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Extremely low effective impedance 
in stratified graphene‑dielectric 
metamaterials
Ruey‑Bing Hwang

The periodic reflections in frequency were observed in a stack of graphene layers and generally 
reported as a series of mini photonic bandgaps owing to the multiple interference by the graphene 
layers. In this research, the Floquet‑Bloch theory was employed to obtain the effective refractive index 
and Bloch impedance for understanding the wave propagation characteristic therein. Interestingly, 
the periodic reflections were found to occur in the frequency band having drastic variation in complex 
Bloch impedance and effective refractive index as well, wherein a Floquet‑Bloch mode having pure real 
effective refractive index and extremely low Bloch impedance exists.

Graphene is believed to be one of the most striking materials with its optical property defined only by the fun-
damental constants rather than on material parameters. The scattering characteristics of a suspended graphene 
is determined merely by the fine structure constant associated with quantum  electrodynamics1. Experimental 
studies indicated that the optical sheet conductance of graphite per graphene layer is very close to the theoretically 
expected value of dynamical conductance of isolated monolayer  graphene2,3. Moreover, for few graphene layers 
( < 6 ), the structure behaves as a superposition of single sheet acting as independent two-dimensional electron 
gases; the absorptance is proportional to the number of  layers4. The full expression for the optical conductivity 
based on the general noninteracting tight-binding model was developed for the scattering analysis of a graphene 
 layer5. Having the closed-form expression for graphene optical conductivity, numerical electromagnetic field sim-
ulation for the structure consisting of single or multilayered graphene becomes more realistic and  sophisticated6,7. 
Due to the reconfiguration of graphene optical conductivity by electrically or magnetically tuning the Fermi level 
(chemical potential) of a graphene sheet, some potential applications were proposed and implemented; to men-
tion a few, a waveguide-integrated electroabsorption modulator based on monolayer graphene was developed 
by electrically tuning the Fermi level of the graphene  sheet8. The Faraday rotation turning the polarization by 
several degrees through a single- and multilayered graphene was demonstrated in modest magnetic  fields9. By 
stacking graphene bearing quartz substrate on a ground plane, an optically transparent broadband absorbers 
operating in millimeter wave region was  achieved10. A ultra-broadband absorber made of multilayered graphene 
metamaterial able to absorb 90% of the incident wave under normal incidence in the frequency range of 1.12–3.78 
THz was  reported11. A metamaterial consisting of weakly absorbing alternating graphene layers separated by 
lossless dielectric was fabricated to serve as a polarization-independent extremely broadband absorber covering 
almost the entire solar spectrum over a large angular  range12. A graphene-based tunable hyperbolic metamaterials 
was designed for enhanced absorption in far-infrared  frequencies13. The tunable propagation properties of 3D 
Dirac semimetal patterned metamaterial structures was symmetrically investigated in the terahertz  regime14. 
The propagation properties of all-dielectric metamaterials based on a SiO2-Si asymmetric hybrid block, including 
the effects of structural parameters, asymmetrical degrees, carrier doping concentrations, and graphene Fermi 
levels were  reported15. Tunable terahertz Dirac-semimetal hybrid plasmonic waveguides was systematically 
 investigated16. Moreover, 3D Dirac semimetal supported tunable TE modes was  researched17. Concerning the 
fabrication technology development, multilayered metamaterial consisting of alternating monolayer graphene 
oxide/graphene and dielectric layers without a transfer step was successfully  developed18.

Regarding the scattering characteristics of a 1D metamaterial made of a stratified graphene-dielectric struc-
ture, the transfer matrix method was popularly employed to obtain the rigorous  solution19–21, while the physical 
insight has to invoke some other approaches for understanding the wave propagation characteristics. For exam-
ple, The extraction method for determining the effective index and impedance from the scattering parameters 
of a finite slab of metamaterial normally incident by a plane wave was  developed22. The S-parameter retrieval 
was employed to obtain the effective optical properties including permittivity and permeability of the fabricated 
zero index medium based on purely dielectric  constituents23. The extraction of the effective medium properties 
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(refractive index and impedance) of symmetric and asymmetric nanoparticle arrays with arbitrary geometry was 
developed and verified with analytical approach in the limitation of electrical  small24. The dielectric permittivity 
tensor of the effective non-local medium with a periodic stack of graphene layers was developed for demonstrat-
ing its tunability from elliptic to hyperbolic dispersion with an external gate  voltage25.

