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Induction of internal circadian 
desynchrony by misaligning 
zeitgebers
Isabel Heyde & Henrik Oster*

24-h rhythms in physiology and behaviour are orchestrated by an endogenous circadian clock 
system. In mammals, these clocks are hierarchically organized with a master pacemaker residing 
in the hypothalamic suprachiasmatic nucleus (SCN). External time signals—so-called zeitgebers—
align internal with geophysical time. During shift work, zeitgeber input conflicting with internal 
time induces circadian desynchrony which, in turn, promotes metabolic and psychiatric disorders. 
However, little is known about how internal desynchrony is expressed at the molecular level 
under chronodisruptive environmental conditions. We here investigated the effects of zeitgeber 
misalignment on circadian molecular organisation by combining 28-h light–dark (LD-28) cycles with 
either 24-h (FF-24) or 28-h feeding-fasting (FF-28) regimes in mice. We found that FF cycles showed 
strong effects on peripheral clocks, while having little effect on centrally coordinated activity rhythms. 
Systemic, i.e., across-tissue internal circadian desynchrony was profoundly induced within four days in 
LD-28/FF-24, while phase coherence between tissue clocks was maintained to a higher degree under 
LD-28/FF-28 conditions. In contrast, temporal coordination of clock gene activity across tissues was 
reduced under LD-28/FF-28 conditions compared to LD-28/FF-24. These results indicate that timed 
food intake may improve internal synchrony under disruptive zeitgeber conditions but may, at the 
same time, weaken clock function at the tissue level.

Life on Earth is characterised by recurrent changes in environmental conditions. The circadian clock system 
evolved to anticipate daily recurring events, e.g., light–dark cycles or changes in food availability or the presence 
of predators. In mammals, molecular clocks are present in nearly all cells, forming a network, which must be 
synchronised to generate coherent rhythms in behaviour and physiology1,2. This circadian clock network is organ-
ised in a hierarchical manner with a central pacemaker residing in the hypothalamic suprachiasmatic nucleus 
(SCN)3–5. At the molecular level, circadian clocks are composed of interlocked transcriptional-translational 
feedback loops. In the core loop, the transcription factors brain and muscle aryl hydrocarbon receptor nuclear 
translocator-like protein 1 (BMAL1 or ARNTL) and circadian locomotor output cycle kaput (CLOCK) regulate 
rhythmic expression of Period (Per1-3) and Cryptochrome (Cry1/2) and other clock-controlled genes, e.g., D-site 
albumin promotor-binding protein (Dbp) or Reverse-erythroblastosis virus α and β (Rev-Erbα/β or Nr1d1/Nr1d2).

So called zeitgebers, external time cues, entrain the circadian system to align with geophysical time. Light is 
the most potent zeitgeber for the mammalian circadian clock system. The SCN receives photic signals from the 
retina via the retinohypothalamic tract6 and resets subordinate tissue clocks throughout the brain and periph-
eral tissues. SCN-mediated routes of synchronisation comprise innervation, humoral signals, and regulation of 
behavioural outputs7–11. Time of food intake strongly impacts peripheral tissue clocks. Temporal restriction of 
food access to the rest phase (i.e., night in humans and day in nocturnal rodents) can uncouple peripheral tis-
sue clocks from the SCN within a week8,9. Such internal desynchronization of the clock network by misaligned 
zeitgeber input is suggested to promote the development of shift work associated diseases, e.g., obesity, type-2 
diabetes, cardiovascular disorders, and major depression12–16, though little is known about the molecular under-
pinnings of such phenomena16. The temporal coordination of zeitgeber input has been proposed as a potential 
tool to prevent or treat shift work-associated disorders17–19. Therefore, dissecting the impact of different zeitgebers 
on clock function under chronodisruptive conditions may help to devise preventive strategies for pathologies 
promoted by chronodisruptive environmental conditions.

