, a regular, accurate and appropriate mapping of paddy crop is crucial for achieving 
food security, tackling climate change, controlling disease transmission, and improving crop management and 
 production6. Remote sensing techniques are extensively used to map rice-growing areas at a frequent temporal 
resolution and to analyze the effects of external variables (e.g., water shortage and climate change) on rice  crop7–9. 
remote sensing provides valuable information about agricultural progress and seasonal crop variation, directly 
linked to the life cycle of paddy  rice10. Instead of field investigation, which is time consuming, labor intensive, 
and financially expensive, remote sensing with standardized approaches can be effectively used to analyze the 
spatial and temporal variability that may affect the life cycle and rice crop  health11.

Southern Punjab (Pakistan), a region vulnerable to climate change, has elevated poverty  levels12, and lacks 
resources to meet its people’s  needs13. Inadequate crop management practices and and advances in climatic 
variability are main threats to agricultural production in this province. Therefore the region is expected to face 
elevated poverty levels in the near future. Rice crop, which is the second major crop of Kharif season in terms 
of area after cotton, is the second most consumed staple food in southern Punjab after  wheat14. For effective 
management of rice production and demand, accurate satellite instruments need to be identified so that effective 
mapping techniques can be implemented in the  region15. Government officials, agronomists, and researchers 
often require accurate and timely crop information for producing statistical reports, policy implementation, and 
advancement in precision  agriculture15.

Google Earth Engine (GEE), a cloud based repository of satellite imagery and processing capabilities has 
gained popularity in recent years due to its ability to handle large datasets, and its power to analyze and visual-
ize big data. This platform enables a user to compute and analyze worldwide satellite imagery with its complete 
spatial and temporal characteristics in an internet-based cloud platform provided free of cost by  Google16. GEE 
even strongly supports studies related to earth and its processes. With its onset in 2010, GEE delivers users all 
satellite imagery, cloud-based computing, and machine learning algorithms to easily process large  datasets17. In 
previous  studies1,6,18,19, researchers have benefited from GEE platform for paddy rice mapping using phenology-
based algorithms along with time series of vegetation indices.

Earlier  studies20–23 support the individual capability of Sentinel-2, Landsat-8 and MODIS multispectral instru-
ments for rice crop classification. However, to date, no study has compared the efficiency of these multispectral 
instruments in classifying individual paddy rice fields at farm level. Therefore, this study mainly focuses on 
using the GEE cloud platform to classify rice crops in southern Punjab region (comprised of Multan, Dera Ghazi 
Khan, and Bahawalpur divisions). The objective is to compare the freely available and GEE integrated coarser 
to finer resolution multispectral instruments for rice classification using the RF classifier. In this, classification 
results will be compared based on their accuracy assessment and area estimation. The results will highlight the 
comparative efficiency of freely available satellite datasets for mapping paddy crop in the region. Furthermore, 
the resulting area estimations will play a significant role in precision agriculture, eventually helping the decision-
making processes.

Material and methods
Study area. The study area is southern Punjab region (in Pakistan) that lies between latitude 27.30° N to 
31.50° N and longitude 69.20° E to 73.55° E (Fig. 1). It has three administrative divisions: Bahawalpur, Multan, 
and Dera Ghazi Khan. Bahawalpur division has three, while Multan and Dera Ghazi Khan divisions have four 
districts  each12. Four major rivers, Chenab, Indus, Sutlej, and Ravi, flow through the study area. Based on visual 
interpretation, the NDVI derived map shows that the Multan division has higher vegetation than the other two. 
While Bahawalpur, Dera Ghazi Khan, Rajan Pur, and Layyah districts showed sparse vegetation trends. The 
southern Punjab region lacks sufficient resources to support its people as the majority of areas are undeveloped 
with weak  infrastructure13. The gravity of the situation can be understood by the fact that out of 40 million peo-
ple in Pakistan living under poverty line, with 10 million of those belong to the Southern Punjab  region12. In the 
region, most of the population depends on agriculture for their livelihoods. Few districts, such as Bahawalnagar 
and Vehari, contain a dense network of water channels, making them suitable for rice production. Additionally, 
the Bahawalnagar district had high water table than other districts, which makes it fit for rice crop in the Kharif 
and not suitable for other crops such as  cotton24. In southern Punjab, there are two main cropping seasons: 
Kharif (April-June, Summer) and Rabi (October-December, Winter). Rice is the dominant crop of the Kharif 
 season4.

According to the crop report for the year 2020 provided by the Crop Reporting Service, Department of Punjab 
(http:// www. crs. agrip unjab. gov. pk/ repor ts), the total rice area estimation of the Multan, D. G. Khan, and the 
Bahawalpur division was 380,400 hectares (Fig. 2). The statistical data show that the Bahawalnagar district had 
the highest area estimate of 87,810 hectares. The lowest area of 13,760 hectares of rice was reported in Rajan Pur 
and Layyah districts. We use these eastimates for validation of area estimation in our study.

