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Prognostics of unsupported 
railway sleepers and their severity 
diagnostics using machine learning
Jessada Sresakoolchai & Sakdirat Kaewunruen*

Railway sleepers are safety–critical components of a railway structure. They support ballasted track 
superstructure and are a critical factor in track geometry and track components’ deterioration. 
Unsupported sleepers are a common issue incurred after tracks have been utilized. When unsupported 
sleepers are present, they cause differential settlements of track superstructures, additional 
dynamic loading, and excessive train-track vibrations which affect passenger comfort, safety, and 
maintenance cost. This study is the world’s first to develop new machine learning models to prognose 
and better diagnose defect severities of unsupported sleepers aligned with practical track inspection 
guidelines. Data used to develop machine learning models are based on a verified finite element 
model with actual field measurements, enabling unbiased full data ranges that govern all defect 
conditions. Different conditions of unsupported sleepers can be explored by varying locations of 
unsupported sleepers and the number of unsupported sleepers. Also, other operational parameters 
can be addressed such as speeds of rolling stock, the roughness of rail surface, and vertical stiffness 
of wheel-rail contact. In total, 2016 data sets have been obtained. Axle box accelerations are adopted 
as key indicators for machine learning models. Machine learning techniques used in the study are 
the convolutional neural network, recurrent neural network, ResNet, and fully convolutional neural 
network. Data fusion and assimilation have been conducted since the data points are dependent on 
the train speeds. Our new results reveal a breakthrough essential for real-world applications that 
the convolutional neural network model provides the best accuracy in both unsupported sleeper 
prognostics and severity identification. The accuracies of detection and severity identification are 
99.34% and 97.02% respectively.

The ballasted track is the most common track superstructure because of its low construction cost, flexible appli-
cation, low noise and vibration, ease of maintenance, etc. However, the main disadvantage of the ballasted track 
is the relatively fast deterioration. Its deterioration affects the track geometry which results in lower passenger 
comfort, safety, and higher maintenance cost. The settlement of the ballast layer starts from  voids1 which causes 
excess vibration and high dynamic loading. Because sleepers are fastened with tracks, they will not settle along 
with the ballast layer. This causes unsupported sleepers. Then, the track geometry will deteriorate even faster 
because sleepers are not supported by the ballast layers to which the load is transferred from the track.

In the present, unsupported sleepers can be detected using different techniques such as on-board and track-
side techniques. Examples of on-board techniques are the use of the Swiss track stiffness measurement vehicle, 
the rolling stiffness measurement vehicle of the Swedish  railway2, or other measurement vehicles in other coun-
tries such as the USA and China. It can be seen that on-board techniques require special vehicles to perform the 
inspection which causes high measurement costs. Therefore, the inspection cannot be done frequently. Moreover, 
on-board techniques have the limitation of low speed and  accuracy1. Examples of track-side techniques are track 
deflection technique, cameras,  accelerometers3, laser array, geophone, and  others4. The main disadvantage of 
track-side techniques is the high cost of equipment and sensor installation and software.

One of the techniques that tend to be interested is the use of on-board measurement based on regular rolling 
stocks. It is cost-efficient, does not interrupt regular service, is fast with the same speed of service operation, 
and does not require additional installed equipment or sensors. Therefore, the inspection can be done more 
frequently which results in lower maintenance costs. The most simple and cost-efficient approach is the accelera-
tion measurement. One of the methods that tends to be more popular nowadays is machine learning. From the 
literature review, the use of machine learning to detect unsupported sleepers has not been comprehensive and 
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seriously studied. The detail will be more explored in “Exploration of sleeper defects and unsupported sleepers 
detection” section.