Here, we investigate the effect of acute zeitgeber misalignment on internal rhythm coherence at systemic and 
tissue levels. Our results suggest a differential role of feeding rhythms in the regulation of internal (mis-)align-
ment at systemic and tissue levels.
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Results
Locomotor activity period is largely independent of feeding time.  After entrainment to a stand-
ard 12-h light: 12-h dark cycle with food ad libitum (LD-24) mice were transferred to a 28-h LD cycle (14 h light 
(300 or 3 lx): 14 h dark; LD-28) combined with either a 24- (12 h feeding: 12 h fasting; FF-24—with food access 
in the 12 h of darkness during the preceding LD-24 cycle) or a 28-h FF regimen (14 h feeding: 14 h fasting; 
FF-28—with food access coinciding with the 14-h dark phase; Fig. 1a). Of note, on the fourth LD-28 cycle, the 
light phase was 12 h phase-shifted compared to the initial LD-24 cycle. In LD-24, mice were mainly active dur-
ing the dark phases as expected for nocturnal animals (Fig. 1b–d; days -3 to 0). Under LD-28 conditions, mice 
did neither entrain to the LD (period length (τ) = 28 h) nor to the FF cycle (τ = 24 or 28 h). Instead, all animals 
showed a stable intermediate activity period (Figs. 1e and S1a–c). Under LD-28/FF-24 conditions, an increase 
in light intensity positively affected τ (26.64 ± 0.11 h at 300 lx vs. 25.86 ± 0.11 h at 3 lx; Fig. 1b, c, e). In contrast, 
locomotor activity period was largely insensitive to the feeding regimen (25.86 ± 0.11 h under LD-28/FF-24 vs. 
25.69 ± 0.18 h under LD-28/FF-28; Fig. 1c–e).

Together, mice showed lengthened locomotor activity period without entrainment to LD-28 conditions. 
Lengthening of the locomotor activity period was independent of the imposed feeding rhythm but sensitive to 
changes in LD light intensity.

Phase shifts in peripheral clock gene expression depend on feeding regimes.  Clock gene mRNA 
rhythms were measured on the first and fourth day of the LD-28 cycle to investigate the interactive effects of 

Figure 1.   Locomotor activity rhythms under conflicting zeitgeber conditions. (a) Experimental paradigm. 
Normalized running-wheel activity profiles in LD-24 (experimental days -3 to 0) and in LD-28 conditions 
(experimental days 1 to 4) under (b) LD-28/FF-24 (300 lx, black, n = 39–40), (c) LD-28/FF-24 (3 lx, blue, 
n = 59–66) and (d) LD-28/FF-28 (3 lx, red, n = 8–15) conditions. (e) Calculated activity periods from activity 
onsets (LD-24, n = 127; LD-28 (300 lx)/FF-24, n = 55; LD-28 (3 lx)/FF-24, n = 64, LD-28 (3 lx)/FF-28, n = 10). 
Dark phases and food access times are indicated in dark grey and yellow shadings, respectively. Light grey 
shading in (a, c, d) indicates experimental light phase (3 lx). Data are shown as means ± SEM. Dotted lines (b–d) 
and error bars (e) indicate SEMs. **** p < 0.0001 vs. LD-24, ### p < 0.001 and #### p < 0.0001 vs. LD-28 (300 lx)/
FF-24; one-way ANOVA with Tukey’s post-test.
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LD and FF cycle period on molecular clock resetting in liver, adrenal gland, and epididymal white adipose tis-
sue (eWAT). On day 1, gene expression rhythms for Bmal1, Per2, Dbp, Cry1, Nr1d, Per3 and Nr1d2 (Fig. 2a, b, 
Figure S2a, b) were phased as described in previous publications20–22.

