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Mechanical and thermal 
characterizations of nanoporous 
two‑dimensional boron nitride 
membranes
Van‑Trung Pham1,2 & Te‑Hua Fang1*

Hexagonal boron nitride (h-BN) is a promising 2D material due to its outstanding mechanical and 
thermal properties. In the present study, we use molecular dynamics simulations to investigate the 
influence of porosity and temperature on the mechanical characteristics of h-BN based on uniaxial and 
biaxial tensions. Meanwhile, the progression of the microstructure of h-BN up to fracture is studied in 
order to clarify its fractures mechanism during the tension process. Our results reveal that depending 
on the porosity and tensile direction, the phase transition occurs more or less. The strength, and 
Young’s modulus of h-BN membranes reduce as increasing porosity. Due to the presence of the pores, 
the most substantial stresses will be centred around the pores site in the tensile test. Then the fracture 
starts on the pore edge and spreads preferentially along the zigzag direction of h-BN. Furthermore, 
fracture strain, strength, and Young’s modulus decrease when the temperature rises. In addition, the 
non-equilibrium molecular dynamics (NEMD) simulations are performed to investigate the influence 
of various porosities and temperatures on the thermal conductivity of h-BN membranes. The results 
reveal that the thermal conductivity is greatly reduced by nanoporous. The higher the porosity, the 
lower the thermal conductivity. The vibration density of states of h-BN membranes is calculated; the 
result suggests that the defects might reduce the phonon mean free path because of the high collision 
of the phonons. These alterations represent the scattering influence of defects on phonons, which 
reduces phonon life and considerably lowers thermal conductivity. Moreover, the findings also proved 
that as temperature increases, the intrinsic thermal conductivity of h-BN decreases. The thermal 
conductivity and mechanical properties of the pristine h-BN thin film are interestingly equivalent in 
the zigzag and armchair orientations.

Since the discovery of graphene in 20041, its intriguing features have piqued the interest of researchers all over 
the globe in other two-dimensional (2D) nanomaterials for a variety of applications. Porous 2D materials with 
changeable pore shape and size have attracted a lot of attention because of their potential uses in a variety of 
applications, including photocatalysis, electrocatalysis, biomaterials science, energy generation, storage2–4. Porous 
materials may interact with a variety of active species both within their porous frameworks and on their surface, 
but only if these substances fit the pore size of porous materials, which is crucial for gas storage, separation, 
adsorption, and heterogeneous catalysis5,6. As a result, several methodologies for fabricating porous nanostruc-
tures containing functional building blocks have been investigated earlier7,8.

Nowadays, with the development of nanotechnology and advanced manufacturing, it is possible to fabricate 
nanomaterials with the porosity as well as defects to be adjusted according to the requirements9–11. For 2D 
nanomaterials, the techniques of bottom-up12, laser scribing13, and plasma irradiation14 allow for the creation 
and engineering of pores with dimensions smaller than a nanometer. Moreover, porous engineering might be a 
useful technique for tuning material behavior. By carefully controlling point defects, many advanced materials 
acquire their superior properties. The thermal conductivity of materials may be systematically controlled and 
optimized by carefully manipulating nanoporous15. Because of their distinctive structure and characteristics as 
well as intriguing applications, porous 2D materials including graphene, borophene, metal chalcogenides, metal 
oxides, and carbon nitride have gotten a lot of interest in recent years16–19.
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Hexagonal boron nitride (h-BN) is a promising 2D material with excellent mechanical, chemical, and thermal 
characteristics20. Single-layer hexagonal boron nitride is structurally similar to graphene but with alternating 
boron and nitrogen atoms instead of carbon. Graphene and h-BN have been presented as options for the fabrica-
tion of heterostructures with customizable physical properties due to their atomic structure similarities21. Because 
of its geometric resemblance to graphene, h-BN possesses several desirable physical qualities, such as excellent 
mechanical properties and good chemical and thermal stability22. Furthermore, h-BN has a number of unique 
characteristics that are not seen in graphene. For instance, without any external electronic field modulation, h-BN 
shows intrinsic half-metallicity23. Falin et al.24 have investigated the indentation process of h-BN nanosheets, 
and they reported that the mechanical properties of few-layer BN differ significantly from those of few-layer 
graphene. Unlike graphene, which loses more than 30% of its strength as the number of layers grows from 1 to 
8, the mechanical strength of BN nanosheets is unaffected by increasing thickness. This nanomaterial also has 
an exceptional ultraviolet optical property25,26. The h-BN has many other excellent properties which are benefi-
cial for their applications, such as lubrication27–29, low dielectric parameter for microwave absorption30–32, high 
thermal conductivity33–35, adsorption36–38, and so on. These remarkable features have prompted h-BN research to 
become one of the fascinating topics in nanoscience today. Recently, some researchers have studied the mechani-
cal and heat transport properties of h-BN. For instance, using experimental supported by theoretical analysis, 
Yang et al.39 reported that the crack growth in h-BN is surprisingly stable. The findings point to further practical 
benefits and new technical potential for monolayer h-BN, such as mechanical protection for 2D devices. Using 
density functional theory calculations, Wu et al.40 report on the mechanical characteristics of h-BN and its band 
structures adjusted by straining. According to their findings, the strain may adjust single-layer h-BN from an 
insulator to a semiconductor. Mortazavi et al.41 conducted extensive molecular dynamics (MD) simulations 
to study the effects of grain size on the thermal characterization of polycrystal h-BN monolayer. The findings 
showed that the grain boundary resistance accounts for the majority of the sample’s thermal resistance. How-
ever, increasing the grain size significantly reduces the boundary thermal resistance effect. In addition, there are 
many studies on the mechanical and thermal characteristics of the heterostructure of h-BN and graphene42,43. 
Li et al.42 used the molecular dynamics method in combination with the density functional theory and classical 
disclination theory to study the mechanical properties of grain boundaries (GBs) in planar heterostructures of 
graphene and hexagonal boron nitride.