In this research, we focus on studying the physical mechanism of wave process involved in the so-called a 
series of mini photonic bandgaps reported in  literature19,26. As far as a photonic bandgap is concerned, propa-
gation constant against operating frequency (or wavelength) particularly in the stopband has to be carefully 
examined. Because an extremely large number of periods (unit cells) are considered here, the dispersion relation 
of wave propagation in the structure of infinite in extent can help the understanding of physical insight in wave 
mechanism. Furthermore, the Bloch impedance is essential to the impedance matching problem at the input/
output interface considering a finite structure. Specifically, the effective refraction index and Bloch impedance 
were obtained based on Floquet-Bloch theory (periodic boundary condition). By solving the eigenvalue prob-
lem of the transfer matrix of a unit cell, the Bloch impedance and effective refractive index can be determined 
by the eigenvectors and eigenvalues, respectively. Consequently, the finite periodic structure can be modeled 
as an equivalent transmission line with effective (average) propagation constant and line (Bloch) impedance. 
The excellent agreement of the numerical results in the scattering analysis between transfer matrix method and 
Floquet-Bloch approach allows us to confidently interpret the periodic reflections using the effective refractive 
index and Bloch impedance. Additionally, the effect of chemical potential on the scattering properties and the 
equivalent transmission line parameters were also investigated intensively.

Structure under consideration
Figure 1 shows a stratified graphene-dielectric metamaterial. The structure is made of alternating graphene and 
silica ( SiO2 ) having thickness of ts and refractive index designated as ns . The graphene sheet is assumed to be 
zero thickness with the graphene optical conductivity σg . The structure is composed of N periods (unit cells) 
each consisting of a graphene sheet and a SiO2 slab. A plane electromagnetic wave is normally incident into the 
metamaterial. The graphene and SiO2 slab are assumed to be infinite in extent along the x-y plane. Here, the input 
and output mediums both are set to be SiO2 for reducing the reflection at input and output interfaces.

Method of mathematical analysis
Transfer matrix method (TMM). Transfer matrix (or ABCD-matrix) method has been extensively 
employed in microwave and optical  engineering19,20. Such a building block approach can efficiently calculate 
the scattering properties through cascade connection (matrix multiplication) of each input-output relation 
expressed in terms of a 2-by-2 matrix. Consider the multiple parallel dielectric and graphene layers in Fig. 1, 
the transmission-line analogy can be readily applied for describing the electric and magnetic fields within the 
dielectric  layer27,28. At normal incidence, the tangential electric- and magnetic-fields in the uniform dielectric 
slab propagate along the z-axis with propagation constant k(s)z = kons ; the wave impedance is simply the charac-
teristic impedance of the medium Zs(= 1/Ys) = 120π/ns , where Ys is the characteristic admittance. Moreover, 
the tangential electric and magnetic fields can be respectively written as Et(z) = V(z) and Ht(z) = I(z) , where 
the vector electric- and magnetic-fields are both on the x-y plane and perpendicular to each other; for example, 
Ex and Hy or Ey and Hx . Additionally, V(z) and I(z) satisfy the transmission-line equations written as:

(1)V(z) = A exp(−jk(s)z z)+ B exp(+jk(s)z z),

Figure 1.  Structure configuration of a stratified graphene-dielectric metamaterial.
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Parameters A and B are two unknowns to be determined.
At the input interface of z = ts , A and B can be expressed in terms of V(ts) and I(ts) , that is, 

A = exp(+jk
(s)
z z)[V(ts)+ ZsI(ts)]/2 and B = exp(−jk

(s)
z z)[V(ts)− ZsI(ts)]/2 . By substituting A and B into 

Eqs. (1) and (2), V(z) and I(z) at z = 0 can be denoted via use of V(ts) and I(ts) , presented in the form of matrix 
equation given below:

with the transfer matrix of the dielectric slab ( SiO2 ) written as:

Additionally, consider a graphene sheet placed at the interface, z = 0 , between two regions denoted as (1) 
and (2) in z < 0 and z > 0 , respectively. The boundary  conditions6 of this zero thickness graphene sheet are 
ẑ × [H(2)

t (z = 0+)−H
(1)
t (z = 0−)] = σgEt(z = 0) and E(2)

t (z = 0+) = E
(1)
t (z = 0−) . Alternatively, we have 

I(2)(0+)− I(1)(0−) = −σgV
(1)(0−) and V (1)(0−) = V (2)(0+) . They can be expressed in term of the matrix 

equation written below:

with the transfer matrix of a graphene sheet written as:

Due to the continuous of tangential electric and magnetic fields at the interface between aforementioned 
two building blocks, the transfer matrix of the unit cell (period) is written as Tcell = TgraTSiO2 . Furthermore, 
the transfer matrix of a periodic structure consisting of N unit cells can be written as T = (Tcell)

N . Here, T is a 
2-by-2 matrix. The transmittance (or insertion loss in microwave engineering) denoted as S21 can be written  as29:

Additionally, the reflectance (or termed as return loss) is given as:

where Zi and Zo are the input- and output-characteristic impedance in the input and output regions, respectively. 
Additionally, we have A = T(1, 1) , B = T(1, 2) , C = T(2, 1) , and D = T(2, 2) . Notably, parameter S11 and S21 are 
defined as the reflection- and transmission-coefficients; they, in general, are complex numbers. The reflected- and 
transmitted-power can then be obtained through S11 and S2120. Moreover, the reflectance and transmittance are 
determined by normalizing them with the incident power.

Floquet‑Bloch approach (FBA). For an infinite periodic structure, the wave propagating characteristics 
can be understood from the property of its unit cell. By the Floquet-Bloch theory, the input-output relation of a 
unit cell satisfies

where x is a column vector composed of voltage and current amplitudes at the input end, and two eigenvalues 
χ = exp(±jκts) . Parameter κ = β − jα is the effective propagation constant of the wave propagating through 
the unit cell. Namely, in such an infinite periodic medium, the wave can propagate in an “average” propagation 
constant κ . Therefore, the effective refractive index is defined as neff = κ/ko . Notably, parameter κ generally is a 
complex number due to that of the graphene conductivity σg.

Equation (9) is an eigenvalue problem. Having the given parameters in matrix Tcell , the eigenvalue χ and 
eigenvector x can be readily determined. Furthermore, the Bloch impedance can be written as ZB = x(1)/x(2) . 
Notably, two eigenvectors will be obtained, the criterion for choosing the correct ZB is that its real part must be 
positive. Contrarily, χ = exp(±jk0neff ts) is a multiple-valued function of neff  . Namely, k0neff ts + q2π , where q ∈ 
integer (branches) are also their solutions. More specifically, the real- and imaginary-parts of neff = n

′
eff − jn

′′
eff  

can be determined as follows.

(2)I(z) = Ys

[

A exp(−jk(s)z z)− B exp(+jk(s)z z)
]

(3)
[

V(0)
I(0)

]

= TSiO2

[

V(ts)
I(ts)

]

,

(4)TSiO2 =
[

cos k
(s)
z ts jZs sin k

(s)
z ts

jYs sin k
(s)
z ts cos k

(s)
z ts

]

.

(5)
[

V (1)(0−)
I(1)(0−)

]

= Tgra

[

V (2)(0+)
I(2)(0+)

]

,

(6)Tgra =
[

1 0
σg 1

]

.

(7)S21 =
2

A+ B/Zo + CZi + DZi/Zo

(8)S11 =
A+ B/Zo − CZi − DZi/Zo

A+ B/Zo + CZi + DZi/Zo

(9)Tcellx = χx,

(10)n
′′
eff = ± ln |χ |

2π

�

ts
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where eigenvalue χ = |χ |ejφχ and � is the operating wavelength.
From Eqs. (10) and (11), we know that the imaginary part of neff  can be uniquely determined ( n′′

eff ≥ 0 for 
passive medium), while the real part of neff  accommodates multiple values. We have to point out that there is no 
approximation in the formulation of FBA. The obtained effective refractive index and Bloch impedance (even 
for the non-physical solutions of ℜneff  ) can be employed as transmission line parameters for evaluating the 
scattering properties of metamaterials having a large number of periods.