Data. Satellite imagery in the Near Infrared (NIR), Shortwave-Infrared (SWIR) and microwave region pro-
vide valuable information about soil moisture, improving the identification of paddy rice  fields20. Singha et al.6 
and Wang et al.20 studies conclude that a combination of normalized difference vegetation index (NDVI) and 

http://www.crs.agripunjab.gov.pk/reports


3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13210  | https://doi.org/10.1038/s41598-022-17454-y

www.nature.com/scientificreports/

Sentinel 1 backscatter coefficient (measure of reflective strength of radar body) along with Land Surface Tem-
perature (LST) of day and night time and precipitation data can be effectively use to identify the rice fields during 
the flooding/transplanting and ripening phases with an overall accuracy greater than 80 percent. Data derived 
from Sentinel-1 provides valuable information in the microwave region and is used to differentiate paddy rice 
fields in cloud prone regions because of its capability to penetrate cloud cover. On the other hand, areas without 
cloud cover issue rely on NIR and SWIR data from multispectral instruments. Similarly, GEE platform is deliver-
ing users with coarse to moderate resolution imagery, such as Moderate Resolution Imaging Spectroradiometer 
(MODIS) at 250 m resolution, Landsat-8 at 30 m resolution, and Sentinel-2 at 10 m resolution. These aforemen-
tioned satellite instruments are used in previous studies for paddy rice  mapping1,20–23,25–27. Sentinel-2 Satellites 
(2nd series of satellites after Sentinel-1) are part of the Copernicus program initiated by the European Space 
Agency (ESA)7. This satellite mission carries multispectral scanners and consists of two satellites which are Sen-
tinel-2A and Sentinel-2B28. In Sentinel-2 satellites, multispectral imaging instruments (MSI) are installed with 
the ability to record 13 wide-swath  bands29. Depending upon the band, each satellite provides 10–60 m of spatial 
resolution with a temporal resolution of 5 days using both satellite constellations. NASA’s Landsat-8 mission is 
a new generation satellite that carries the legacy of Landsat missions. This satellite gets spectral information in 
visible (V), NIR, SWIR, and Thermal Infrared (TIR)  regions1. In this satellite mission, two sensors are installed: 
Operational Land Imager (OLI) and TIR. The OLI obtains spectral information in nine different spectral bands, 
whereas TIR records thermal information in two  bands30,31. MODIS mission contains two satellites: Terra and 
Aqua. These two satellites have nearly the same sensors. The mission monitors the Earth surface every one to two 
days and obtains spatial data in 36 different spectral bands between 0.405 and 14.385 mm. This mission provides 
250 m to 1 km spatial resolution coverage in visible and infrared regions with a 2330 m wide  swath32.

For preparing paddy rice seasonal spectral profile, Sentinel-2 derived NDVI at 10 m  resolution33 and Senti-
nel-1 Backscatter coefficient time-series  variation6 were accessed and four observations per month (depending 
upon satellite revisit intervals) were obtained from 10 randomly selected rice fields inside the Southern Punjab 
boundary. These training points were then digitized inside GEE, and then their monthly average was calculated 
individually. For average monthly temperature, MODIS 250 m resolution LST dataset was  used34, and separate 
day and night LST were calculated. For precipitation, Climate Hazards Group InfraRed Precipitation with Sta-
tion data (CHIRPS) pentad (5-day) precipitation  dataset35 was used to calculate average monthly precipitation. 
The average of LST and precipitation were calculated as average values for the southern Punjab inside GEE.

Figure 1.  Map of the study area (Southern Punjab). The map is designed in ArcGIS Pro V2.9 software available 
at ESRI website (https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- pro/ overv iew). The boundary shapefile 
used to draw these maps are available at Humdata website (https:// data. humda ta. org/ datas et/ cod- ab- pak).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://data.humdata.org/dataset/cod-ab-pak
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Methods. The methodology is divided into three parts. In the first part, rice growth profiles are evaluated 
using multiple instruments (Sentinel-1, Sentinel-2, Landsat-8, and MODIS), which are crucial to crosscheck 
training points (non-rice, rice, and water). In second part of methodology, training points (rice, and non-rice) 
are use to calibrate RF classifier and classify the land cover. After classification, the last part compares derived 
paddy rice maps using accuracy assessments and differences in the estimated actual areas. The overall method-
ology performed is shown in Fig. 3. Moreover, all the steps performed in this methodology (i.e., pre-processing 
and classification) are according to the guidelines and regulations provided by the United States Geological Sur-
vey (USGS) (https:// www. usgs. gov), and GEE (https:// www. explo rer. earth engine. google. com/ terms).