As previously stated, a deeper knowledge of the structure–property relationship is critical for structural design 
and function optimization in a wide range of technical applications. However, the effect of nanopores uniformly 
dispersed on single-layer h-BN has received little attention. The influences of porosity and temperature on the 
biaxial tensile test, in particular, have yet to be fully investigated. As a result, research into their impact on the 
mechanical and thermal characterizations of nanoporous 2D h-BN membranes is required.

Motivated by the above discussion, this study focuses on the effects of porosity and temperature on thermal 
conductivity and the mechanical characteristics of nanoporous h-BN membranes.

Method
Tensile properties calculations.  To investigate the effect of porosity and temperature on mechanical 
properties of monolayer h-BN, a model of monolayer h-BN with various porosities is created, as illustrated in 
Fig. 1a. The size of the models is approximately 10.5 × 10.5 nm2 along x- and y-directions. The vacuum region 
is set as 5.0 nm above and below the monolayers along z-direction to minimize the interaction between the 
membranes. In order to eliminate the influence of the simulation box boundaries, periodic boundary conditions 
are applied in all dimensions. The porosity is changed with the values of 0.0% (non-defective), 1.34%, 5.36%, 
12.05%, where porosity is defined by the ratio of missing atoms to total atoms of the pristine sheet. The pores 
in the membranes are circular pores with the diameter of circular pores ranging from 4.35 Å to 13.05 Å. To 
investigate the tensile mechanical properties of h-BN, we used the LAMMPS software to run molecular dynam-
ics simulations44. The Tersoff potential created by Kınacı et al.45 was used to represent the atomistic interactions 
between B-B, N–N, and B-N atoms in the MD simulations. This potential has been verified to be suitable for 
studying the mechanical properties and heat transfer of h-BN with previous studies46. All initial configurations 
were relaxed by the conjugate gradient (CG) method to achieve an equilibrium minimum energy. Then, all 
systems were relaxed by equilibrating in an isothermal-isobaric (NPT) ensemble for 100 ps at target tempera-
tures (100, 200, 300, 400, 500, and 600 K) and zero pressure. The time-step is set to 0.5 fs. After equilibration, 
we applied the uniaxial or biaxial tension with a constant strain rate of 5.108  s-1 along with the deformation 
directions (armchair and zigzag). Here, the engineering strain was defined as ε = (L-L0)/L0, where L0 and L are 
the lengths of monolayer h-BN before and after the deformation. The atomic stress in the simulation system is 
calculated using the virial stress formulation:

where, V is the volume of the monolayer h-BN with a thickness of 0.33 nm. mi and vi denote the mass and the 
velocity vector of the atom i-th. rij and Fij represent the distance vector and the force between particle i and 
particle j. The symbol ⊗ denotes the tensor product of two vectors.

The von Mises stress σvon is given by:
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Figure 1.   (a) Atomistic configuration of monolayer h-BN, and (b) Schematics of the non-equilibrium MD 
simulation of monolayer h-BN.
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The OVITO visualization software is used to observe the evolution of the atomic structure and process data 
achieved from the MD simulations47.