Graphene optical conductivity. Graphene conductivity ( σg = σintra + σinter ), having a close-form 
expression for the condition | µc | ≫ kBT , consists of both the intraband ( σintra ) and inter-band ( σinter ) terms:6,30

where -e is the electron charge, ℏ is the reduced Planck constant, γ is a phenomenological carrier scattering rate 
( γ = 1/2τc , where τc is the carrier relaxation time), µc is the chemical potential, kB is Boltzmann’s constant, and 
T is the ambient temperature (assumed to be 300° K throughout this paper).

Numerical results and discussions
Before the elaborate calculations, we have to first understand the graphene optical conductivity against frequency. 
Here, the normalized angular frequency � is defined as: � = ωℏ/2µ

(o)
c  , where we have µ(o)

c = 0.35eV throughout 
this paper. The silica thickness ( ts ) equals to �o/4 (442.8007 nm), where �o corresponds to the angular frequency 
of ωoℏ = 2µ

(o)
c .

Figure 2a,b respectively show the real- and imaginary-part of graphene optical conductivity due to the sum-
mation of Eqs. (12) and (13) against � for various chemical potential while having a fixed relaxation time 
τc = 0.03ps and temperature of T = 300° K. Notably, the real- and imaginary-parts of σg have significant changes 
with respect to the variation of µc in the low normalized frequency region, while they coincide to one another 
for high frequency region (for example, � > 5).

Figure 3a shows the scattering characteristics including transmittance, reflectance and absorptance against 
normalized angular frequency through the rigorous calculation by TMM. It is interesting to observe the fre-
quency-selective reflection and transmission corresponding to the spikes. In addition to the strong reflection, 
the periodic absorption dips are also found at � = 1.3333 m , where m is an integer starting from unity.

Moreover, the scattering parameters including S21 and S11 defined in Eqs. (7) and  (8) also were calculated via 
both approaches including TMM and FBA, particularly around the first peak at � = 1.3333 , in Fig. 3b. Those 
symbol curves were obtained by FBA having different branches ( q = 0 , q = +1 , and q = −1 ). It is obvious to see 
the excellent agreement between the results obtained by the two methods. Although not shown here, the other 

(11)n
′
eff = ±φχ

2π

�

ts
− q

�

ts
,

(12)σintra(ω) =
−je2|µc|

πℏ2(ω − jγ )
, and

(13)σinter =
e2

4ℏ

{

1

2
+ 1

π
arctan

ℏ(ω − jγ )− 2µc

2kBT
+ j

2π
ln

[ℏ(ω − jγ )+ 2µc]2
[ℏ(ω − jγ )− 2µc]2 + (2kBT)2

}

,

Figure 2.  Graphene optical conductivity versus normalized angular frequency � = ℏω/2µ
(o)
c  (where 

µ
(o)
c = 0.35 eV ) for various chemical potential µc : (a) real part and (b) imaginary part. The carrier relaxation 

time τc = 0.03 ps and temperature of T =  300° K.
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branches including the other non-physical Re[neff ] ( Re[·] is referring the real part of a complex number) have 
also been examined and found consistent results of the scattering parameters compared with those obtained 
by TMM. Additionally, the periodic reflection has a bandwidth centered at around � = 1.3333 . However, the 
reflection peak does not always coincides with � = 1.3333 for the other cases of µc , as will become clear later on.

Figure 3c shows the reflectance response around the first reflection peak depicted in Fig. 3a. Apparently, the 
reflectance is increasing in accordance with the increase of N (number of periods). Specifically, their peak posi-
tions remain for all the cases with fewer or more periods. Although not shown here, the other reflection peaks 
in Fig. 3a also keep their positions and are independent of N. It reveals that those reflectance peaks are due to 
periodic nature of the structure under consideration.

Although multiple branches including non-physical solutions were obtained in the real part of effective 
refractive index due to multiple-valued problem, there is no ambiguity in determining the imaginary part of 
effective refractive index and the Bloch impedance. In fact, the reflection coefficient of a finite length metamate-
rial consisting of N unit cells is determined by Ŵ = (Zin − Zs)/(Zin + Zs) , where the input impedance can be 
written as follows.