On the fourth day—and in line with the lengthened LD (− 28) cycle—gene expression rhythms in all tissues 
were phase-delayed compared to day 1 (Figs. 2 and 3). In liver, clock gene expression rhythms were shifted by 
2.6 ± 0.5 h under LD-28/FF-24 compared to 5.8 ± 0.9 h under LD-28/FF-28 conditions (Fig. 3a). In addition, 
under LD-28/FF-28 conditions hepatic clock gene expression rhythms were overall dampened (Fig. 3a, right 
panel). In the adrenal, clock gene rhythms were significantly phase-delayed by 3.4 ± 0.3 h under LD-28/FF-24 
and by 5.8 ± 0.2 h LD-28/FF-28 conditions on day 4 (Fig. 3b). The largest FF cycle effects were observed for 
eWAT. Under LD-28/FF-24 conditions, the average phase shift in clock gene expression rhythms on day 4 was 
1.6 ± 0.3 h compared to 7.1 ± 0.2 h under LD-28/FF-28 conditions (Fig. 3c). In addition, clock gene expression 
rhythms were overall dampened in eWAT under LD-28/FF-28 conditions.

In all tissues, phase shifts between day 1 and day 4 were larger under LD-28/FF-28 compared to LD-28/FF-24 
conditions (Figs. 2 and 3). In liver, high variations in the phase shifts for single genes were observed. However, 
overall phase angle difference of clock gene rhythms were significantly larger under LD-28/FF-28 compared to 

Figure 2.   Clock gene expression profiles on the first and the fourth day under LD-28/FF-24 and LD-28/FF-28 
conditions. Diurnal mRNA expression profiles over 28 h for Bmal1 (upper panel) and Per2 (lower panel) on 
days 1 (black) and 4 (blue, red) under (a) LD-28/FF-24 and (b) LD-28/FF-28 conditions in liver, adrenal, and 
epididymal white adipose tissue (eWAT; left to right). Data are shown as means ± SEM; n = 3–5 animals per time 
point. Fitted curves are sine waves with a wavelength of 25.8 h.
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Figure 3.   Phase and amplitude effects of clock gene expression rhythms between day 1 and 4 under LD-28/
FF-24 and LD-28/FF-28 conditions. Phase shifts of clock gene peak expression calculated from sine fit maxima 
for LD-28/FF-24 (blue) and LD-28/FF-28 (red) conditions in (a) liver, (b) adrenal, and (c) eWAT. Phase shifts 
(in hours) and normalised amplitudes relative to baseline (in % of baseline) are shown on radial and axial axes, 
respectively. Black lines indicate mean phase shifts ± 95% confidence intervals. n = 6–7; ** p < 0.01, *** p < 0.001, 
**** p < 0.0001; one-sample t-test against 0 h phase shift. (d) Phase shifts of clock gene expression peaks between 
day 1 and day 4. Mean activity shifts are indicated by dotted vertical lines. Data are shown as means ± SEM; 
n = 6–7; ## p < 0.01, #### p < 0.0001 phase angle difference between feeding regimes; two-way ANOVA with Sidak’s 
post-tests; * p < 0.05, *** p < 0.001, **** p < 0.0001 phase angle difference between phase shifts of clock gene 
expression rhythms and mean phase shifts observed for activity onsets within one feeding regime.
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LD-28/FF-24 on day 4 (Fig. 3d). Clock gene phase angle difference also differed significantly between the two 
feeding regimes in adrenal and eWAT with larger phase shifts under LD-28/FF-28 conditions (Fig. 3d). In LD-28/
FF-24, peripheral tissue clocks phase-shifted significantly less compared to locomotor activity, an indirect meas-
ure of SCN clock phase23, indicating a desynchronization between central and peripheral clock rhythms (Fig. 3d). 
Phase shifts in adrenal and eWAT but not liver tissue clocks were significantly larger compared to locomotor 
activity under LD-28/FF-28 conditions. In all tissues, phase angle difference of single peripheral tissue clocks 
and locomotor activity were smaller under LD-28/FF-28 compared to LD-28/FF-24 conditions. Thus, synchrony 
with the SCN was maintained to a higher degree under LD-28/FF-28 conditions (Fig. 3d).