Thermal conductivity calculations.  We used the schematics to compute the thermal conductivity of the 
h-BN membranes, as shown in Fig. 1b. The simulated structures are W × L, where L is the dimension of the sys-
tem along the heat flux direction (armchair or zigzag directions), and W is the width of the simulated structure. 
We used the NEMD method to calculate the thermal conductivity of h-BN membranes. The length of samples 
has a considerable impact on the thermal conductivity measurements obtained using the NEMD approach48. 
Then, we change the length in the range of 21.1, 31.6, 42.2, 63.3, and 84.4 nm in the heat transfer direction, while 
the width is kept the same at W = 10.5 nm. The structure has the same porosity as the model in Fig. 1a. The peri-
odic boundary condition is employed in the width direction to avoid the effect of the width dimension, while the 
fixed boundary condition is employed in the heat transport direction. The model was divided into 50 slabs, and 
the heat sink and source were adjacent to the fixed atoms at both ends. All simulations were run with a time step 
of 0.5 fs. All systems were relaxed by equilibrating in an NVT ensemble for 500 ps. After the full relaxation, the 
system is switched to NVE (constant number of atoms, volume, and energy) ensemble for 500 ps, and we apply 
the Langevin thermostats to the heat source and sink to obtain steady-state heat flux J by exchanging the kinetic 
energies between the heat source and sink for 5.0 ns. The heat source and sink were controlled at TH = T(1 + Δ) 
K and TC = T(1-Δ) K, here Δ = 0.05, and T is the predefined temperature. T ranged from 100 to 600 K. Once the 
system becomes steady-state, a stable temperature gradient along the heat transport direction is achieved, the 
heat flux J can be calculated:

where A is the cross-section area that the heat flux passes through with the thickness of monolayer h-BN is 
chosen as 0.33 nm49. dE/dt stands for the rate of adding or removing kinetic energy in the thermostat regions.

The thermal conductivity κ is calculated via the Fourier’s law:

where (dT/dx) is the time-averaged temperature gradient along the heat transfer direction.

Results and discussion
Tension.  We begin our discussion by studying the tensile properties of the h-BN membranes with different 
porosities under tension, as shown in Fig. 2. The stress–strain curves of the h-BN nanosheet for strain applied 
along the zigzag and armchair directions are illustrated in Fig. 2a,b, respectively. The stress–strain curves of the 
h-BN membrane with various porosity at a temperature of 300 K in biaxial tension are illustrated in Fig. S1. In 
every example, three distinct behaviors in the stress–strain response were found. As can be seen, a linear rela-
tionship occurs at low strain levels, and after that, a non-linear response up to the ultimate strength, followed by 
a sudden fall in stress that corresponds to membrane rupture. In the non-linear response region, phase transition 
may exist. Depending on the porosity and tensile direction, this phase transition occurs more or less. For exam-
ple, for a membrane with a porosity of 1.34% under uniaxial in the zigzag direction, the phase transition occurs 
when the strain ranges from 13.93% to 22.09%, as shown in Fig. 2a, and more details on the phase transition of 
this membrane are depicted in Figs. 4 and 5a. For the membrane with a porosity of 12.05% under uniaxial in the 
zigzag direction, the phase transition occurs as the deformation is from 14.05% to 18.05% as shown in Fig. 2a, 
and more details on the phase transition of this membrane are depicted in Fig. 5c. While tensing in the armchair 
direction, the phase transition is very rare, as depicted in Figs. 2b and 6a1–c1. Fig. S1 and Fig. S2 show that the 
phase transition before the nanosheet is destroyed is rare under biaxial tension. The porosity dependence of 
ultimate strength is determined from the stress–strain curves and plotted in Fig. 2c. It shows that the strength 
reduces with the increased porosity in both uniaxial and biaxial tensions. However, like prior investigations for 
graphene sheets and borophene19,50,51, the fracture strain value appears to be insensitive by the material’s poros-
ity. The strength of the pristine h-BN monolayer under uniaxial tension in the zigzag orientation is quite close 
to that in the armchair orientation. However, with porous sheets, the strength of h-BN sheets when stretched in 
the armchair direction is higher than when stretched in the zigzag direction. This evidences that under uniaxial 
tension in the zigzag direction, the strength of the h-BN sheet is more sensitive to voids than stretched in the 
armchair direction. Furthermore, the strength of the h-BN nanosheet under biaxial tension is the smallest in 
all cases. Young’s modulus dependence of porosity is calculated from stress–strain curves and plotted in Fig. 2d. 
Similar to strength, Young’s modulus also reduces as increasing porosity. Biaxial tension has a greater modulus 
than zigzag or armchair tension, which agrees with the phenomenon of graphene material52.