Random Forest (RF) based Classification. Random Forest (RF), a machine learning classifier, has 
widely been used in several studies for paddy rice  mapping36–40. Because of its high precision, RF (having a usage 
percentage of 49% globally in satellite image classification) is the most popular classifier, along with Classifica-
tion and Regression Tree (13%) and Support Vector Machine (11%)41. The RF classifier contains a mixture of tree 
classifiers in which every individual classifier is created using an arbitrary vector tested independently from the 
user given input, and each of the trees in the classifier gives a vote for the most excellent prevalent class to classify 
the given input  vector20. One of the main advantages of an RF classifier is that it needs two types of parameters 
to be set, while in contrast, the Support Vector Machine need more than two input parameters by the user. Also, 
the RF classifier can deal with the data without values, which is not conceivable with Support Vector Machine. 
Another essential advantage of this classifier is that it also offers the comparative importance of different features 
during the classification process, which is very valuable in selecting  features42.

Hyperparameter optimization was performed initially which chooses the optimal parameters to be used 
for algorithm to yield highest accuracy in a given situation. As a result of hyperparameter optimization, max 
number of trees value was set to 115 which yield maximum accuracy for our study area. Then the trained clas-
sifier was used further to classify paddy rice pixels. For classification validation, the training classifier was fed 
with validation data, and then the resulting trained classifier was used to calculate the error matrix for resultant 
maps. All these steps, including cloud masking, data filtering, median, clipping, mosaicking, classifier training, 
classification, and classification validation, were performed individually for each satellite dataset inside GEE.

Figure 2.  Ground truth data for rice production in southern Punjab for year 2020 (Reported by Crop Reported 
Service, Government of Punjab). The map is designed in ArcGIS Pro V2.9 software available at ESRI website 
(https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- pro/ overv iew). The data used in this map is available at CRS 
website (http:// www. crs. agrip unjab. gov. pk).

https://www.usgs.gov
https://www.explorer.earthengine.google.com/terms
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
http://www.crs.agripunjab.gov.pk
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Temporal variation of rice using NDVI and backscatter coefficient. Since values of NDVI and Sen-
tinel-1 backscatter coefficient vary with the variation in rice growth stages, they were used inside GEE to track 
rice growth stages for  20206. Rice crop goes through three distinct growth stages: (1) flooding or transplanting 
phase; (2) high vegetation period; (3) the harvest  period4,14,43,44. In the Punjab region, rice growing starts from 
the mid-May with harvesting from September to  November4,45. The phenology of rice is shown in Table 1. These 
development stages are the major reason for variation in NDVI and Sentinel-1 backscatter values.

To map the temporal variation of rice, we used a literature based  methodology6. The monthly time series 
of NDVI was created using Sentinel-2 (10 m), Landsat-8 (30 m), and MODIS (250 m) satellite data (Fig. 4). 
For comparison, the backscatter coefficient (dB) time series was created using Sentinel-1 in dual-band cross-
polarization with vertical transmit, horizontal receive (VH) (Fig. 4). The NDVI variation was observed for rice 
using three multispectral instruments (Fig. 4). Given the rice crop sowing and transplanting phase, NDVI values 
of Sentinel-2 and Landsat-8 are low (~ 0.16 to 0.20) in months of June and July. However, the values are com-
paratively higher (~ 0.51 to 0.55) in September and October, representing higher vegetation. For MODIS, peak 
values of NDVI were observed in August. From Fig. 4, it was observed that backscatter values were low (~ − 18 
to − 21 dB) for the flooding stage of rice due to the presence of water and for the harvest stage due to surface 
scatter from the open land. In contrast, they were significantly high (~ − 16.51 dB) for the vegetation stage due 
to volume scattering in the rice plant.

NDVI variation of various Kharif season crops (Rice, Cotton, and Sugercane) using Sentinel-2 MSI data 
were compared (Fig. 5a). From their variation, it was observed that NDVI values of crops differ spatially and 
temporally, therefore, provide great potential in differentiating the crop’s growth stages. This phenomenon was 

Figure 3.  Methodology chart for rice crop classification.

Table 1.  Rice crop calendar in southern Punjab, Pakistan.

Flooding or 
transplanting 
phase High vegetation period Harvesting period

May June July August September October November
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also confirmed by previous  studies46–50. In the last, Fig. 5b shows average day and night LST derived from MODIS 
satellite along with CHIRPS precipitation data. We used Landsat-8 (100 m thermal data) to derive LST for both 
day and night. Precipitation time series was prepared using CHIRPS data. CHIRPS is a precipitation dataset 
which provides 35 years of grided precipitation data with a spatial resolution of 5.5  km51. The purpose of LST 
and precipitation data (Fig. 5b) was solely to verify the climatic condition for the year 2020 which helped us in 
planning survey and collecting field samples, in appropriate growth cycle of rice crop in souther Punjab. Figure 5b 
shows that mean precipitation was high during July to September with moderate mean LST. Literature shows 
that such weather condition is favorable for enhanced rice  growth52.