In summary, clock gene expression rhythms in peripheral tissues were phase delayed within 4 days of LD-28 
conditions, but the extent of this delay was dependent on the feeding regime. Phase coherence across tissues 
was disrupted under LD-28/FF-24 while it was maintained to a higher extent under LD-28/FF-28 conditions.

Within‑tissue clock gene programs are disrupted under diverging zeitgeber input.  To further 
quantify the impact of the zeitgeber food under extended LD cycles on the coordination of clock gene rhythms 
within single tissues, phase angle differences of individual clock gene rhythms under LD-28/FF-24 and LD-28/
FF-28 conditions were compared (Fig. 4a). Phase coherence between the clock genes – i.e., the coordination of 

Figure 4.   Feeding regimes differentially impact phase coherence within tissues. (a) Phase coherence of clock 
gene expression peaks within tissue on the first (black) and fourth day of the experiment under LD-28/FF-24 
(blue) and LD-28/FF-28 (red) conditions. Representative overlaps (coloured areas) are shown for the peak 
of expression of Per2 (triangles), Dbp (squares), Cry1 (diamonds), Nr1d1 (circles), Per3 (stars), and Nr1d2 
(semicircles) relative to Bmal1 expression peak (0 h). The area overlaps between day 1 and 4 of the respective FF 
condition are indicated in the overlapping area. Note, that Per3 was excluded from further analysis in adrenal 
since Per3 was not found to be rhythmic under LD-28/FF-28 conditions. (b) Phase coherence calculated from 
area overlap with each gene serving as reference gene. Data are shown as means ± SEM; n = 6–7; ### p < 0.001, #### 
p < 0.0001 between paradigms in the same tissue, two-way ANOVA with Sidak’s post-tests.
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peak phases of the different clock genes relative to control (day 1) – within each tissue was decreased on day 
4 compared to day 1 for both paradigms. A higher deterioration of phase coherence was observed in every 
tissue under LD-28/FF-28 conditions (liver: 73.5 ± 1.6%, adrenal: 87.6 ± 0.1%, eWAT: 59.5% ± 1.1% vs. liver: 
91.5 ± 0.2%, adrenal: 94.7 ± 0.8%, eWAT: 88.4 ± 0.8% for LD-28/FF-24) (Fig. 4b). Of note, phase coherences dif-
fered between tissues under LD-28/FF-28 conditions. Under LD-28/FF-24 conditions, only adrenal and eWAT 
phase coherences were significantly different.

Taken together, within-tissue phase coherence of clock gene rhythms was consistently more affected in LD-28/
FF-28 compared to LD-28/FF-24 conditions.

Discussion
In this study, we investigated the effects of misaligned light–dark (LD) and feeding-fasting (FF) cycles on tissue 
circadian clock coordination. Mice lengthened their locomotor activity period under LD-28 conditions with 
little impact of FF period. Across-tissue phase alignment was disrupted under LD-28/FF-24 while it was largely 
maintained under LD-28/FF-28 conditions. In contrast, within-tissue coherence of clock gene activity, was 
impaired to a greater extend under LD-28/FF-28 than under LD-28/FF-24 conditions.

Mice were unable to fully entrain to extension of the light–dark cycle to 28 h (LD-28) as seen in previous 
studies24–27. Lengthened activity periods were expected since light is the most potent zeitgeber synchronizing the 
SCN with external time regulating behavioural rhythms8,28,29. Phase angle differences were significantly larger 
under high (300 lx) compared to low-light LD cycles (3 lx during the light phase). Low light intensity, such as 
the one used in this study, is sufficient to entrain the circadian system in mice under LD-24 conditions30 but is 
less effective in suppressing locomotor activity (light masking)7,31,32. Our observations indicate that decreasing 
the light intensity weakens—but does not abolish—the impact of the zeitgeber light on the circadian system. The 
SCN integrates photic input from the eye and non-photic signals from other brain regions33–38 to shape SCN 
output coordinating rhythms across the whole body39–43. Under LD-28/FF-24 and LD-28/FF-28 conditions with 
3 lx illuminations during the light phase, locomotor activity onsets were comparable throughout the four days 
of experiment and, thus, largely independent of the FF schedule. In line with this, increased activity levels were 
only observed for fasting periods above 18 h probably reflecting food seeking behaviour44–46. In consequence, 
it is reasonable to assume that the locomotor activity observed in our acute zeitgeber misalignment paradigm is 
representative of the period of the SCN clock23,47.