Figure 3.  Scattering characteristics against normalized angular frequency ( � ): (a) the power efficiency of 
transmittance, reflectance and absorptance (normalized to that of the incident power), and (b) scattering 
parameters against normalized frequency (around � = 1.3333 ) obtained through the approaches including 
transfer matrix method and Floquet-Bloch theory. The number of unit cells (periods) is 80. The graphene sheet 
has the following parameters: µc = 0.35 eV , T = 300° K, and τ = 0.03 ps . The dielectric slab is SiO2 having 
refractive index ns = 1.5 and thickness of 442.8007 nm. The input and output regions both are SiO2 to improve 
the impedance matching at interfaces. Figure (c) shows the reflectance response around the first peak in (a) for 
various N (number of periods).



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11635  | https://doi.org/10.1038/s41598-022-15841-z

www.nature.com/scientificreports/

where Ŵl = (Zs − ZB)/(Zs + ZB).
Notably, e−j2koneff Nts = χ2N and χ is the eigenvalue in Eq. (9); there is no ambiguity in determining χ . As a 

consequence, the equivalent transmission line using χ and ZB can uniquely determine the scattering parameters 
and no need to consider the multiple-valued problem.

Figure 4a,b individually depict the effective refractive index and Bloch impedance versus normalized angu-
lar frequency in the same range shown in Fig.  3a. It is obvious to see that the frequencies with transmission/
reflection spikes coincide with those having negligible Im[neff ] ( Im[·] means the imaginary part of a complex 
number). Additionally, those peaks with vanishing Im[neff ] occur at � = 1.3333 m , where m is ranging from 1 to 
4. Because of multiple-valued function of Re[neff ] , all the integer q should be taken into account. However, in this 
figure only the three branches: the blue solid, dashed and dotted curves individually corresponding to branches 
of q = 0 , q = +1 and q = −1 , are plotted. On the other hand, their imaginary part share the same distribution. 
In the low frequency region with � << 1 ( ts << � ), the branches of q  = 0 are away from the principal branch 
of q = 0 ; there is no ambiguity in selection of the correct branch (q). However, it creates difficulty in unambigu-
ously determining the correct branch when � > 1 since the Re[neff ] of the three branches gradually lie quit close.

Additionally, the Bloch impedance versus normalized angular frequency is also plotted and shown in Fig.  
4b. There is no ambiguity in determining the Bloch impedance; thus all the cases of different q coincide with 
one another. Significantly, the Bloch impedance at � = 1.3333 , � = 2.6666 , � = 3.9999 , and � = 5.3332 are 
ZB = 4.381× 10−5 − j5.052× 10−5 , ZB = 3.692× 10−5 + j3.650× 10−5 , ZB = 6.669× 10−5 − j6.691× 10−5 , 
and ZB = 9.155× 10−5 − j9.169× 10−5 , respectively.

Determine the frequencies around periodic reflections. To explain the vanishing imaginary part 
of neff  , we return to the eigenvalue problem in Eq. (9). Its alternative expression (the characteristic equation of 
matrix Tcell) can be written below.

Equation (15) is also termed as the dispersion relation of wave propagating in the 1D periodic medium. The 
effective refractive index ( neff  ) can be resolved once the parameters including ko , ns and graphene conductivity 
( σg ) are given. We first consider the condition of kotsns = mπ , where m is an integer excluding zero, enabling 
sin(kotsns) = 0 . Consequently, we have cos(koneff ts) = ±1 ; neff  is a pure real number. It means that the wave 
propagating in the medium at this frequency has no attenuation.

Additionally, the zero Im[neff ] at kotsns = mπ corresponds to the angular frequency ωm = Comπ/nsts , 
where Co is the speed of light. The normalized angular frequency is �m = mℏCoπ/2nstsµ

(o)
c  . Substitution of 

µ
(o)
c = 0.35 eV , ns = 1.5 and ts = 442.8007 nm into �m , we obtain �m = 1.3333 m.