This study aims to apply axle box accelerations (ABA) to detect and identify severities of unsupported sleep-
ers using machine learning models. Machine learning techniques used in the study are convolutional neural 
network (CNN), recurrent neural network (RNN), ResNet, and fully convolutional neural network (FCN). Data 
for developing machine learning models are generated from a finite element model which the accuracy is veri-
fied with the field data. Because outputs’ frequency from finite element simulation is fixed, the number of data 
points are different depending on the speeds of rolling stock. However, inputs of machine learning models except 
FCN need to have the same shape or dimension. Data processing is required to reshape inputs. In the study, Fast 
Fourier transform (FFT) and padding techniques are used to reshape the inputs. To evaluate the performances 
of machine learning models, accuracies are used.

Exploration of sleeper defects and unsupported sleepers detection
Due to the increasing load and speed of rolling stock, the track foundation is applied by high impacts under a 
regular operation. As a result, the deterioration is exponential and leaves the permanent deformation of the track 
foundation. The settlement tends to occur because of the incident and a gap will form under sleepers. This leads 
to unsupported  sleepers5. Augustin et al.6 found that mostly over 50% of sleepers were partially unsupported in 
the reality. Therefore, it is significant to detect unsupported sleepers.

Zhu et al.5 studied the dynamic behavior of a track under the unsupported sleeper condition. They applied 
vehicle–track dynamic interaction theory on their study with a Timoshenko beam concept. In the study, they 
adjusted the speed and the number of unsupported sleepers of a 1:5 scale model. The speeds were varied between 
160 and 320 km/h and the number of unsupported sleepers was varied between 0 and 3. They found that when 
unsupported sleepers were presented, additional impact loads occurred. This resulted in even more deterioration 
and spoiled the track quality. Their finds were supported by other studies. Mosayebi et al.7 applied the Finite 
Element Method (FEM) to simulate train-track interaction. They found that unsupported sleepers resulted in 
additional sleepers’ displacement and impact force. They ranged the speed of rolling stocks between 100 and 
200 km/h and the number of unsupported sleepers was ranged from 1 to 2. They tried to find relationships 
between the peak velocity of a track and the unsupported sleeper stiffness. They found that the displacement of 
sleepers was more than 90% when a sleeper was unsupported. When two sleepers were unsupported, the dis-
placement increased by more than 190%. The track forces were increased by 1.4 and 1.78 times when one and 
two sleepers were unsupported respectively. The maximum vibrations were also increased by about 40% when 
sleepers were unsupported. In addition, they found that the relationships between the peak velocity of a track 
and the unsupported sleeper stiffness were non-linear. These findings were supported by Zhang et al.8, Sadeghi 
et al.9, and Zakeri et al.10.

Sleepers are important track components, sleeper defects need to be detected to plan efficient maintenance. 
Franca and  Vassallo11 applied image processing to detect and classify types of sleeper defects. For the size of 
samples, they used 10,116 images that 32,917 sleepers were comprised. The samples consisted of wooden and 
steel sleepers. They collected data using cameras. The classification accuracies of the developed approach were 
ranged between 86–93%. Yella et al.12 applied SVM to classify the condition of sleepers. They inspected data in 
Sweden where their samples were wooden sleepers. They stated that manual inspection was commonly used 
around the world in the railway industry which was slow and expensive. They developed a predictive model to 
classify the sleeper condition as good or bad (2 classes). The sample sizes were 200 comprising of 144 sleepers 
in good condition and 56 sleepers in bad conditions. For the predictive model, they applied MATLAB with 
LNKNET to develop the model. They separated the training and testing data with the proportion of 75% and 
25% respectively. As a result, they could achieve the performance of 86% accuracy.

Zheng et al.13 applied YOLO V3 which was a popular object detection algorithms to detect sleeper defects. 
It provided high accuracy and was fast. They collected data which were sleeper images from a metro line. The 
sample sizes were 1800 images which they separated into 1500 training data and 300 testing data. They used 
recall as an indicator to evaluate the performance of the model. The precision and recall of the classification were 
91.72% and 92.64% respectively. Wang et al.14 applied CNN to detect cracks in sleeper images. They proposed to 
use a two-stage algorithm for detecting sleeper cracks. For the first stage, edge detection was conducted to find 
crack areas. For the second stage, CNN was used to classify images classified into two classes, sleepers with and 
without cracks. The accuracy of their model was 95% which was the same as using the CNN model with the raw 
data. However, using a two-stage algorithm made the training time much faster.