The SCN aligns peripheral tissue clocks with external light–dark cycles, inter alia, by coordinating behaviours 
such as sleeping/waking and feeding/fasting. Many peripheral tissue clocks are reported to be strongly impacted 
by the zeitgeber food under normal LD-24 cycles8,48–50. However, in modern societies people are often exposed 
to chronodisruptive environmental conditions. We tried to mimic this situation in mice by exposing them to 
extended LD cycles combined with FF cycles to study tissue clock adaptation. On day 4 – the day of maximal 
zeitgeber misalignment – clock gene expression rhythms in peripheral tissues were phase-delayed compared to 
the first day of experiment independent of the imposed feeding schedule. However, the magnitude of this delay 
was dependent on the FF cycle period. This indicates that feeding-regulated signals such as leptin, ghrelin, insulin, 
but also glucocorticoids may impact tissue clock resetting. The daily glucocorticoid (GC) rhythm is dependent 
on SCN signalling51,52 but is also regulated by the adrenal cortical clock22,53. Activated glucocorticoid receptors 
induce target gene transcription through glucocorticoid response elements (GREs), which are also found in the 
Per2 locus54–56. GC and SCN rhythms dissociate under misaligned zeitgeber conditions (LD-28/FF-24)24, thus 
weakening the effect of SCN-mediated synchronisation in peripheral tissues. Under LD-28/FF-28 conditions, 
zeitgeber input phase-shifted with the same kinetics. Therefore, a more uniform phase-adaptation of SCN-driven 
and GC rhythms may provide a more coherent clock resetting stimulus to other tissues, resulting in larger clock 
gene phase angle differences (see Fig. 3). The mechanisms how food-related signals may reset peripheral tissue 
clocks are still poorly understood, but it is plausible that various signals are integrated to generate and coordi-
nate clock oscillations across tissues. Some of the best studied food-related signals which modulate tissue clocks 
are the counteracting adipose tissue-derived hormone leptin and gut-derived hormone ghrelin which signal 
the organism’s metabolic state to the brain57. Leptin and ghrelin can restore clock gene expression in vitro and 
in vivo in obese animal models58–60. Insulin, released by pancreatic β-cells, can modulate the expression and 
translation of various clock genes including Per2, Rev-Erb α, Clock and Bmal161–63. Additionally, the gut-derived 
hormone oxyntomodulin may affect clock resetting by activating the expression of Per1 and Per264. There are 
many more food-related signals and metabolites some of which may affect tissue clock regulation (reviewed in65) 
making it difficult to unravel their differential contributions on clock resetting in in-vivo experiments. Under 
disruptive zeitgeber input numerous systemic signals are likely impacted which in turn differentially influence 
tissue clock resetting. The observed phase shifts for the adrenal clock under LD-28/FF-24 and LD-28/FF-28 
conditions emphasize that the adrenal is susceptible to resetting signals of both zeitgebers, light and food66–68. 
Liver clocks are known to be exceptionally susceptible to food-related resetting signals, but also glucocorticoid 
signalling8,9,48. Surprisingly, FF schedules had the strongest impact on eWAT. Adipose tissue receives various 
(oscillating) signals, e.g. glucocorticoids, glucose and insulin which impact adipose tissue physiology (reviewed 
in69). A limitation of this study is that clock gene tissue profiles were obtained at relatively low temporal resolu-
tion which may impact the accuracy of determining the time of peak expression. Higher sampling rates may 
further improve the precision of peak time determination. However, calculations using previously published 
short-interval data sets22,70 suggest only minor (< 0.5 h) effects of sampling rate on peak time accuracy between 
3-h and 8-h sampling intervals.