Parameter Re[neff ] can accommodate multiple values; however, the eigenvector to Eq. (9) is uniquely deter-
mined. Notably, the eigenvectors at the condition of vanishing Im[neff ] are repeated eigenvalues problem and 
should be carefully evaluated. Specifically, the Bloch impedance has very small real and imaginary parts. Nota-
bly, the effective refractive index neff  has negligible imaginary part at the normalized frequencies equal to �m . 
Nevertheless, the non-zero complex Bloch impedance enables the power absorption by the structure due to the 
presence of graphene sheets.

(14)Zin = ZB
1+ Ŵle

−j2koneff Nts

1− Ŵle
−j2koneff Nts

(15)cos(koneff ts) = cos(kotsns)+ j
σgZs

2
sin(kotsns)

Figure 4.  Effective refractive index and Bloch impedance against normalized angular frequency of the global 
view: (a) the real- and imaginary-parts of the effective refractive index ( neff  ), and (b) the real- and imaginary-
parts of the Bloch impedance ( ZB).
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Effect of chemical potential on reflection characteristics. In Fig. 5a, reflectance versus normalized 
angular frequency were demonstrated. The first peak at � = 1.3333 corresponds to � = 1328.402 nm while the 
size of unit cell is ts = 442.8007 nm . Therefore, it is in the long-wavelength limit. There is no ambiguity in deter-
mining the Re[neff ] . To see the effect of chemical potential ( µc ) on the reflection properties, we progressively 
change µc from 0.3eV to 0.8 eV with a step of 0.1 eV. Incidentally, we also have evaluated them at µc = 0.1 eV 
and µc = 0.2 eV ; however, the results were not shown here because their difference with that of µc = 0.3 eV is 
insignificant.

Returning to Fig. 5a, the obvious reflection occurs in the region roughly between � = 1.32 and � = 1.35 . 
Hereafter, this region is referred to as “A (anomalous)-region”. Outside the A-region, reflectance is inconsiderable. 
On the other hand, the increase in µc gradually moves the peak position away from � = 1.3333.

It is obvious to see the strength of reflectance peak varies irregularly with the increase in chemical potential. 
Because the reflectance is determined by Ŵ = (zin − 1)/(zin + 1) , with zin = Zin/Zs the input impedance nor-
malized to Zs , the impedance match between Zin and Zs dominates the reflectance. As will become clear later on, 
both neff  and ZB are frequency dependence and have drastic variations in the A-region; specifically, their rela-
tion to µc are irregular. Consequently, it is hard to explicitly define the relationship between µc and reflectance. 
However, the input impedance in Eq. (14) can reveal us this information. Figure 5b shows the distribution of 
normalized input impedance ( zin ) against � . The locus of each case is drawn in the Smith Chart that is com-
monly used in microwave engineering. The center is at the point of 1+ j0 representing normalized impedance 
equal to unity (perfect match without reflection). The reflectance peak of each case shown in Fig. 5a is marked 
in Fig. 5b respectively. Moreover, the distance between the point on a locus and the center can be employed to 
evaluate the impedance matching (or level of reflectance). From Fig. 5b, it is obvious to see that the relationship of 
d(0.6 eV) < d(0.5 eV) < d(0.7 eV) < d(0.4 eV) < d(0.3 eV) < d(0.8 eV) , where d(µc) is the distance between 
peak denoted by star symbol and center for the chemical potential given within the round brackets. Apparently, 
the smaller the distance d, the better impedance match and lower reflectance achieved, shown in Fig. 5a.

Effect of chemical potential on the effective refractive index and Bloch impedance. To explain 
the obvious reflection in the vicinity of � = 1.3333 shown in Fig. 5a, the effective refractive index and Bloch 
impedance were calculated for various chemical potential given in the aforementioned examples. Figure 6a,b 
show the variation of neff  against the normalized frequency. As depicted in Fig. 6a, n′

eff  approaches the index of 
surrounding medium ( ns ) for all µc in the full band except for the abrupt change in slope found around normal-
ized frequency of 1.3333, may causing the change in their group velocity.