To detect unsupported sleepers, different techniques were applied as mentioned in the introduction. Kim 
et al.15 presented a technique using a portable light falling weight deflectometer (LFWD). This technique was 
used to measure the gap between sleepers and ballast. Originally, the LFWD was used for highway pavements. 
An advantage of using the LFWD was it could detect unsupported sleepers immediately. From the study, the 
authors stated that the LFWD was an easy and rapid technique to detect unsupported sleepers. However, it had 
some limitations of loads and maximum displacements. They found that the stiffness of unsupported sleepers was 
only 11.6% of fully supported sleepers. Sysyn et al.1 applied numeric simulations to simulate dynamic behavior 
between track superstructure and rolling stocks. They used time-domain data to detect unsupported sleepers 
which were displacements. Data collection was done using high-speed video records and digital imaging cor-
relation (DIC). Then, data were statistically analyzed. Another technique that they used to detect unsupported 
sleepers was machine learning. They processed data using the wavelet scattering feature extraction. Machine 
learning techniques that they used were support vector machine (SVM) and k-nearest neighbor classifier (KNN). 
However, they stated that the performance of the developed approach was moderate and could be improved. 
The maximum accuracies of the SVM and KNN models were 58% and 65% respectively. Therefore, it can be 
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seen that the performance of the machine learning model can be improved by using more advanced machine 
learning techniques.

It can be seen that although different techniques can be used to detect unsupported sleepers, many techniques 
required additional equipment or sensor installation which is expensive. Using the machine learning technique 
is an interesting alternative to develop an unsupported sleeper detection model. In this study, different machine 
learning models are used to develop models to detect and classify severities of unsupported sleepers. The data 
used to develop machine learning models are time-series data of ABA because it is convenient and cost-effective 
to install and practice with regular operation. Moreover, studies about unsupported sleeper detection and sever-
ity classification using machine learning models are not popular. Moreover, previous related studies provided 
moderate performance because the techniques used were not powerful. Therefore, this is a research gap that this 
study aims to fulfill by using more modern machine learning techniques.

Development of finite element model
This study develops an FEM model to simulate data for machine learning model development. The FEM model 
is developed based on a study by Li et al.16. The FEM model is a 3D vehicle-slab FEM model as shown in Fig. 1. 
The rolling stock is developed using the multi-body simulation concept. The model is developed using LS-DYNA 
which is a popular FEM software.

Overall, the rolling stock consists of a car body, two bogies, four wheelsets, primary suspension, and sec-
ondary suspension. More detail can be found in the mentioned study. The ballasted track consists of rail, rail 
pads, sleepers, and ballast. In the model, the rails are Euler beams supported by rail pads which are modeled 
as springs and dampers. Rail pads are supported by sleepers which are modeled as Euler beams. Then, sleepers 

Figure 1.  The 3D vehicle-slab FEM  model16.

Figure 2.  Detailed ballasted track model.
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transfer loads to ballast which is modeled as spring as shown in Fig. 2. The interaction between wheel and rail 
is simulated using the built-in keywords in LS-DYNA called *Rail_Track and *Rail_Train using Eq. (1). It is 
used to calculate wheel-rail contact force where F is the wheel-rail contact force, K is the vertical stiffness of the 
wheel-rail contact = 1.325 ×  109 N/m, Zw is the wheel’s vertical displacement, Zr is the rail’s vertical displacement, 
and δ is the track irregularity.

The irregularity is also included in simulations to reflect the realistic practice as shown in Fig. 3. In simula-
tions, the irregularity is changed between 98 to 101% compared to the original irregularity.

Keywords of S01-SPRING_ELASTIC and S02-DAMPER_VISCOUS are used to simulate the stiffness and 
damping of rail pads and ballast. To simulate unsupported sleepers, different numbers and locations of springs 
representing ballast are removed. In the study, the number of unsupported sleepers is ranged between one to 
four. Speeds of the rolling stock are range from 100 to 200 km/h. The vertical wheel-rail contact stiffness is also 
varied to reflect the real situation that the track does not have a constant stiffness.