Under LD-28/FF-24 conditions, phase shifts of all peripheral tissue clocks were smaller than the phase shift 
seen for locomotor activity period. In contrast, adrenal and eWAT but not liver showed a significantly larger phase 
shift compared to the locomotor activity phase shift under LD-28/FF-28 conditions. These results indicate that 
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internal desynchrony – i.e., phase misalignment between tissues – was induced in the LD-28/FF-24 paradigm 
whereas a higher degree of synchrony was maintained in the LD-28/FF-28 paradigm. Regarding within-tissue 
coherence, however, LD-28/FF-24 worked better than LD-28/FF-28 indicating a higher stability of circadian 
organization at the cellular level. Physiological functions may be affected at both levels of organisation which 
makes it difficult to make recommendations for stabilizing circadian alignment under disruptive zeitgeber condi-
tions such as shift work or transcontinental travel. On one hand, it might be advisable to change zeitgeber input 
with the same kinetics—e.g., by aligning food intake rhythms to rotating shift schedules. On the other hand, 
within tissue clock rhythms may be stabilized by keeping the feeding regime aligned with the 24-h cycle, thus 
promoting circadian coherence at the cellular level. Future experiments are needed to investigate the underlying 
mechanisms and physiological consequences.

Together, we here show for the first time that circadian clock phase alignment is reduced across- but main-
tained to a higher degree within-tissue under LD-28/FF-24 conditions with opposite effects under LD-28/FF-28 
conditions. Both paradigms mimic chronodisruptive environmental conditions as may be experienced during 
shift work. Shift workers show alterations in their sleep/wake behaviour71,72 and meal timing relative to the LD 
cycle (reviewed in73,74) which is assumed to reflect internal circadian misalignment and favour the development 
of metabolic and cardiovascular disorders. It remains to be shown if circadian misalignment at systemic or 
within-tissue levels underlies these adverse health outcomes. The protocols established here provide a tool for 
future experiments in this direction.

Methods
Animals.  Young adult male C57BL/6 J mice, 10–17 weeks old, were maintained in the animal facility of the 
University of Lübeck. Prior to the experiments mice were acclimatized for 1 week to single-housing and running-
wheel cages under 12-h light: 12-h dark conditions (LD-24; Fig. 1a). Illumination was set to 300 lx during the 
light phase. Animals had ad libitum access to chow food (Altromin #1314) and water. After acclimatisation, mice 
were released into 14-h light: 14-h darkness (LD-28) conditions and illumination during the light phases was 
left unchanged (300 lx) or reduced to 3 lx. Food access was either restricted to 12-h feeding: 12-h fasting (FF-24, 
with food access coinciding with the LD-24 dark phase) or to 14-h feeding: 14-h fasting (FF-28, with food access 
coinciding with the LD-28 dark phase). Chow was removed 1 h after "lights on"/ZT1 (LD-28/FF-24, 300 lx and 
3 lx) or at "lights on"/ZT0 (LD-28/FF-28) on day 1. All animal experiments were designed in accordance with the 
German Law for Animal Protection (TierSchG), ethically assessed and legally approved by the ethics commis-
sion of the Ministry of Energy Transition, Agriculture, Environment, Nature and Digitalization (MELUND) of 
the State of Schleswig–Holstein, Germany, and reported in accordance with the ARRIVE guidelines.

Behavioural measurements.  Running-wheel activity of mice was recorded and analysed using the 
ClockLab system and software (6.0.34, Actimetrics, Evanston, USA). Entrainment of mice to LD-24 conditions 
and running-wheel usage were ensured by activity analysis during acclimatisation. Mice were accustomed to 
the noise created by emptying and refilling the food hoppers for several days before the start of the experiment.