Training samples. Sentinel-1 derived Synthetic Aperture Randar (SAR) data was used to check training 
points before feeding them to classifier for classification. Previous studies have reported, that the SAR back-
scatter value is sensitive to  water21. As paddy rice follows different growth stages, SAR based backscatter can 
be used to track any pixel either paddy or non paddy. Same principle was applied in this study to differentiate 
non-rice training points from paddy rice. For specifically non-rice class, each training point was cross checked 
using Sentinel-1 SAR backscatter data. Only samples which does not follow spectral trend as shown by paddy 
rice (Fig. 4) were used for representing non-rice training class. To ensure proper coverage and correct selection 
of the ground truth data for our large study area, we collected the ground truth data (using random sampling 
approach) through multiple sources: (1) Very High Resolution VHR images from the Google Earth, (2) 167 field 
rice latitude longitude coordinates point samples randomly collected during the rice field survey in October–
November, and (3) Visual interpretation of Sentinel-2 false color composite (FCC) at 10 m spatial resolution.

Firstly, we used the Sentinel-2 FCC and VHR Google Earth images to digitize points by visual interpretation 
except for rice (Fig. 6a). Secondly for each class, we made areas of interest AOIs as circle buffers of the points with 
the radius of 20 m for Sentinel-2 and Landsat-8 (Fig. 6b–d). Thirdly, for rice, we took accurate field coordinates 

Figure 4.  Average NDVI temporal profile for rice using Sentinel-2, Landsat-8 and MODIS derived NDVI data 
and average Sentinel-1 backscatter coefficient (dB) temporal profile for rice.

Figure 5.  Crops NDVI temporal variation using Sentinel-2 (a) and Average Monthly LST (Day and Night) 
along with CHIRPS precipitation temporal variation (b), for 2020 Kharif season in Southern Punjab region.
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from 6 locations of Southern Punjab and photographs of rice fields at different time intervals are shown in Fig. 7. 
For collecting rice coordinate samples, we choose 6 random locations in the study area which are shown in Fig. 6a 
(note the 6 areas where rice points are clustered) and collected samples using random sampling approach. For 
MODIS, however, it was observed that due to its coarser spatial resolution of 250 m, 20 m buffers was not suit-
able for training points. So, for MODIS, training points without buffer were used and each pixel contributing to 
paddy rice class was digitized based on its centroid.

The AOIs without clear land cover information were omitted. The VHR Google Earth imagery and false-color 
composite combination for Sentinel-2 at 10 m and field photographs are used to clarify the land cover types, 
i.e., water, barren, forests, non-paddy, and urban areas. The classes, including non-paddy agriculture, forests, 
grasslands, urban and barren soil, were merged in one class named non-rice. Water class was kept separate due 
to its distinct spectral characteristic and was merged with non-rice class after training classifier. The reason for 
separating water class initially from other land-use classes was to restrict water pixels to create confusion during 

Figure 6.  Training samples in the study area, (a) all samples, (b) ricefield samples, (c) non-rice samples, and 
(d) water samples. The map is designed in Google Earth Engine, which is an cloud computing browser based 
platform (https:// earth engine. google. com).

Figure 7.  Ricefield photographs, taken during training sample collection at different locations and timeperiod 
within the study area. The photographs (a–c) are taken by first author, during the field survey.

https://earthengine.google.com
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 classification53. In this study, separating water pixels from paddy rice was crucial as they both share similar spec-
tral  characteristics6 (only when rice is in flooding growth stage). The field sizes, shapes, and proximities were 
considered in labeling land cover information of AOIs.

A total of 690 AOIs were collected, including 167 rice samples, 88 water samples, and 435 non-rice samples 
from different locations of Southern Punjab. The AOIs were distributed randomly, covering the entire study area. 
The generated AOIs were randomly split (by category) into a 70/30 ratio; 70% were used as training data, while 
the remaining 30% were used for validation. The paddy rice classification was performed individually for each 
multispectral satellite dataset utilizing the same training AOIs and the same year (2020).

Pre‑processing. Sentinel-2, Landsat-8, and MODIS datasets (freely available inside the GEE data catalog) 
were used separately and individually for paddy rice classification. Parameters that were kept the same for a 
fair comparison among these three datasets were (1) same training, and validation data, (2) same satellite data 
acquisition dates were used (July–October), and the median was taken to ensure best pixel  coverage6, (iii) Simi-
lar spectral bands (if present) were utilized, (4) The same RF classifier was used in each classification, and in the 
last, (5) same procedure was applied for accuracy assessment and area estimation.

These datasets were used inside GEE. First, these datasets were used with a cloud mask individually, ensuring 
minimum cloud coverage in  data54. Then images between July and October were filtered, and their median was 
taken. Then the datasets were clipped to the boundaries of the study area. For Sentinel-2 and Landsat-8, Visible 
band with NIR and SWIR bands are used, because NIR and SWIR bands of Sentinel-2 and Landsat-8 enhance 
crop  classification55. However, for MODIS, band-1 SWIR and band-2 NIR images with a spatial resolution of 
250 m are  used56.