FEM model verification
To verify the developed model, the developed FEM model is verified with the field tests and previous FEM mod-
els. Field data from Cai et al.17 is used to verify the model. This section of the track was Sui-Yu Railway. The speed 
of the rolling stock is 160–220 km/h. To simulate the real operation, the track irregularity is added to the FEM 
models. Parameters used to verify are wheel-rail contact force and maximum displacements of rail and sleeper. 
These parameters are referred to the actual field  data17 and the previous  studies18 that parameters obtained from 
the experimental testing and field measurement data. The comparison is shown in Table 1.

From the comparison table, the maximum difference is 7% approximately which is less than 10%. Therefore, it 
can be considered that the results from the developed FEM model are acceptable compared to the experimental 
results and field measurement data.

Generation of axle box acceleration data
This study generated numerical data by using simulations of the FEM model as mentioned in “Development of 
finite element model” and “FEM model verification” sections. The data will be further used to develop machine 
learning models to detect and evaluate the severity of unsupported sleepers. In the study, ABA is used to train 
machine learning models. FEM simulations are conducted to generate ABA in different conditions to reflect 
reality. Moreover, it generalizes data and improves the capability of machine learning models to be practical. For 
simulations, outputs are recorded with the frequency of 1000 Hz. Data variation can be shown in Table 2. The 
total length of the section is 35 m. The distance between sleepers is 0.6 m. Therefore, 60 sleepers are supporting 
this section. To create the data variation, different parameters are varied such as the number of unsupported 
sleepers, location of unsupported sleepers, speed of the rolling stock, size of irregularity, and vertical stiffness of 
wheel-rail contact. For the unsupported sleeper condition, every mentioned parameter is varied. For the perfect 
track condition, the number and location of unsupported sleepers are not varied because they are not available. 
To imitate the unsupported sleeper condition, springs representing ballast are removed in the FEM model. The 
original vertical stiffness of wheel-rail contact is 1.325 ×  109 N/m. In total, 2016 simulations are run.

(1)F = K × (Zw − Zr − δ)

Figure 3.  The irregularity of the track.

Table 1.  The comparison between verified results and results from the developed FEM model.

Parameters Field  data18 This study

Wheel-rail contact force (kN) 100 98.4

Rail displacement at rail seat (mm) 2.606 2.596

Rail displacement at mid span (mm) 2.604 2.415

Sleeper displacement at rail seat (mm) 2.576 2.522

Sleeper displacement at mid span (mm) 2.511 2.352
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Data processing
The simulations performed in the study use the output frequency of 1000 Hz. That means any outputs are 
reported every 0.001 s. Therefore, when the speed of the rolling stock is changed while the length of the track 
section is the same, the duration of the traveling or simulation time is also changed. When the speed is faster, 
the number of outputs is decreased. Examples are shown in Figs. 4 and 5 when these two examples present the 
ABAs of the perfect condition.

From the figures, it can be seen that the simulation time of the simulation with 200 km/h is twice shorter than 
the simulation with 100 km/h. In this study, machine learning techniques consist of CNN, RNN, ResNet, and 
FCN. Besides FCN, other models require data or samples with the same shape. Therefore, ABA data need to be 
processed to make them have the same shape. Two processing techniques are used, namely, padding and FFT. 
For the padding, it is a basic technique that is used to make samples have the same shape without any change 
to samples. It can be done by adding 0 s to the samples that the number of input is smaller than others. In this 
study, the shape of samples with the maximum data point or samples with the lowest speed is fixed based on 
the frequency of simulations. For other samples with a higher speed, 0 s are added to make them have the same 
shape as the samples with the lowest speed. For example, if the maximum number of input is 2000, other inputs 
with the smaller size of data will be added with 0 s to make them have the same shape as the simulations with 
the maximum size of 2000.