From the porosity dependence of Young’s modulus values of the h-BN membranes, we can build a linear 
equation of Young’s modulus E according to the porosity p with a coefficient of determination R2 as follows:

(3)J =
dE/dt

A

(4)κ =
J

dT/dx

(5)For biaxial tension: E = −20.38p+ 823.53 (GPa) with R2 = 0.9844

(6)For zigzag direction : E = −20.52p+ 706.26 (GPa) with R2 = 0.9915

(7)For armchair direction: E = −20.45p+ 697.78 (GPa) with R2 = 0.9893
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In general, the results show that the lower the porosity, the higher the mechanical properties.
Figure 3a shows the stress distribution and deformation behavior of monolayer h-BN under uniaxial tension 

in the zigzag direction at 300 K. The atoms of the nanosheet are colored according to the normal stress (σxx). The 
red color represents high stress, and the blue color denotes low stress. We can see that as the strain raises, the 
stress in the membrane raises. As the strain value gets to 30%, the crack begins to appear on the sheet. This crack 
rapidly expands until the nanosheet is entirely shattered at a strain value of 30.04%. Intriguingly, the fracture is 
not perpendicular to the tensile orientation but tends to propagate in the red arrow direction, the direction of the 
zigzag edge. The stress distribution and deformation behavior of monolayer h-BN during uniaxial tension along 
the y (armchair) direction at 300 K are presented in Fig. 3b. The membrane atoms are colored according to normal 
stress (σyy). We can see that the crack begins to appear on the nanosheet when the strain value reaches 24.89%. 
This crack rapidly expands until the sheet is completely shattered at a strain value of 24.95%. Unlike when tensing 
in the zigzag direction, when tensing in the armchair direction, the fractures spread perpendicular to the tensile 
direction. It is interesting to see that the fractures preferentially spread in the zigzag edge under deformation in 
the zigzag or armchair direction. The priority of crack spreading along the zigzag edge of the h-BN nanosheet 
is similar to that of other 2D materials such as graphene, MoS2

53–55. The von Mises stress distribution and the 
fracture progress of the h-BN membrane under biaxial tension at 300 K are illustrated in Fig. 3c. All atoms on 
the membrane are coloured according to their VMS values; the higher VMS is red, while the lower VMS is blue. 
As the strain increases, the VMS on the membrane rises. When the strain reaches 20.25 percent, the membrane 
begins to rupture. Cracks spread quickly along the red arrow directions as strain increases (zigzag direction). 
Following the red arrows, these breaks progressively spread throughout the membrane until it is completely 
destroyed. Cracks that grew in the zigzag orientation (red arrows) were more common than those that occurred 
in the armchair orientation. The fracture morphology of the membrane under biaxial tension is more rough and 
convoluted than it is under uniaxial tension. Under biaxial tension for the sheets with different porosity, crack 
propagation along the zigzag edge also dominates, as shown in Fig. S2.

Figure 4 shows the phase transition of the h-BN membrane with a porosity of 1.34% during uniaxial tension 
in the zigzag direction. The atoms of the nanosheet are colored according to the normal stress σxx. As shown in 
the diagram, Fig. 2a shows that with increasing strain, the stress increases gradually. When the strain reaches 

Figure 2.   Tensile characteristics of the h-BN membrane with various porosities at a temperature of 300 K. (a) 
Stress–strain curves of the h-BN membrane for strain applied along the zigzag direction. (b) Stress–strain curves 
of the h-BN membrane for strain applied along the armchair direction. (c) The porosity dependence of ultimate 
stress. (d) The porosity dependence of Young’s modulus.
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13.93%, the tensile stress in the zigzag direction begins the inelastic regime. At the strain value of 13.93%, the 
bond between atoms A and B reaches the critical value and begins to break, thus causing the beginning of phase 
transition from six-membered ring to ten-membered ring, as depicted in Fig. 4a,b. As strain value of 13.98%, the 
bond between atom C and atom D is broken, as depicted in Fig. 4c. The phase transition from six-membered to 
ten-membered ring continuously happens as the strain percentage increases. Interestingly, this phase transition 
is propagated along the zigzag edge, as shown in Fig. 4d. This process continues until the plate reaches the critical 
stage and enters the failure phase, as shown in Fig. 5a2.

