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Robust tests for combining 
p‑values under arbitrary 
dependency structures
Zhongxue Chen

Recently Liu and Xie proposed a p-value combination test based on the Cauchy distribution (CCT). 
They showed that when the significance levels are small, CCT can control type I error rate and the 
resulting p-value can be simply approximated using a Cauchy distribution. One very special and 
attractive property of CCT is that it is applicable to situations where the p-values to be combined are 
dependent. However, in this paper, we show that under some conditions the commonly used MinP 
test is much more powerful than CCT. In addition, under some other situations, CCT is powerless at all. 
Therefore, we should use CCT with caution. We also proposed new robust p-value combination tests 
using a second MinP/CCT to combine the dependent p-values obtained from CCT and MinP applied 
to the original p-values. We call the new tests MinP-CCT-MinP (MCM) and CCT-MinP-CCT (CMC). We 
study the performance of the new tests by comparing them with CCT and MinP using comprehensive 
simulation study. Our study shows that the proposed tests, MCM and CMC, are robust and powerful 
under many conditions, and can be considered as alternatives of CCT or MinP.

P-value combination approaches are important and critical in statistical inference, especially in statistical hypoth-
esis testing1–5. Many commonly used tests are special cases of p-value combination methods. For example, a 
chi-square test statistic with k(k > 1) degrees of freedom (df) under the null hypothesis can be decomposed as 
k components each has identical and independent chi-square distribution with 1 df6,7. Therefore, we can get k 
p-values each from the individual component. Then the original chi-square test with k df can be viewed as being 
obtained through the Lancaster’s generalized Fisher chi-square test which obtains the k components from the k 
p-values and their sum is identical to the original test statistic5,8. Most recently, a class of p-value combination 
tests based on gamma distribution have been proposed and studied9. This class of tests includes some existing 
popular tests, such as the MinP test, Fisher test, and z test, as special cases. With recent advancements in biotech-
nologies, huge amount of data has been generated in genetics and genomics studies. For instance, in genome-
wide association studies (GWAS) to identify genetic risk factors associated with given disease, many gene- or 
set-based association tests have been developed which utilize the approaches for combining p-values10–14. How 
to combine these p-values is still a challenging topic in the area. Therefore, developing appropriate powerful and 
robust p-value combination tests is extremely important in statistical practice. Although the commonly used 
MinP test is robust and applicable to independent and dependent p-values1, under some conditions, it might be 
less powerful than other tests9.

Recently, a p-value combination test based on Cauchy distribution, CCT, was proposed15 and immediately 
attracted a lot of attentions. This test has been applied in many areas16–19. The authors claimed, as shown in the 
title, that CCT is powerful under arbitrary dependency structures of the p-values. They also proved that when the 
significance levels are small, CCT can control type I error rate and its p-value can be easily calculated analytically 
based on a Cauchy distribution. However, under some conditions, for instance, when one-sided p-values are 
obtained and some of them are very large due to the wrong direction assumed, CCT may be less powerful than 
the MinP test. In this paper, we further study this test and its properties. Furthermore, we propose two robust 
and powerful tests as alternatives of CCT to combine dependent p-values. The paper is organized as follows. In 
the second section, we present CCT and the proposed tests with some details. In section “Results”, we compare 
the performances of those tests using a comprehensive simulation study and real data application. Some discus-
sions and conclusion are given in the last section.
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Method
Assume we want to combine k p-values,P1, P2, . . . ,Pk , through testing the global null hypothesis H0 =

⋂

iHi,0 
against the global alternative hypothesis H1 =

⋃

iHi,1 , where Hi,0 and Hi,1 are the individual null and alternative 
hypotheses, respectively, for study i(i = 1, 2, . . . , k) . We also assume that under H0 , each Pi ∼ U(0, 1) , a uni-
form distribution between 0 and 1. Using the standard Cauchy distribution, C(0,1), we can first transform the 
p-values to Ti = tan[(0.5− Pi)π] for i = 1, 2, . . . , k . Then under the global null hypothesis, Ti ∼ C(0, 1) . Denote 
the ordered p-values, P(1) ≤ P(2) ≤ · · · ≤ P(k) , and their corresponding transformed values from the Cauchy 
distribution as T(1),T(2), . . . ,T(k) . We have T(1) ≥ T(2) ≥ · · · ≥ T(k).