Results
Rice maps using Sentinel‑2, Landsat‑8 and MODIS. The rice classified maps for Southern Punjab 
are generated using Sentinel-2, Landsat-8, and MODIS satellite data (Fig. 8). From their visual comparison, it 
is observed that MODIS derived maps form clusters instead of classifying individual rice fields, which can be 
attributed to a coarse-resolution of 250 m. As a result, most pixels of the MODIS map are misclassified because 
it mixed neighboring crops, and subsequently formed large clusters indicating them rice. Another problem 
observed in MODIS classified map is denser rice classified pixels clustered in the northeast of southern Punjab, 
especially in Bahawalnagar, Bahawalpur, and Rahim Yar Khan districts (Fig. 8). This is because of dense vegeta-
tion in those areas that can be visually observed in Fig. 1. When compared with Fig. 1, it is confirmed (through 
visual interpretation) that those areas were actually other crops (Fig. 1) which MODIS has classified totally as 
rice (Fig. 8).

Landsat-8, on the other hand, performed better than MODIS. At some points, it was successful in classify-
ing individual rice fields. Paddy crop is mostly grown in small, segmented fields; therefore, spatial resolution 
plays a great role in identifying individual paddy  fields57. Landsat-8 misclassified some pixels as rice clusters in 
Khanewal and Dera Gazi Khan districts, that can be clearly seen in the Fig. 8. The rest of the Landsat-8 data is 
reliable enough for further use. Sentinel-2 classified individual paddy rice with greatest precision as compared 
to the other two datasets, and successfully differentiating individual paddy rice fields at a resolution of 10 m. The 

Figure 8.  Rice crop map in southern Punjab for the year 2020 using Sentinel-2, Landsat-8 and MODIS datasets.
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performance of these datasets in differentiating paddy rice fields is presented in Fig. 9. For visual comparison, 
VHR Google Earth imagery (Fig. 9a) and Sentinel-2 derived NDVI at 10 m resolution (Fig. 9b) were used as refer-
ence images while derived rice classified maps for Sentinel-2 (Fig. 9c), Landsat-8 (Fig. 9d), and MODIS (Fig. 9e) 
were compared. At a scale of 1:114,400, a random point (with coordinates 71.37309, 29.94164) was selected and 
the corresponding derived maps (Fig. 9c–e) were compared at this view. It shows that MODIS formed a large 
cluster and is not able to identify individual paddy fields. On the other hand, Landsat-8 has identified some indi-
vidual paddy fields, however, it has misclassified the majority of neighboring small pixels as rice. Comparatively, 
Sentinel-2 has efficiently classified individual rice fields with lowest number of misclassified pixels. Because of its 
high resolution of 10 m, Sentinel-2 classified individual paddy fields better than both the Landsat-8 and MODIS.

Technical validation. Through visual inspection (Figs. 8, 9) and accuracy assessment (Table 2), we find 
that the MODIS-derived map is not reliable for differentiating individual paddy fields and cannot be used in 

Figure 9.  Comparing classified maps at a random location in Southern Punjab using VHR Google Earth 
imagery (a), Sentinel-2 10 m derived NDVI (b), rice classified map using Sentinel-2 (c), Landsat-8 (d) and 
MODIS (e).

Table 2.  Error matrix of paddy rice classification for three satellite data (UA user’s accuracy, PA producer’s 
accuracy, OA overall accuracy).

Satellites Class

Error matrix

UA (%) PA (%) F1-score (%) Kappa (%) OA (%)Non-rice Rice

Sentinel-2
Non-rice 1712 39 97.7 97.7 97.7

81.2 96.0
Rice 40 205 84 83.7 83.8

Landsat-8
Non-rice 1683 26 97.8 98.5 98.1

73.3 91.7
Rice 38 189 77.9 73.3 75.5

MODIS
Non-rice 1663 28 93.5 98.3 95.8

61.2 82.6
Rice 116 137 73 54.1 65.5
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local scale regions decision-making. As for the nearly similar area of Sentinel-2 and MODIS datasets, Sentinel-2 
derived map was justified through accuracy assessment and visual interpretation. However, MODIS failed to 
withstand accuracy assessment and visual interpretation mainly due to cluster formation and huge misclassifica-
tion.

Acuracy assessment is important to check the reliability of land use classification and error matrix is a com-
mon method to assess the  accuracy58. An error matrix is also used to draw other statistical measures of accuracy 
such as overall accuracy (OA), commission error (i.e., user’s accuracy (UA)), omission error (i.e., producer’s 
accuracy (PA)), and the kappa coefficient (K)59. The UA evaluated by dividing the number of correctly classified 
pixels (each cateogory) by the total number of classified pixels in that land use category (the row total)60. The 
UA actually shows the probability that the particular pixel of land-use class of classified map actually represent 
that land-use class on ground. The equation used to derive UA is given as Eq. 1.