Another technique that is used to process data is FFT. This technique is based on Fourier Transform that is 
popular in signaling analysis. This study uses the FFT function in MATLAB to process data. Results of FFT based 
on Figs. 4 and 5 are shown in Figs. 6 and 7 respectively. After data are processed, they have the same shape and 
are ready to be fed into machine learning models. In total, the number of samples without unsupported sleepers 
and 1–4 unsupported sleepers is 612, 360, 354, 348, and 342 respectively.

Machine learning model development
Data used to develop machine learning models in the study are outputs from FEM simulation which are ABA. 
Machine learning techniques used to develop models are CNN, RNN, ResNet, and FCN. As mentioned in the 
data processing part, data need to be processed to make inputs have the same shape. This is the limitation of 
CNN, RNN, and ResNet because these techniques require the same shape of the input. Therefore, inputs used to 

Table 2.  Data variation of FEM simulations.

Parameters Range

Number of unsupported sleepers 1–4

Location of unsupported sleepers 1–60

Speed of the rolling stock (km/h) 100–200

Size of irregularity (%) 98–101

Vertical stiffness of wheel-rail contact (N/m) 1.06 ×  109–1.325 ×  109
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Figure 4.  The ABA of the perfect condition when the speed is 100 km/h.
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Figure 5.  The ABA of the perfect condition when the speed is 200 km/h.
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develop those three models have to be processed using padding or FFT. However, FCN does not have this limita-
tion due to a benefit of a global pooling layer in the FCN model. Therefore, raw data can be used to be fed into 
the FCN model. Reasons for choosing these machine learning techniques are they are powerful deep machine 
learning techniques and can be used to solve varied problems. CNN is popular in pattern recognition which is 
suitable for problems in this study. RNN is also proven that it is suitable for prediction using time-series data. 
At the same time, ResNet and FCN are developed based on CNN. ResNet consists of residual blocks comprising 
convolutional layers and pooling layers. One benefit of ResNet is it contains skip connections that allow data to 
skip some blocks if the architecture of the model is too complicated unnecessarily. FCN is quite similar to CNN. 
However, the main difference is it does not contain a dense or fully connected layer. A 1 × 1 convolutional layer 
is used as the classifier instead of a dense layer. Therefore, data are not flattened. Without dense layers, the model 
allows data to have variable shapes which are suitable for data in this study.

In the study, two kinds of models are developed to fulfill the objectives of the study. The first is unsupported 
sleeper detection and the second is unsupported sleeper severity classification. Both kinds of models are for clas-
sification. Practically, data will be used to detect unsupported sleepers first. If unsupported sleepers are detected, 
the data will be further fed into the severity classification model. If not, it can be concluded that the interesting 
track section does not suffer from unsupported sleepers. For the first step or detection model, it is binary clas-
sification. The classes are no unsupported sleepers and unsupported sleepers. For the second step, there are four 
classes according to the number of unsupported sleepers which range from one to four.

Data are separated into training data and testing data with a proportion of 70/30. Hyperparameter tuning 
using grid search is conducted to make sure that each model provided the best possible outcome. Hyperparam-
eters that are tuned of each model can be shown in Table 3.

To evaluate the performance of the developed machine learning models, the study uses accuracies as the 
main criteria. The accuracies can be calculated using Eq. (2) where TP is true positives, TN is true negatives, FP 
is false positives, and FN is false negatives.

Experimental results and analysis
Unsupported sleeper detection. From the machine model development for detecting unsupported 
sleepers, the accuracy of each model is shown in Table 4.