The CCT is constructed using the following test statistic15: T =
∑k

i=1 wiTi , where wi ≥ 0 are the weights sat-
isfying 

∑k
i=1 wi = 1 . And the p-value from the CCT is calculated as pCCT = P[C(0, 1) ≥ t] , where t =

∑k
i=1 witi 

is the observed test statistic of T . For the CCT, we have the following new results.

Theorem 1  P(1) ≤ PCCT ≤ P(k).

Proof   T =
∑k

i=1 wiTi ≤
∑k

i=1 wiT(1) = T(1) ,  and T =
∑k

i=1 wiTi ≥
∑k

i=1 wiT(k) = T(k) .  Therefore, 
PCCT = P[C(0, 1) ≥ T] ≥ P

[

C(0, 1) ≥ T(1)

]

= P(1) , and PCCT = P[C(0, 1) ≥ T] ≤ P
[

C(0, 1) ≥ T(k)

]

= P(k).

Remark 1  Theorem 1 implies that the CCT test can’t provide stronger evidence (i.e., smaller p-value) to reject 
the global null hypothesis than the strongest one that against an individual null hypothesis.

Remark 2  Because of the fact stated in Remark 1, CCT is not preferable for combining independent p-values.

Theorem 2  At small significance level, CCT can control type I error rate for p-values under arbitrary dependency 
structures, i.e., lim

t→∞

P[T≥t]
P[C(0,1)≥t]

≤ 1.

Proof  P[T < t] = P
[

∑k
i=1 wiTi < t

]

≥ P
[

T(1) < t
]

= 1−P
[

T(1) ≥ t
]

= 1−P
[

⋃k
i=1(Ti ≥ t)

]

≥

1−
∑k

i=1 P[Ti ≥ t] = 1− k(1− P[C(0, 1) < t]) = 1− k + kP[C(0, 1) < t]

,

Hence, limt→∞
P[T<t]

P[C(0,1)<t]
≥ limt→∞

1−k+kP[C(0,1)<t]
P[C(0,1)<t]

= 1 , or limt→∞(P[T < t]− P[C(0, 1) < t]) ≥ 0 , 

limt→∞(P[T ≥ t]− P[C(0, 1) ≥ t]) ≤ 0 , and limt→∞
P[T≥t]

P[C(0,1)≥t]
≤ 1.

Remark 3  The same result as in Theorem 2 was also proved in other papers15,16, but they made some distributional 
assumptions about the T ′

i s . Here we provide a new proof without any additional assumptions (i.e., under truly 
arbitrary dependency structures of the p-values to be combined).

Remark 4  Theorem 2 proves that CCT can control type I error rate at small significance level for arbitrary 
dependency structures of the p-values to be combined. However, it may not be powerful, or even powerless, 
under some conditions. For instance, if p1 + p2 = 1 (e.g., p1 and p2 are p-values from left- and right-sided t-test), 
then the test statistic from the CCT will be 0 and its p-value pCCT = P[C(0, 1) ≥ 0] = 0.5 . Therefore, for any 
significance level less than 0.5, the power value will be 0 (i.e., the type II error rate will be 1). Interestingly, under 
this condition, the MinP test gives the same p-value obtained from the two-sided test. This simple example also 
indicates that the main result, Theorem 1 of Liu and Xie15, may not be valid any longer if the assumptions made 
in their paper are violated. In other words, CCT is not always powerful to combine p-values under arbitrary 
dependency structures.

From the construction of the test statistic, we see that CCT may gain some power if all the p-values to be 
combined are small and/or positively correlated. However, as mentioned above CCT may be much less power-
ful than the MinP test, which is known for its robustness but conservative in general. To incorporate the good 
properties from both CCT and MinP, we propose the following two tests. The first one is called MinP-CCT-MinP 
(MCM), whose p-value is calculated as: pMCM = 2min{pCCT , pMinP , 0.5} , where pMinP is obtained by applying 
MinP to the original p-values to be combined. The second one is called CCT-MinP-CCT-(CMC), whose p-value 
is calculated as: pCMC = CCT{pCCT , pMinP}.

Since both CCT and MinP can control type I error for small significance level, and MCM and CMC are the 
MinP and CCT to combine their p-values, respectively, we have the following result.