The PA is computed by dividing the number of correctly classified pixels in each land-use class by the number 
of reference pixels in that land use category (the column total)60. The PA represents how accurately reference 
pixels of land-use class are classified and the equation used to derive PA is given as Eq. 2.

The overall accuracy (OA) asseses the match or mismatch between classified and ground truth of land use, 
and is derived by dividing total number of accurately classified pixels by total number of reference  pixels50. The 
equation used to derived OA is given as Eq. 3.

The Kappa coefficient evaluates the reliability of classified raster which is calculated using error matrix. The 
coefficient values vary between 0 and 1, where a higher value means a better reliability and vice versa. The Kappa 
coefficient is calculated using Eq. 450.

F1-score or F-measure is a useful statistical approach to find the accuracy of classification using precision 
and  recall61. F1-score is a harmonic mean of precision and recall, given in Eq. 5.

where precision, also known as the positive predictive value, is calculated by dividing the number of true positive 
values by the number of all (true and false) positive values (Eq. 6). Recall, also known as sensitivity, is calculated 
(Eq. 7) by dividing the number of true positive values by total the number of predicted values (true positives 
plus false negatives)62.

The classification process is only considered reliable if it meets accuracy checks, because land use land cover 
(LULC) maps derived from satellite images may contain some errors due to several factors ranging from tech-
niques in classification to satellite based data retrieval  methods63,64. For paddy rice maps (Fig. 8), a confusion 
matrix was developed containing kappa coefficient (K), F1-Score, UA, PA, and OA. It shows that OA was more 
than 90% for Sentinel-2 and Landsat-8 datasets which supports the reliability of derived maps (Table 2). For 
MODIS, OA was 82% showing least reliability for rice mapping compared to Sentinel-2 and Landsat-8.

Area estimation. The area of rice crop is calculated from the classified maps using the “ee.Image.pixelArea()” 
function available inside GEE. This function computes and assign area for each pixel, and assign area values to 
each pixel. Then, we apply ee.Reducer.sum which computed total area per class of each classified rice map. For 
area comparison, crop reported area provided by Crop Reporting Service, Government of Punjab (http:// www. 
crs. agrip unjab. gov. pk/ repor ts) was used as ground truth data to calculate mean difference between estimated 
and reported areas (Fig. 10). Multispectral instruments and ground truth data show a good agreement for esti-
mated rice production. The mean percentage difference was approximately 17% for Sentinel-2 and MODIS while 
33% for Landsat-8. Previous studies also reported  overestimation37,65,66, which is mainly because of misclassified 
pixels in the rice class that may have contributed to some rise in the classified area.

For Landsat-8, the mean percentage difference was more significant (greater than 30%). This overestima-
tion was due to higher misclassified rice pixels as observed previously through visual interpretation of Fig. 8. 

(1)UA =
Total number of correct classification per class

Row total

(2)PA =
Number of correctly classified pixels

Column total

(3)Overall accuracy =
Number of pixels classified correctly

Number of reference sampling pixels

(4)K =
(percent overall correct value− percent correct agreement to observed values)

(total number of class− percent correct agreement to observed values)

(5)F1− score = 2×
Precision× Recall

Precision+ Recall

(6)Precision =
True Positives

True Positives+ False Positives

(7)Recall =
True Positives

True Positives+ False Negatives

http://www.crs.agripunjab.gov.pk/reports
http://www.crs.agripunjab.gov.pk/reports
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Surprisingly, the MODIS estimated area was nearly equal to the Sentinel-2 derived area; which reflects why 
MODIS is used by government officials and many  researchers67–69 for large-scale LULC area estimation. To 
further differentiate the performance of each instrument, and to address the issue why MODIS and Sentinel-2 
derived paddy rice area was similar, we compared our study results (fosucing on Multan division) with recently 
published study performed by Sajjad et al.70 on crop classification in Multan. The Fig. 11 shows the comparison 
of paddy rice area from our study for Multan division with area published by Sajjad et al.70 and Punjab crop 
statistics report for 2020. The Fig. 11 also shows the mean differences between different area sources compared 
with the base area estimate provided by Punjab crop statistics report for Multan region. From Fig. 11 it was 
observed that paddy rice area from Sajjad et al.70 study using Landsat-8 also showed overestimation (+ 145.7%) 

Figure 10.  Comparison of rice classified cultivated area from GEE and Crop statistics report (local agrarian 
data). The percentage of overestimation (Δ) by GEE classification relative to ground truth data is provided for 
each dataset.