Tissue and serum collections.  On the first day and fourth day of LD-28 animals were sacrificed at evenly 
spaced time points (every 7 h LD-28/FF-28 or 6 h for LD-28/FF-24) spanning the 28-h LD cycle. The first day 
of LD-28/FF-28 served as baseline profile (day 1) for both feeding regimes. Mice were sacrificed by cervical dis-
location followed by immediate decapitation. In the dark phase, sacrificing was performed under dim red light 
followed by removal of the eyes before turning on the lights for tissue dissection. Tissues were stored in RNAlater 
(ThermoFisher, Waltham, USA) at − 20 °C before RNA isolation.

RNA isolation and quantitative real‑time (q)PCR.  RNA isolation was performed as described 
previously24. Briefly, tissues were homogenized, and total RNA was extracted using TRIzol reagent (Ther-
moFisher). RNA was transcribed into cDNA using random-hexamer primers and High-capacity cDNA Reverse 
Transcription Kit (Applied Biosystems, Foster City, USA) following the manufacturer’s protocol. cDNAs were 
diluted 1:10–1:20 and stored at − 20 °C. qPCR was done using Go-Taq qPCR Master Mix (Promega, Madison, 
USA) on a Bio-Rad CFX96 thermocycler (Bio-Rad, Hercules, USA). The following primers were used: Eef1a 
forward 5’-TGC​CCC​AGG​ACA​CAG​AGA​CTTCA-3’; Eef1a reverse 5’-AAT​TCA​CCA​ACA​CCA​GCA​GCAA-3’; 
Bmal1 forward 5’CCT​AAT​TCT​CAG​GGC​AGC​AGAT-3’; Bmal1 reverse 5’-TCC​AGT​CTT​GGC​ATC​AAT​GAGT-
3’; Per2 forward 5’- GCC​AAG​TTT​GTG​GAG​ATT​CCTG-3’; Per2 reverse 5’-CTT​GCA​CCT​TGA​CCA​GGT​AGG-
3’; Dbp forward 5’-AAT​GAC​CTT​TGA​ACC​TTG​ATC​CCG​CT-3’; Dbp reverse 5’-GCT​CCA​GTA​CTT​CTC​ATC​
CTT​CTG​T-3’; Nr1d1 forward 5’-AGC​TCA​ACT​CCC​TGG​CAC​TTAC-3’; Nr1d1 reverse 5’- CTT​CTC​GGA​ATG​
CAT​GTT​GTTC-3’; Cry1 forward 5’-GTC​ATT​GCA​GGA​AAA​TGG​GAAG-3’; Cry1 reverse 5’- TAA​AGA​GGC​
GGA​GAG​ACA​AAGG-3’; Per3 forward 5’- GTG​ACA​GCA​GAG​TCC​CAT​GA-3’; Per3 reverse 5’- CAC​TGC​CAT​
CTC​GAG​TTC​AA-3’; Nr1d2 forward 5’- TCA​TGA​GGA​TGA​ACA​GGA​ACC-3’; Nr1d2 reverse 5’- GAA​TTC​
GGC​CAA​ATC​GAA​C-3’.

Data analyses and statistics.  Activity profiles were generated from 20-min bins of individual running-
wheel activity extracted from ClockLab data24. Daily averages of total activity were calculated for four days 
of LD-24 and used for computing relative activity per bin size for experimental days. Activity profiles were 
smoothed using 3-neighbour running averages with GraphPad Prism 7 (GraphPad Software, San Diego, USA). 
Activity onsets were determined by visual inspection on actogram plots. Activity period (τ) in LD-24 and LD-28 
conditions was determined by fitting a straight line to activity onsets over at least three days. Statistical differ-
ences in activity were analysed by one-way ANOVA with Tukey’s multiple comparisons tests. The average total 
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phase shift of activity was calculated from the fits which served as a reference for determining statistical differ-
ences between central and peripheral tissue clock outputs.