Figure 5 shows the deformation and fracture process of monolayer h-BN during uniaxial tensile along the 
zigzag direction at 300 K with different porosities. Figure 5a1–c1 show the stress distribution and h-BN mem-
brane structure when the membranes begin to have phase transitions. We divide the sheet into many slabs along 
the tensile direction. At the slab containing the holes, the bonding density in the cross-section area is reduced, 
resulting in high stresses concentrated in this slab. It shows that the high stress is concentrated in the atoms 
right at the hole position and in the slab containing the holes. As increasing the strain, the sheet has undergone 
a phase transition similar to Fig. 4. The phase transition occurs along the zigzag edge (shown in black ellipses). 
Figure 5a2–c2 show the stress distribution and h-BN membrane structure at the strain value that the sheet begins 
to shatter. As the strain increases, the structure of the sheets is shattered in the red arrow direction, as shown in 
Fig. 5a3–c3. At the same time, the phase transition continues because high stresses are concentrated at the edge 
of the fracture. The phase transition and crack propagate along the red arrows until the membrane is completely 
ruptured, as shown in Fig. 5a4–c4.

The stress distribution on the h-BN membrane when stretched in the y-direction (armchair direction) for 
different porosities at 300 K is shown in Fig. 6. The atoms are coloured according to the atomic-level stress ten-
sor σyy in armchair tension. In which blue represents the atoms with low stress, red indicates high-stress atoms. 
It shows that the atomic density is low at the cross-sections with holes, leading to high-stress concentration at 
this low atomic density cross-section. When the sheets reach the ultimate tensile stress, as shown in Fig. 6a1–c1, 
the atoms located at the edge of the nanopore have the highest stress value (shown in black circles). As strain 
increases, generally, the crack is initiated on the edge of the nanopore, which rapidly propagates along the red 
arrow. The appearance and propagation of the crack reduce local stress. Eventually, these cracks rapidly propagate 
through the entire neck, and the sheet is completely destroyed. The results show that when tensing in the armchair 
direction, the cracks propagate in the zigzag direction. That is, the crack propagates along the zigzag edge. The 
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Figure 3.   (a) The stress distribution and fracture behavior of single-layer h-BN under uniaxial tension along 
the x (zigzag) direction at a temperature of 300 K. (b) The stress distribution and fracture behavior of single-
layer h-BN under uniaxial tension along the y (armchair) direction at a temperature of 300 K. (c) The fracture 
evolution and the von Mises stress distribution of h-BN membrane under biaxial tension at 300 K.
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fractures preferentially propagate and migrate along zigzag edges of h-BN sheets. As illustrated in Figs. 5 and 6, 
the sharp corners of the nanopore cause stress concentration in the tensile test, and the corners are commonly 
the first site where the fracture occurs.

With different temperatures, the stress–strain relationship of the h-BN membrane under the uniaxial tensile 
test in zigzag and armchair directions are illustrated in Fig. 7a,b, respectively. The stress–strain curves of the 
h-BN membrane under the biaxial tensile test at various temperatures are exhibited in Fig. S3. In every example, 
three distinct behaviors in the stress–strain response were found. It shows that a linear relationship occurs at low 
strain levels; after that, a non-linear response up to the ultimate strength, followed by a sudden fall in stress that 
corresponds to specimen rupture. The fracture strain decreases with the increase of temperature in zigzag tension 
and biaxial tension. However, in the uniaxial tension in the armchair direction, the fracture strains are close to 
each other when the temperature is above 300 K. From the stress–strain relationships, the temperature depend-
ence of ultimate strength and the temperature dependence of Young’s modulus are determined and plotted in 
Fig. 7c and d, respectively. The result depicts that the ultimate strength and Young’s modulus of h-BN membrane 
reduce with the increased temperature in both uniaxial and biaxial tensions. It emphasizes that temperature 
has a significant influence on the stress–strain relationship. As the temperature rises, the temperature-induced 
softening causes mechanical characteristics to decrease56–59. The strength of the pristine h-BN membrane under 
uniaxial tension along the zigzag direction is quite close to that in the armchair direction. Under the biaxial ten-
sion, the strength of the h-BN membrane is greatly reduced compared to uniaxial tension. Similar to strength, 
Young’s modulus also decreases as the temperature rises. At different temperatures, we find that Young’s modulus 
value of the h-BN membrane is larger in the biaxial tensile test than in the uniaxial tensile test, which is in good 
agreement with the phenomenon of graphene material52.