From the table, it can be seen that each model performs well. The accuracy of each model is higher than 90% 
when the data processing is appropriate. CNN performs the best based on its accuracies. When CNN is applied 
with FFT and padding, the accuracies are the first and second highest compared to other models. For RNN 
and ResNet, the accuracies are higher than 90% when specific data processing is used. However, the accuracies 
become 80% approximately when another data processing technique is used. For FCN, data processing is not 
needed. The FCN model can achieve an accuracy of 95%. From the table, the models with the highest accuracy 
are CNN, RNN, FCN, and ResNet respectively. The complicated architecture of ResNet does not guarantee the 
highest accuracy. Moreover, the training time of ResNet (46 s/epoch) is the longest followed by RNN (6 s/epoch), 
FCN (2 s/epoch), and CNN (1 s/epoch) respectively. It can be concluded that the CNN model is the best model 

(2)Accuracy =
TP + TN

TP + TN + FP + TN
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Figure 6.  The result from FFT of the ABA of the perfect condition when the speed is 100 km/h.
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Figure 7.  The result from FFT of the ABA of the perfect condition when the speed is 200 km/h.
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to detect supported sleepers in this study because it provides the highest accuracy or 100% while the training 
time is the lowest. At the same time, easy data processing likes padding is good enough to provide a good result. 
It is better than FFT in the CNN model which requires longer data processing. The accuracy of testing data of 
each model is shown in Fig. 8.

The tuned hyperparameters of the CNN model with padding data are shown in Table 5.
Compared to the previous study, Sysyn et al.1 applied statistical methods and KNN which provided the best 

detection accuracy of 65%. The accuracy of the CNN model developed in this study is significantly higher. It 
can be assumed that the machine learning techniques used in this study are more powerful than the ones used 
in the previous study. Moreover, CNN is proven that it is suitable for pattern recognition.

Unsupported sleeper severity classification. For the unsupported sleeper severity classification, the 
performance of each model is shown in Table 6.

From the table, it can be seen that the CNN model still performs the best with an accuracy of 92.89% and 
provides good results with both data processing. However, the accuracies of RNN and ResNet significantly drop 
when unsuitable data processing is conducted. For example, the accuracy of the RNN model with padding drops 
to 33.89%. The best performance that RNN can achieve is 71.56% which is the lowest compared to other models. 
This is because of the limitation of RNN that vanishing gradient occurs when time-series data is too long. In this 
study, the number of data points for padding data is 1181 which can result in the issue. Therefore, RNN does 

Table 3.  Hyperparameter tuning of each model.

Models Hyperparameters

CNN

Number of convolutional layers
Filter
Kernel size
Number of pooling layers
Pool size

Activation function
Batch size
Optimizer
Number of hidden layers
Number of hidden nodes

RNN
Number of RNN cells
Window size
Activation function
Batch size

Optimizer
Number of hidden layers
Number of hidden nodes

ResNet

Number of residual blocks
Number of convolutional layers
Filter
Kernel size
Number of pooling layers
Pool size

Activation function
Batch size
Optimizer
Number of hidden layers
Number of hidden nodes

FCN

Number of convolutional layers
Filter
Kernel size
Number of pooling layers
Pool size

Activation function
Batch size
Optimizer
Number of hidden layers
Number of hidden nodes

Table 4.  accuracies of unsupported sleeper detection.

Models

Accuracies (%)

FFT Padding Raw data

CNN 99.17 100.00 –

RNN 98.18 80.17 –

ResNet 83.64 93.39 –

FCN – – 95.21
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Figure 8.  Accuracies of testing data on unsupported sleeper detection.
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not perform well. ResNet performs well with an accuracy of 92.42% close to CNN while the accuracy of FCN 
is fairly well. For the training time, CNN is the fastest model with the training time of 1 s/epoch followed by 
FCN (2 s/epoch), RNN (5 s/epoch), and ResNet (32 s/epoch) respectively. From these, it can be concluded that 
the CNN model is the best model for unsupported sleeper severity classification in this study. Moreover, it can 
be concluded that CNN and ResNet are suitable with padding data while RNN is suitable with FFT data. The 
accuracy of testing data of each model is shown in Fig. 9.

The confusion matrix of the CNN model is shown in Table 7.
To clearly demonstrate the performance of each model, precision and recall are shown in Table 8.

Table 5.  Hyperparameter tuning of CNN model with padding data for detection.