The imaginary part of refractive index ( n′′
eff  ) allows us to know attenuation of Floquet-Bloch mode propagat-

ing in an infinite periodic medium. In Fig. 6b, all the cases experience zero attenuation at � = 1.3333 . For the 
case of µc = 0.3 and µc = 0.4 , it behaves like a band-pass filter having a narrow pass band around � = 1.3333 . 
Contrarily, the cases of µc = 0.7 and µc = 0.8 encounter apparent attenuation (or reflection for the incident 
wave) inside the bump shape region starting from � = 1.3333 . Additionally, the cases of µc = 0.5 and µc = 0.6 
have a small fluctuation in their propagation. Notably, the aforementioned properties are subject to an infinite 
medium without considering the input/output interface. Their behavior are very different from the result shown 
in Fig. 5a. As a consequence, we know that the only parameter neff  cannot afford to explain reflectance response.

As is well known in a 1D periodic medium, the stop-band is due to the coherent reflection from each unit 
cell. When we evaluate the dispersion relation of the 1D wave propagating in an infinite periodic medium, the 

Figure 5.  Reflectance and input impedance for various chemical potential ( µc ): (a) reflectance is plotted as a 
function of normalized angular frequency ( � ) and, (b) the distribution of input impedance (normalized to Zs ) 
around each reflectance peak is individually plotted in the Smith Chart. The number of unit cells (periods) is 80. 
The graphene sheet has the following parameters: T = 300° K, and τ = 0.03 ps . The dielectric slab is SiO2 having 
refractive index ns = 1.5 and thickness of 442.8007 nm. The input and output regions both are SiO2.
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Figure 6.  Effective refractive index and Bloch impedance against normalized angular frequency at around 
the first reflection peak of � = 1.3333 : (a) real part of the effective refractive index, (b) imaginary part of the 
effective refractive index, (c) real part of the Bloch impedance, (d) imaginary part of the Bloch impedance, (e) 
the normalized Bloch impedance ( ZB/Zs ) plotted in a 2D plane, and (f) enlarged view of (e) around � = 1.3333.
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propagation constant is a complex number ( κ = β − jα ) in the stop-band regions, while it is a real number in 
the pass-band regions. Contrarily, when inspecting neff  in Fig.6a,b especially in the A-region, we found that such 
a behavior can not be classified simply as a stopband. Additionally, the abrupt change neff  around � = 1.3333 is 
due to structure dispersion, while the variation of neff (�) with respect to µc is attributed to material dispersion.

The reflection is mainly due to the mismatch between the input impedance of a metamaterial and the wave 
impedance of the surrounding medium. First of all, outside the A-region, all the cases in Fig. 6c,d generally 
approach the wave impedance in SiO2 ( Zs = 251� ). This explains the small reflection outside the A-region. 
Contrarily, it is apparent to see drastic changes in the real- and imaginary-parts of Bloch impedance within the 
A-region. Specifically, the two cases of µc = 0.7 eV and µc = 0.8 eV exhibit complex Bloch impedance within a 
very narrow bandwidth starting from � = 1.3333 to around � = 1.342 while the others are complex numbers in 
the A-region. Furthermore, all the cases have extremely low Bloch impedance at � = 1.3333 ; however, its does 
not mean at all the location of peak reflection. In fact, it is not easy to precisely predict the peak position unless 
to calculate the input impedance looking into the metamaterial. Notably, both frequency-dependent neff (�) and 
ZB(�) are essential for the calculation of input impedance via the formula given below:

Nevertheless, from Fig. 5a, we found that the reflection peaks for all the cases are within the A-region and in 
the vicinity of � = 1.3333.

To facilitate the understanding for variation of Bloch impedance, shown in Fig. 6c,d, the complex impedance 
is normalized to Zs and redrawn in a 2D plot shown in Fig. 6e and a zoom in view around (1, 0) in Fig. 6f. The 
2D curves can be distinguished by their colors corresponding to the chemical potential given in the legend of 
Fig. 6c,d. Moreover, the alphabetical letters attached to each loop correspond to the normalized frequency points 
( � ) labeled in the A-region. The index after the alphabetical letter stands for the value of chemical potential; 
for example, c7 means the case of µc = 0.7 eV at point C. This allows us to trace the variation of a normalized 
Bloch impedance in a complex plane. Each loop moves in a clockwise direction with its starting and stopping 
points locating around the point matching to the surrounding medium at (1, 0). At the point d ( � = 1.3333 ), 
all the cases having low Bloch impedance distributed near the point of (0, 0). Since the loop size represents the 
level of impedance variation in the frequency band under consideration, we may conclude that Bloch impedance 
variation increases in accordance with the increase in chemical potential.