(a)    ε = 13.93% (b)    ε = 13.94%

(c)    ε = 13.98% (d)    ε = 14.35%

A B

C D

0.350.01

Figure 4.   Representative MD snapshots of the h-BN for the porosity of 1.34% at different strain percentages: (a) 
13.93%, (b) 13.94%, (c) 13.98%, (d) 14.35% (scale bar indicates the magnitude of the normal stress σxx).
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From the temperature dependence of Young’s modulus of the h-BN membrane, we can build a linear equation 
of Young’s modulus E according to the temperature T with a coefficient of determination R2as follows:

The impact of strain rate on h-BN mechanical characteristics is also examined. We choose the strain rates in 
the range of 5 × 107 to 5 × 109 s-1, commonly employed in MD simulations, to investigate the strain rate impact. 
Fig. S4 illustrates the stress–strain curves of the pristine h-BN membrane under the uniaxial tension along the 
zigzag and armchair directions at a temperature of 300 K. Before the rupture happens, the stress–strain curves 
at all strain rates are almost identical, demonstrating that strain rate has only a minor influence on Young’s 
modulus of h-BN. The result shows that increasing strain rate leads to the ultimate strength and failure strain 
increase. Because the atoms have less time to respond to the loading when the strain rate is higher; as a result, 
the broken bonds are homogeneously distributed, leading to a higher fracture strength and strain. Overall, the 
influence of strain rate on the fracture strain and ultimate strength of h-BN is relatively weak compared to the 
influence of porosity and temperature.

Thermal conductivity.  The effects of porosity and temperature on the thermal conductivity of nanopo-
rous h-BN membranes are explored in this section. The intrinsic thermal conductivity (thermal conductivity at 
infinite length) is calculated in two steps: following a series of size-dependent simulations, a size-independent 
extrapolation is done. As a result, we will simulate different lengths for each porosity and temperature to com-
pute the intrinsic thermal conductivity value.

Figure 8a,c presents the temperature profile of the h-BN membrane obtained using the NEMD at 300 K in the 
zigzag and armchair directions, respectively. The red linear in Fig. 8a,c represents the steady-state temperature 
profile. The computed energies added to the heat source and removed from the heat sink according to time are 

(8)For zigzag direction : E = −0.22T + 789.55 (GPa) with R2 = 0.9557

(9)For armchair direction : E = −0.26T + 797.15 (GPa) with R2 = 0.9575

(10)For biaxial tension : E = −0.34T + 1021.52 (GPa) with R2 = 0.9884

0.350.01

(a2)    ε = 22.09% (a3)    ε = 22.17% (a4)    ε = 22.20%

(b2)    ε = 15.27% (b3)    ε = 15.37% (b4)    ε = 15.45%

(c2)    ε = 18.50% (c3)    ε = 19.50% (c4)    ε = 19.54%

x

y

(c)

(b)

(a)
(a1)    ε = 13.93%

(b1)    ε = 12.40%

(c1)    ε = 14.05%

Figure 5.   The stress distribution and fracture evolution of h-BN membranes in uniaxial tension along the 
zigzag direction at 300 K with different porosities: (a) 1.34%, (b) 5.36%, (c) 12.05%.
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shown in Fig. 8b,d. As shown, the amount of energy removed from the cold reservoir equals the quantity of 
energy given to the hot reservoir, implying that the system’s total energy is precisely preserved. These findings 
suggest that the system’s energy remains constant and that steady heat flux is provided throughout the system. 
At each simulation time step, this heat flux is a constant amount of kinetic energy flowing from the atoms in the 
hot reservoir to those in the cold reservoir. The heat flux is calculated according to the formula (3). Applying the 
formula (4), we can calculate the thermal conductivity along the zigzag direction of the h-BN membrane with 
a length of 21.1 nm is 392.71 (W/m–K). The thermal conductivity along the armchair direction of the h-BN 
membrane with a length of 20.9 nm is 370.73 (W/m–K).

The thermal conductivity of the workpieces with the length ranging from 20–90 nm is computed completely 
similar to the calculation of the thermal conductivity of the workpiece in Fig. 8a,c. The thermal conductivity of 
these workpieces at a temperature of 300 K is shown in Fig. 8e. We see that the size of the workpiece affects the 
thermal conductivity. As the length of the workpiece increases, the thermal conductivity increases. The influence 
of the workpiece length on the thermal conductivity of the system has been explained by previous studies due 
to the influence of the phonon scattering that existed at the boundary of the membrane. More phonons will be 
excited as the length increases, contributing to an increase in thermal conductivity60.