Theorem 3  For small significance level, both MCM and CMC can control type I error rate for p-values under 
arbitrary dependency structures.

Results
To study the performances of MCM and CMC, we conduct a comprehensive simulation study by comparing 
these tests with CCT and MinP. We also apply the new tests to some real data to demonstrate their usefulness.
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Simulation study.  In the simulation study, following the settings in Liu and Xie15, we assume the random 
vector XT = (X1,X2, . . . ,Xk) has a multivariate normal distribution with correlation matrix � = (σij) . For the 
correlation matrix, we consider three different models.

Model 1 (AR(1) correlation, “Expo”): σij = ρ|i−j| for 1 ≤ i, j ≤ k , where ρ is a constant between 0 and 1.
Model 2 (polynomial decay, “Poly”): σii = 1 and σij = 1

0.7+|i−j|r  for 1 ≤ i �= j ≤ k.
Model 3 (Singular matrix, “SiG”): Let A = (aij) be a k/5× k matrix where aij = d|i−j| and d is a constant 

between 0 and 1. Let D = (dij) be a diagonal matrix with diagonal elements dii = (ãii)
−1/2 , where ãii is the ith 

diagonal of ATA . The correlation matrix is then � = DTATAD.
For the above three models of the correlation matrix � , we use different values for the parameters ( ρ, r, and d ). 

We also choose different numbers of p-values (i.e., k ) in the simulation study. To investigate how the tests control 
type I error rate, we simulate X ∼ MVN(0,�) with � being in one of the three above models. For the power 
comparison, under the global alternative hypothesis H1 , we assume a subset of the vector X has non-zero mean. 
Of those significant random variables, we also assume some of them have negative mean ( −µ ) and the rest have 
positive mean ( µ ). For each variable Xi three different p-values, according to three types of individual alterna-
tives ( µi < 0,µi > 0, and µi  = 0, respectively), are calculated: left-sided p-value �(Xi) , right-sided p-value 
1−�(Xi) , and two-sided p-value 2�(−|Xi|), where �(·) is the cumulative distribution function of the standard 
normal distribution. All the tests are then applied to the three sets of p-values.

Table 1 displays the empirical type I error rate (divided by the significance level) for all of the tests applied 
to the left-sided p-values using different significance levels. All of the tests control type I error rate, except for 
CCT which may have slightly higher type I error rates when the preset significance levels are large, this pattern 
was also observed by Liu and Xie15. It is also noticeable that under some conditions, MinP, MCM and CMC 
may have lower type I error rates than expected. Similar patterns are observed when these tests are applied to 
the right-sided and two-sided p-values (data not shown). The similar patterns are also observed under other 
simulation settings (see Tables S1–S2 in supplementary materials).

Figures 1, 2 and 3 show the empirical powers for each test under different conditions when the significance 
level of 0.05 was used. We observe the following patterns. First, when one-sided (left- and right-sided) p-values 
are used, MinP are usually more powerful then CCT when there are both positive and negative effects, and the 
differences in power values can be substantial. The reason is because when some p-values are very larger (e.g., 
one-sided p-values from the wrong sided-test) or some of them are negatively correlated (e.g., the p-values for 
studies with different effect directions but from the same one-sided test), CCT will result in a small test statistic 
and therefore a large p-value. Second, when two-sided p-values are used, CCT usually has higher power than 
others as expected since under these conditions, those small p-values are positively correlated no matter the 
effects have the same or different directions. Third, MCM and CMC usually have power values between those 
obtained by CCT and MinP. Fourth, MCM performs more similarly with MinP while CMC more similar to 
CCT. Similar patterns are also observed under other conditions (see Tables S3–S7 in supplementary materials).  