Figure 11.  Comparing our rice estimated area using three instruments with previously published study 70 and 
crop statistics report for 2020. Note: in the Figure area is compared for Multan division, and call-outs in bar 
plots shows the percentage increase or decrease in area compared to crop statistics report. The Figure is designed 
in Photoshop V23.3 software provided by Adobe (https:// www. adobe. com/ produ cts/ photo shop).

https://www.adobe.com/products/photoshop
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whereas our derived area using Landsat-8 also shows similar overestimation (+ 143.5%). Furthermore the Fig. 11 
also highlighted a major difference in area estimation of Sentinel-2 (+ 26.3%) and MODIS (+ 165.5%) compared 
with Punjab crop statistics report.

Discussion
Rice mapping is essential for bringing water-use efficiency, achieving regional food security, controlling disease 
transmission, and countering global warming. As our study area is a semi-arid region with lower precipitation 
(Fig. 5b), free available and GEE integerated MSI are suitable to map paddy rice crop due to lower cloud cover 
in the cropping  months27,71,72. Despite their frequent use in mapping paddy fields, no study has compared the 
efficiency of Sentinel-2, Landsat-8 and MODIS datasets in classifying individual paddy rice fields. Our study 
compares these datasets by estimating their paddy crop classification potential, using accuracy assessment meth-
ods, and the mean difference between estimated area and area based on ground truth data.

The NDVI values derived from Sentinel-2 at 10 m spatial resolution (Fig. 5a) were used to track changes in 
crop growth stages. The NDVI of any crop differs spatially and temporally and thus can be used as a valuable 
tool to study crop growth changes over space and  time48,49,71,73,74. The temporal variation shows that rice sowing 
and transplanting stages start from May until June in southern Punjab region. Lower NDVI values (Fig. 5a) in 
July and August reflect significant NIR adsorption on the water surfaces which in this case are paddy rice fields 
flooded with water and with minimum green area. Similarly, Usman et al.50 stated that the individual crops 
starting time and crop-cycle length can be visualized easily from NDVI trends. According to them, low positive 
values of NDVI (0.1 or less) represent barren areas of rock, sand, or snow, while 0.1–0.2 represent soils. Most 
vegetation has moderate NDVI values (~ 0.2 to 0.5), while dense forests show high NDVI values (~ 0.6 to 0.9). 
The class ’rice’ exhibits a unique trend compared to other crops (Cotton, and Sugarcane) in the Kharif season 
(Fig. 5a). For rice crop, the initial NDVI variation is a bit slow and lengthy because of rice nursery growth in June. 
However, the latter part of NDVI variation reaches its maximum due to rapid rice crop growth in September 
and October. Figure 7b shows variation in temperature and precipitation patterns during the Kharif season. It 
was observed that from July to September, mean precipitation values were high along with moderate LST (Day 
and Night), which supported rice  cultivation14,52.

For rice crop, Sentinel-2 and Landsat-8 data showed similar NDVI trends (Fig. 4). Due to their high spatial 
and temporal resolution, these trends were successful in differentiating various rice growth stages. Conversely, 
the MODIS curve showed a peak response in August, mainly due to its coarse resolution (of 250 m). Although 
MODIS has a higher revisit time (1 day) than Sentinel-2 (5 days) and Landsat-8 (16 days), it cannot be used to 
study the growth cycle of individual rice fields due to its coarser resolution. Likewise Chen et al.75 concluded that 
the MODIS imagery with 250 m resolution could not provide accurate vegetation information on corn growth. 
The variation in Sentinel-1 backscatter coefficient for paddy rice (Fig. 4) showed that the coefficient is very sensi-
tive to water in paddy rice fields. The backscatter values were low in June and July due to the presence of water in 
the fields, and were high in September and October due to high vegetation. Singha et al.6 noted a similar trend 
in the the backscatter values. The Sentinel-1 VH backscatter coefficient can be used as an indicator for tracking 
paddy rice growth as the backscatter values change with the varying conditions of paddy rice stages. Unlike other 
crops, rice spends a substantial time submerged in water. Thus, it can be easily differentiated from other crops. 
Also, it has distinct growth stages, which can be observed using the Sentinel-1 VH backscatter coefficient. Based 
on the temporal variation of NDVI and Sentinel-1 backscatter coefficient, an accurate rice growth profile was 
generated for the Southern Punjab region for the year 2020, which was used as a baseline in rice fields sampling. 
The coordinates used for rice training and validation by global positioning system (GPS) were crosschecked 
using NDVI and backscatter temporal variation. This step was performed inside GEE to ensure that only rice 
fields coordinates having the same trend as observed in Fig. 5 were taken for further classification and accuracy 
assessment. Previous  studies6,20,76–78 support the RF classifier’s capability in identifying paddy fields. Therefore, 
this study utilized RF classifier for the classification of paddy rice.