The thermal conductivity is proportional to the mean free path for phonon scattering according to the kinetic 
theory of phonon transport, and the thermal conductivity can be obtained by:

(11)κ =
1

3
CVl

(a1)    ε = 21.75% (a2)    ε = 21.83% (a3)    ε = 21.87%

(b1)    ε = 16.90% (b2)    ε = 18.75% (b3)    ε = 18.79%

(c1)    ε = 17.23% (c2)    ε = 17.35% (c3)    ε = 17.42%
(c)

(b)

(a)

0.060.01y

x

Figure 6.   The stress distribution and fracture evolution of h-BN membranes in uniaxial tension along the 
armchair direction at 300 K with different porosities: (a) 1.34%, (b) 5.36%, (c) 12.05%.
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where C and V denote the specific heat per volume and the average phonon velocity, l is the phonon mean free 
path. According to previous research61, in the situation of phonons scattering at the heat reservoir, the effective 
mean free path satisfies the relation:

where lph-ph and ls denote the intrinsic phonon–phonon scattering length and the length of the simulation box.
According to Eqs. (11) and (12), the thermal conductivity satisfies the relation:

This indicates that a plot of the inverse of thermal conductivity, κ, against the inverse of system size, ls, should 
be a straight line. It also indicates that as the system length grows, the thermal conductivity grows.

Extrapolation of the NEMD results for h-BN samples with finite lengths, κL, is a typical method for estimating 
the intrinsic thermal conductivity of h-BN monolayers with infinite lengths, κ∞. The length dependence of the 
thermal conductivity is proposed by Schelling et al.62,

where κ∞is the intrinsic thermal conductivity for the structure with an infinite length (L∞), L is the sample length, 
and λ is the effective phonon mean free path.

The findings of thermal conductivity versus the inverse of sample length are shown in Fig. 8f. By linear fitting 
of 1/κ and 1/L, κ∞was determined by the extrapolation value when 1/L → 0. The results show that the intrinsic 
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Figure 7.   (a) The stress–strain relations of the pristine h-BN membrane under uniaxial tension along the zigzag 
direction with different temperatures. (b) The stress–strain relations of the pristine h-BN membrane under 
uniaxial tension along the armchair direction with different temperatures. (c) The temperature dependence of 
ultimate strength. (d) The temperature dependence of Young’s modulus.
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thermal conductivity of the pristine h-BN sheet at 300 K in the zigzag and armchair directions is 518.13 W/m–K 
and 512.82 W/m–K, respectively.

The length dependence of thermal conductivity for single-layer h-BN membrane with various porosities 
in the zigzag and armchair directions is shown in Fig. 9a,b. For each porous sheet, as the length of the sample 
increases, the thermal conductivity increases. When the length of the membrane is kept constant, the thermal 
conductivity of single-layer h-BN falls as the porosity increases from 0% to 12.5%. Figure 9c,d shows the system 
size dependence of 1/κ on 1/L of nanoporous h-BN membranes for the zigzag and armchair direction. The 
extrapolation value is used to derive the intrinsic thermal conductivities at various porosities when 1/L → 0. 
Figure 9e shows the extrapolated thermal conductivity values of h-BN membranes with different porosities. It 
proves that the membrane’s thermal conductivity is considerably affected by porosity. The thermal conductivity 
is reduced as porosity increases.

To further investigate the effect of porosity on the thermal conductivity of h-BN membranes, the vibration 
density of states (VDOS) of h-BN membranes is calculated. The VDOS is calculated by calculation of Fourier 
transform of atomic velocities autocorrelation function41:

where N denotes the number of atoms in the system, ω denotes the angular frequency, and vi(t) is the velocity 
of atom i-th at time t. 〈...〉 is atom number-averaged velocity autocorrelation function.

To discuss the effect of porosity on the thermal conductivity, h-BN membranes of size 10.4 × 21.1 (W × L) 
nm2 with various porosities are used to calculate the vibration density of states at a temperature of 300 K. The 
calculated VDOS is illustrated in Fig. 10. As can be seen in the graph, porosity has a considerable impact on 
VDOS. The main peaks are about 48.3 THz in frequency. Thermal transport in the pristine h-BN is ballistic, 
which means phonon collisions are low. The main peaks’ high of VDOS is decreased and slight shift towards low 
frequency as the porosity increase, implying that the defects might reduce the phonon mean free path due to 
high collision of the phonons. These alterations represent the scattering influence of defects on phonons, which 
reduces phonon life and considerably lowers thermal conductivity63. Phonon scattering has also been shown to 
be the predominant contributor in lowering the heat conductivity of other 2D materials64.