Real data application.  We also applied the proposed tests to a real data application. Table 2 lists the esti-
mated odds ratios (ORs) and the 95% confidence interval (CI) from a meta-analysis which includes 12 inde-
pendent trials that examine the effect of patient rehabilitation designed for geriatric patients on functional out-
come improvement, compared with usual care. An OR greater than 1 means the new treatment was better than 
the usual care. The data were taken from Figure 4 of Riley et al.20, part of the Figure 2 of Bachmann et al.21. The 
original meta-analysis was based on a random effect model as the Cochran’s test for homogeneity indicated 
that the fixed effect model is not appropriate. However, a goodness of fit test also showed that the random effect 
model does not fit the data either and the p-value combination method was suggested22. Based on the given 
estimated OR and CI, we can calculate the individual p-values from the 12 studies22. Denote U and L the upper 
and lower limits of the 95% CI, the test statistic can be approximated as t = ln(U × L)/

√

4ln(U/L)/3.92 , whose 
asymptotic null distribution is N(0, 1) . The sample sizes of these 12 trials were relatively large, ranging from 
108 and 1388, therefore, we can reasonably estimate their p-values using the asymptotic null distribution. For 
each study, three types of p-values, one-sided left, one-sided right, and two-sided under the three alternative 
hypotheses ( ORi < 1,ORi > 1, and ORi  = 1, respectively), are calculated as shown in Table 2 and are used in 
the p-value combination tests.

Table 3 displays the results of the combination tests applied to the three types of p-values described above. 
Each of the three tests (Min P, Fisher chi-square test, and the z-test) is used to combine independent p-values 
from all left-sided, all right-sided, and all two-sided, separately (columns 2–4 of Table 3). The resulting two 
dependent p-values from combining left-sided p-values and right-sided p-values are further combined using 
CCT, MinP, MCM, and CMC. Their p-values are listed in the last four columns in Table 3. For instance, the 
p-values through using the z-test for combining independent p-values obtained from the individual left- and 
right-sided tests are 0.99984 and 0.00016, respectively. The two dependent p-values are then combined using the 
CCT, MinP, MCM, and CMC, we get 0.50, 0.00031, 0.00063, and 0.00063, respectively. Interestingly, when we 
combine the independent two-sided p-values, the p-values are 0.013, 0.0068, and 0.075 from the MinP, Fisher 
Chi-square, and z-test, respectively. All of them are greater than the p-values obtained by the MinP, MCM, and 
CMC tests combining two dependent p-values, while the CCT test has a large p-value of 0.5. This result indicates 
that appropriately combining two dependent p-values, each obtained through combining independent p-values 
from the same direction, is preferred to combining independent two-sided p-values.
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Table 1.   Empirical type I error rate (/significance level) using 1e6 replicates, highlighted bold are the values 
greater than the significance level and outside of the 95% CI.

Model Number of p-values ( k) Test

Significance level

0.05 0.01 0.001 0.0001

Expo ( ρ=0.5)

5

CCT​ 1.16 1.10 1.08 1.07

MinP 0.88 0.93 1.00 1.05

MCM 0.58 0.54 0.52 0.60

CMC 1.01 1.01 1.04 1.06

10

CCT​ 1.18 1.11 1.09 1.03

MinP 0.88 0.94 1.01 1.00

MCM 0.58 0.55 0.52 0.54

CMC 1.01 1.02 1.04 1.03

20

CCT​ 1.18 1.09 1.00 1.04

MinP 0.90 0.94 0.95 1.02

MCM 0.58 0.54 0.47 0.46

CMC 1.01 1.00 0.97 1.04

100

CCT​ 1.11 1.05 1.04 1.06

MinP 0.93 0.97 1.02 1.05

MCM 0.56 0.53 0.54 0.42

CMC 1.00 1.00 1.03 1.04

Poly ( r = 1.5)

5

CCT​ 1.16 1.12 1.07 1.10

MinP 0.83 0.90 0.98 1.03

MCM 0.58 0.55 0.52 0.69

CMC 0.99 1.00 1.02 1.04

10

CCT​ 1.21 1.13 1.04 0.84

MinP 0.84 0.90 0.94 0.79

MCM 0.60 0.55 0.51 0.40

CMC 1.01 1.01 1.00 0.80

20

CCT​ 1.23 1.13 1.02 0.95

MinP 0.85 0.92 0.93 0.89

MCM 0.60 0.54 0.52 0.43

CMC 1.02 1.01 0.97 0.94

100

CCT​ 1.17 1.05 0.98 0.99

MinP 0.89 0.92 0.92 0.97

MCM 0.57 0.52 0.47 0.44

CMC 1.00 0.98 0.94 0.99

SiG ( d = 0.5)