Although not shown here, the other frequencies with strong reflections in Fig. 3a also have drastic variations 
in the real- and imaginary-parts of Bloch impedance. Specifically, their distributions (both neff (�) and ZB(�) ) 
are very similar for various µc , in particular for � = 3.9999 and � = 5.3332 , because their σg (�) almost coincide 
to one another for various µc shown in Fig. 2a,b.

In Fig. 7, we change the chemical potential to see its influence on the Bloch impedance. The first three normal-
ized frequencies: �1 = 1.3333 , �2 = 2.6666 , and �3 = 3.9999 are considered. Return to Fig. 2a, in the vicinity 
of �1 = 1.3333 Re[σg ] has insignificant change for µc ranging from 0.1 to 0.3 eV. Big changes occur at the three 
cases including 0.4 eV, 0.5 eV, and 0.6 eV. The difference between the cases of 0.7 eV and 0.8 eV is inconsider-
able. The aforementioned trend in the change of Re[σg ] also reflects the change in real- and imaginary-parts of 
ZB . Contrarily, for the cases of �2 = 2.6666 and �2 = 3.9999 , their variations on σg due to various µc are not 
obvious shown in Fig. 2a,b. This is the reason why their Bloch impedance have insignificant change depicted in 
Fig. 7. Alternatively, the Bloch impedance (at the condition of konsts = mπ ) is determined by the eigenvector of 
the matrix Tgra in Eq. (6), which merely depends on graphene optical conductivity σg.

(16)Zin = ZB
Zs + jZB tan(koneff Nts)

ZB + jZs tan(koneff Nts)
.

Figure 7.  Variation of the Bloch impedance ( ZB ) against chemical potential ( µc ) for the first three modes with 
normalized frequencies �1 = 1.3333 , �2 = 2.66666 , and �3 = 3.99999 , respectively.
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To demonstrate that impedance matching affects the scattering characteristic, we further reduce the wave 
impedance in the input and output regions from 251� to 11.922� (corresponding to ns =

√
1000 , the unnaturally 

high refractive index can be realized using  metamaterials31) and carry out the scattering analysis. Notably, the 
structure parameters of the graphene metamaterial remains the same as in Fig. 3b. It is obvious to see in Fig. 8, 
the transmittance is greatly improved at around �1 = 1.3333 due to impedance match, while the impedance 
mismatch is enhanced outside the region. The structure turns to become periodic transmissions. This simulation 
reveals that the Bloch impedance plays an important role in scattering process.

Conclusion
The Floquet-Bloch approach was employed to determine the effective refractive index and Bloch impedance of 
a metamaterial made of a stratified graphene-dielectric structure. Although multiple branches including non-
physical solutions were obtained in the real part of effective refractive index due to multiple-valued problem, 
there is no ambiguity in determining the imaginary part of effective refractive index and the Bloch impedance. 
From the numerical results we confirm that FBA can correctly predict the scattering characteristics far beyond 
the long-wavelength limit.

Through this research, we found that the periodic reflections of a stratified graphene-dielectric metamaterial 
take place around the frequencies of konsts = mπ due to structure dispersion. Moreover, the strong fluctuations 
in the effective refractive index and Bloch impedance attribute to the material dispersion that can be altered by 
tuning the chemical potential. Additionally, the remarkable variations in both effective refractive index and Bloch 
impedance cause the drastic variation in input impedance, thereby enabling the occurrence of obvious reflec-
tion rather than due to photonic bandgap. Specifically, a Floquet-Bloch mode (state) having pure real effective 
refractive index and extremely low Bloch impedance was found to exist within the frequency bands of periodic 
reflections. Moreover, the effect of chemical potential on the reflection properties and equivalent transmission 
line parameters including refractive index and Bloch impedance have also been intensively studied.
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