Hyperparameters Values

Number of convolutional layers 2

Filter 64 (conv1), 32 (conv2)

Kernel size 7

Number of pooling layers 2

Pool size 2

Activation function ReLu

Batch size 64

Optimizer Adam

Number of hidden layers 2

Number of hidden nodes 100

Table 6.  accuracies of unsupported sleeper severity classification.

Models

Accuracies (%)

FFT Padding Raw data

CNN 90.28 92.89 –

RNN 71.56 33.89 –

ResNet 51.18 92.42 –

FCN – – 81.28
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Figure 9.  Accuracies of testing data on unsupported sleeper severity classification.

Table 7.  Confusion matric of the CNN model.

Predicted number of 
unsupported sleepers

1 2 3 4

True number of unsupported 
sleepers

1 121 1 0 0

2 6 94 6 0

3 1 7 102 3

4 1 1 4 75
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From the table, the precisions and recalls of CNN and ResNet are fairly good with values higher than 80% 
while RNN is the worst. Some precisions of RNN are lower than 60% which cannot be used in realistic situ-
ations. CNN seems to be the better model than ResNet because all precisions are higher than 90%. Although 
some precisions of ResNet are higher than CNN, the precision of class 2 is about 80%. Therefore, the use of the 
CNN model is better.

For hyperparameter tuning, the tuned hyperparameters of CNN are shown in Table 9.

Conclusion
This study applies the machine learning techniques with the FEM model to detect and classify the severity of 
unsupported sleepers. Numerical data are generated using FEM simulations where FEM models are validated 
for accuracy by full-scale measurements and field data. This study considers the number of unsupported sleepers 
equal to one to four. ABA is used as a feature to train machine learning models. CNN, RNN, ResNet, and FCN are 
used to develop models. Because shapes of input are varied based on the speed of rolling stocks, data processing 
is required for CNN, RNN, and ResNet because they require input to have the same shape. However, FCN sup-
ports the different sizes of input so it does not need processed input. The total number of samples is 2016. From 
the machine learning model development, CNN is the best model in this study for detecting and classifying the 
severity of unsupported sleepers. It can achieve an accuracy of more than 90% and its training time is the shortest. 
It is found that CNN is suitable for padding data which is a simple technique and requires less time than FFT.

The results from this breakthrough discovery can be used in the reality to detect and classify the severity of 
unsupported sleepers. The developed approach can be easily done using regular rolling stocks which are used 
for regular operations without costly installation. This study exhibits that using ABA is potentially sufficient to 
detect unsupported sleepers. Moreover, the approach is much more cost-effective, fast, and does not disturb the 
regular operation.

A limitation of this study is the input used to develop machine learning models is simulated data from veri-
fied FEM models. The rationale is that the verified FEM models can enable unbiased and comprehensive data 
sets. The use of field data (which could be rather biased) to train machine learning models will however provide 
better demonstration of the machine learning applications when dealing with operational uncertainties.

To further develop the study, more variety of data can be added such as track properties and rolling stock 
characteristics. Further field data can be included to support the creditability of the experiment.

Table 8.  Precision and recall of each model of severity classification.

Number of unsupported sleepers 1 2 3 4

CNN padding

Precision 0.94 0.91 0.91 0.96

Recall 0.99 0.89 0.9 0.93

RNN FFT

Precision 0.59 0.86 0.75 0.75

Recall 0.92 0.68 0.64 0.64

ResNet padding

Precision 0.98 0.81 0.98 0.96

Recall 1.00 0.96 0.8 0.95

FCN

Precision 0.89 0.81 0.81 0.73

Recall 0.97 0.81 0.73 0.76

Table 9.  Hyperparameter tuning of CNN model with padding data for classification.

Hyperparameters Values

Number of convolutional layers 2

Filter 64 (conv1), 32 (conv2)

Kernel size 5 (conv1), 7 (conv2)

Number of pooling layers 3

Pool size 3

Activation function ReLu

Batch size 8

Optimizer Adam

Number of hidden layers 2

Number of hidden nodes 100 (dense1), 50 (dense2)
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