Results showed that Sentinel-2 performed best in classifying individual rice fields (Figs. 8, 9). MODIS failed 
to accurately classify rice fields, and it formed clusters with neighboring fields. A visual interpretation was 
performed for comparing the efficiency of each dataset in classifying individual rice fields. It was observed that 
Landsat-8 efficiently differentiated paddy rice fields; however, it misclassified rice pixels at some points with other 
crops having similar vegetation characteristics. Overall, Sentinel-2 performed best in accuracy assessment than 
both Landsat-8 and MODIS (Table 2).

Further, we compare estimated and reported areas for rice production, which shows an overestimation 
of ~ 18% for both Sentinel-2 and MODIS, and ~ 34% overestimation for Landsat-8 (Fig. 10). Similar overestima-
tion was reported by other  researchers37,65,66. For example, Mananze et al.37 used GEE to map shifting agriculture 
dynamics in Mozambique and found 15.5% of mean difference between the estimated and ground truth areas 
for agricultural land use. In another study to map cropping intensity of small-scale farms in India, Jain et al.79 
reported a large discrepancy (with percentage difference of 150.8%) between cropland area estimated through 
remote sensing (Landsat data) and the area obtained from agricultural census. Likewise, Dheeravath et al.80 found 
that irrigation area derived using MODIS (500 m) data was greater than the ground truth data (with the mean 
percentage difference of 17.2%) in most Indian States.

To compare the overestimation in paddy rice area, we compared our results with a previous study performed 
by Sajjad et al.70 focusing on Multan division (Fig. 11). The Fig. 11 shows area estimated as well as mean percent-
age difference of area from each source compared with crop statistics report. It was observed that there exist a 
similarity in overestimation of Landsat-8 derived area reported by Sajjad et al. (2021) (145.7%) and our Land-
sat-8 derived paddy rice area for Multan division (143.5%). The Punjab crop statistics report provided area was 
taken as base area for comparison. When compared, Sentinel-2 with mean percentage overestimation of 26.3% 
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stands above Landsat-8 and MODIS with overestimation 143.5% and 165.5% respectively. To conclude, MODIS 
performance was least, as this instrument overestimated the area for Multan division with an overestimation 
of 165.5%, far above the percentage difference of Landsat-8. This reflects why for crop area estimation MODIS 
should be avoided and preference should be towards Sentinel-2.

The multispectral imagery-based paddy rice mapping implemented in GEE includes several benefits. First, 
there is reduction in data acquiring and pre-processing  time40. Otherwise, it might have taken longer to download 
and pre-process the datasets for a large study area like ours (i.e., southern Punjab). Second, there is a significant 
decrease in computational  time81. The MSI-based RF algorithm inside the GEE performed paddy rice fields 
classification in a very short time. Thus, high-performance computing resources like GEE facilitate quick and 
rapid mapping of paddy rice planting areas at a large  scale1,6. Future studies of paddy rice mapping under simi-
lar climatic conditions can utilize the most efficient dataset found in this study: Sentinel-2. In addition, further 
research may focus on rice mapping for the entire country using high-resolution Sentinel-2 imagery with a 
similar GEE-based methodology.

Conclusions
In this study, we compared three, free and open, satellite datasets (Sentinel-2 (10 m), Landsat-8 (30 m), and 
MODIS (250 m)) to evaluate their efficiency/effectivity for mapping of rice crop in southern Punjab, Pakistan. 
The results show that rice classification improves with increase in spatial resolution. Among the three, the 
coarsest resolution dataset, MODIS, do not precisely classify individual rice fields. However, the other two high-
resolution datasets (i.e., Sentinel-2 and Landsat-8) can accurately track crop growth stages for making its growth 
profiles and studying temporal trends. From the visual interpretation, accuracy assessment, and mean difference 
in area estimation, we observe that MODIS was not able to classify individual rice fields correctly in this case. 
However, Landsat-8 classified the paddy rice fields accurately with moderate misclassification. In comparison 
to MODIS and Landsat-8, Sentinel-2 performed best in differentiating individual rice fields with lower misclas-
sification and showed a lesser mean difference in area estimation. Due to limited resources and training data, 
this study focused only on the RF classifier to classify southern Punjab divisions. JavaScript API is used inside 
GEE, which facilitates future studies to implement the same methodology in GEE with ease. Future studies may 
focus on (1) rice mapping of the whole of Pakistan, which could be easily implemented inside GEE using the 
same methodology and code, (2) comparison of different machine learning classifiers (like Random Forest RF, 
Support Vector Machine, and Artificial Neural Network to classify paddy rice efficiently, and (3) comparison of 
Synthetic Aperture Radar and Multispectral Instruments to map paddy rice efficiently.

Data availability
All the datasets used in this study are open access, and references are provided at first mention. Paddy rice 
classification images for Southern Punjab are also available, and can be provided upon reasonable request to 
corresponding authors. No direct plant material is used in this study. Only open access multispectral satellite 
images are used, that are freely available inside GEE data catalogue (https:// www. devel opers. google. com/ earth- 
engine/ datas ets).
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