To address the temperature dependence of thermal conductivity of single-layer h-BN, we investigate with 
various temperatures varying from 100 to 600 K for pristine h-BN sheets with lengths varying from 21.1 up to 
84.4 nm, as shown in Fig. 11a,b. Under the constant length condition of membranes, the thermal conductivity 

(15)G(ω) =

∫

〈

N
∑

i=1

vi(t)vi(0)

〉

e−iωtdt

Figure 8.   (a) The temperature profile for the monolayer h-BN membrane with L = 21.1 nm under the heat 
transfer along the zigzag direction. (b) The thermal energy that removed from the heat sink and added to the 
heat source in the heat transfer process along the zigzag direction. (c) The temperature profile for the monolayer 
h-BN membrane with L = 20.9 nm under the heat transfer along the armchair direction. (d) The thermal 
energy that removed from the heat sink and added to the heat source in the heat transfer process along the 
zigzag direction. (e) Dependence of thermal conductivity on the system size of monolayer h-BN in zigzag and 
armchair directions at temperature of 300 K. (f) Linear fitting of 1/κ and 1/L for zigzag and armchair directions.
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Figure 9.   (a,b) Length dependence of thermal conductivity for single-layer h-BN membrane with various 
porosities in the zigzag and armchair directions. (c,d) Inverse of length versus inverse of thermal conductivity of 
single-layer h-BN membrane with various porosities in zigzag and armchair directions. (e) Porosity dependence 
of the intrinsic thermal conductivity of the single-layer h-BN membrane.

Figure 10.   Phonon density of states of h-BN membranes.
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declines as the temperature rises. To estimate the intrinsic thermal conductivity of h-BN monolayer at various 
temperatures, the inverse of thermal conductivity versus the inverse of system length is plotted in Fig. 11c,d. From 
Fig. 11c,d, intrinsic thermal conductivity values of the h-BN membrane are extrapolated at various temperatures, 
as illustrated in Fig. 11e. The results present that the thermal conductivity of h-BN membranes in the armchair 
direction is very close in the zigzag direction. It clearly points out that the intrinsic thermal conductivity of h-BN 
reduces with the increase of temperature. This phenomenon has been explained in previous studies by Umklapp 
phonon–phonon scattering at high temperature60. The population of phonons with large momenta increases at 
high temperatures. When these large-moment phonons contact with other high-moment phonons, the total 
generated momenta readily exceeds the allowable momentum in the lattice structure, and they lose energy. As 
a result of the increased Umklapp scattering at high temperatures, the thermal transfer efficiency decreases.

To validate the computational model, we compare the results of the pristine membrane model with those of 
earlier investigations. Some mechanical and thermal characteristics values, including ultimate strength, fracture 
strain, and thermal conductivity, are guardedly addressed in Supplementary Table 1. The results show that the 
mechanical properties in this study are consistent with previous studies. Moreover, the thermal conductivity of 
h-BN thin films in this study is good consistent with experimentally investigated using the opto-thermal Raman 
technique65, and these values are in accordance with the theoretically predicted. As a consequence, the findings of 
our study on the influences of temperature and porosity on the mechanical characteristics and thermal conductiv-
ity of a single-layer h-BN membrane provide significant information that may be used in future h-BN research.

Conclusions
In summary, this work investigates the effects of porosity and temperature on the mechanical characteristics 
of h-BN membranes under uniaxial and biaxial tensions. It is found that the porosity and temperature signifi-
cantly affect the tensile characteristic of h-BN membranes. Depending on the porosity and tensile direction, 
the phase transition occurs more or less. As porosity increases, the strength and Young’s modulus decrease. The 
findings reveal that the strength, Young’s modulus, also reduce as temperature increases. It is interesting to see 
that the cracks preferentially spread in the zigzag edge under deformation in the zigzag or armchair direction. 
In addition, this work conduct NEMD simulations to study the influence of temperature and porosity on the 
thermal conductivity of h-BN membranes. The results reveal that the thermal conductivity is greatly reduced by 
nanoporous. The higher the porosity, the lower the thermal conductivity. The vibration density of states of h-BN 
membranes is calculated; the result suggests that the defects might reduce the phonon mean free path because 
of the high collision of the phonons. These alterations represent the scattering influence of defects on phonons, 
which reduces phonon life and considerably lowers thermal conductivity. Moreover, the findings also proved 
that as temperature increases, the intrinsic thermal conductivity of h-BN decreases.

Figure 11.   (a,b) System size dependence of thermal conductivity of single-layer h-BN at different temperatures. 
(c,d) System size dependence of 1/κ on 1/L of single-layer h-BN along the zigzag and armchair directions at 
different temperatures. (e) Temperature dependence of intrinsic thermal conductivities of h-BN membranes.
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Data availability
All files for LAMMPS can be found in the Supplemental materials. The datasets used and/or analysed during the 
current study available from the corresponding author on reasonable request.
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