5

CCT​ 0.60 0.60 0.61 0.53

MinP 0.40 0.40 0.37 0.24

MCM 0.40 0.40 0.38 0.29

CMC 0.40 0.40 0.41 0.31

10

CCT​ 0.76 0.82 0.86 0.84

MinP 0.34 0.36 0.38 0.39

MCM 0.45 0.47 0.50 0.52

CMC 0.51 0.56 0.61 0.62

20

CCT​ 0.87 0.93 1.04 1.05

MinP 0.29 0.30 0.32 0.38

MCM 0.48 0.49 0.53 0.60

CMC 0.56 0.60 0.68 0.69

100

CCT​ 0.98 1.00 1.01 0.99

MinP 0.22 0.23 0.22 0.27

MCM 0.50 0.51 0.50 0.43

CMC 0.49 0.62 0.62 0.59
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Discussion and conclusion
We have shown that when the significance level is small the recently proposed p-value combination test CCT 
can control type I error rate for p-values under arbitrary dependency structures. However, we also showed that 
under some conditions, CCT may be less powerful or even powerless at all. This could happen, for instance, in a 
genetic study, a genetic risk factor could be protective for some subpopulations, which will result in some small 
p-values and also some large p-values to be combined. On the other hand, the commonly used test MinP can also 
control type I error rate under all conditions and may be more or less powerful than CCT under some condi-
tions. To improve the detection power, we proposed two new tests, MCM and CMC. Through a comprehensive 
simulation study and real data application, we showed that MCM and CMC can control type I error rate and 
are more robust than CCT and MinP. The proposed tests, MCM and CMC, take advantage of the two methods, 
CCT and MinP and therefore will maintain reasonable power under all situations. They can be applied when the 
dependency structures of p-values to be combined are unknown.

As theorem 1 shows, CCT (and also MinP, MCM, and CMC) can not obtained a p-value smaller than the 
smallest one of the p-values to be combined. This result suggests that when we combine independent p-values, 
we should consider other more powerful tests, such as the Fisher chi-square test, z-test and others23. Approaches 
for combining p-values have been extensively used in statistical practice and have significant effects on data 
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Figure 1.   Empirical power when there are 10 out of 20 p-values are significant with model = “Expo”, ρ = 0.5 , 
and µ = 2.
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Figure 2.   Empirical power when there are 10 out of 20 p-values are significant with model = “Poly”, r = 1.5 , and 
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analysis7,10–14,24–30. However, this research area remains challenging. Novel powerful and robust tests for combin-
ing independent and/or dependent p-values are still highly desired.

Data availability
All data are presented in the paper and no additional data are available.
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Figure 3.   Empirical power when there are 10 out of 20 p-values are significant with model = “SiG”, d = 0.5 , and 
µ = 2.

Table 2.   Data and p-values from 12 independent studies.

Study OR

95% CI p-value

Lower Upper Left-sided Right-sided Two-sided

1 1.11 0.51 2.39 0.6044 0.3956 0.7911

2 0.97 0.78 1.21 0.3928 0.6072 0.7857

3 1.13 0.73 1.72 0.7119 0.2881 0.5762

4 1.08 0.42 2.75 0.5638 0.4362 0.8724

5 0.88 0.39 1.95 0.3778 0.6222 0.7555

6 1.28 0.71 2.30 0.7948 0.2052 0.4103

7 1.19 0.69 2.08 0.7317 0.2683 0.5366

8 3.82 1.37 10.6 0.9949 0.0051 0.0102

9 1.06 0.63 1.79 0.5866 0.4134 0.8269

10 2.95 1.54 5.63 0.9995 0.0005 0.0011

11 2.36 1.18 4.72 0.9924 0.0076 0.0152

12 1.68 1.05 2.70 0.9844 0.0156 0.0313

Table 3.   Results from the tests applied to a real data application.

Method combining independent p-values

Combined p-values
Method combining two dependent 
p-values

Left-sided Right-sided Two-sided CCT​ MinP MCM CMC

Min P 0.997 0.0064 0.013 0.99 0.013 0.026 0.22

Fisher 0.998 0.000083 0.0068 0.00017 0.00017 0.00033 0.00017

z-test 0.9998 0.00016 0.075 0.50 0.00031 0.00063 0.00063
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 Code availability
The code used to produce the results presented in this paper is available at https://​github.​com/​zchen​2020/​Robust-​
P-​value-​combi​nation-​tests.
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