mRNA expression levels were normalised to Eukaryotic elongation factor-1 α (Eef1a). Relative expression 
ratios (using the ΔΔCT method) were calculated13 and normalized to the mean ratio of the profile on day 1. 
Outliers were detected by Dean Dixon test with α = 0.01 and excluded from further analysis. Rhythmicity of 
diurnal gene expression profiles was tested using CircWave 1.475 and non-rhythmic genes were excluded from 
further analysis. Amplitude changes were tested for significance by one-sample t-tests against the hypothetical 
value of 100% (i.e., the mean of day 1 expression ratios). Maxima of gene expression were calculated from sine 
wave fits with a fixed wavelength of 25.8 h (GraphPad), the average behavioural period length under all LD-28 
conditions (Figure S1). Phase shifts of maximum gene expression were calculated between day 1 and 4 under the 
different FF regimes. Phase shifts of gene expression were tested against the hypothetical value of 0 (corresponds 
to gene expression maxima on day 1) in one-sample t-tests and plotted in Oriana, version 4 (Kovach Comput-
ing Services, Anglesey, United Kingdom). Statistical differences in phase angle between the two intervention 
paradigms (LD-28/FF-24 vs. LD-28/FF-28) were tested by two-way ANOVA with Sidak’s post-tests. Phase shifts 
of peripheral gene expression were tested against the mean phase shift of locomotor activity using one-sample 
t-tests. For the assessment of phase coherence of clock gene expression rhythms within a specific tissue, sine fit 
expression peaks of a reference clock gene were set to 0 h and expression peaks of the other clock genes were 
plotted relative to the reference clock gene. This procedure was repeated for all clock genes. Subsequently, the 
overlapping areas of the obtained polygons of day 1 and the respective day 4 (LD-28/FF-24 or LD-28/FF-28) were 
calculated using SketchAndCalc (www.​sketc​handc​alc.​com). To test if feeding regime has an impact on phase 
coherence in the different tissues, overlapping areas were tested in a two-way ANOVA with Sidak’s post-tests. In 
all analyses, p values below 0.05 were considered significant.

Received: 27 August 2021; Accepted: 10 January 2022

References
	 1.	 Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. Individual neurons dissociated from rat suprachiasmatic nucleus 

express independently phased circadian firing rhythms. Neuron 14, 697–706 (1995).
	 2.	 Yoo, S.-H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in 

mouse peripheral tissues. Proc. Natl. Acad. Sci. U. S. A. 101, 5339–5346 (2004).
	 3.	 Lehman, M. N. et al. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and 

its integration with the host brain. J. Neurosci. 7, 1626–1638 (1987).
	 4.	 Moore, R. Y. & Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain 

Res. 42, 201–206 (1972).
	 5.	 Stephan, F. K. & Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic 

lesions. Proc. Natl. Acad. Sci. U. S. A. 69, 1583–1586 (1972).
	 6.	 Moore, R. Y., Speh, J. C. & Card, J. P. The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J. 

Comp. Neurol. 352, 351–366 (1995).
	 7.	 Husse, J., Leliavski, A., Tsang, A. H., Oster, H. & Eichele, G. The light-dark cycle controls peripheral rhythmicity in mice with a 

genetically ablated suprachiasmatic nucleus clock. FASEB J. 28, 4950–4960 (2014).
	 8.	 Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the supra-

chiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).
	 9.	 Minh, N. L., Damiola, F., Tronche, F., Schütz, G. & Schibler, U. Glucocorticoid hormones inhibit food-induced phase-shifting of 

peripheral circadian oscillators. EMBO J. 20, 7128–7136 (2001).
	10.	 Hermes, M. L., Coderre, E. M., Buijs, R. M. & Renaud, L. P. GABA and glutamate mediate rapid neurotransmission from supra-

chiasmatic nucleus to hypothalamic paraventricular nucleus in rat. J. Physiol. 496, 749–757 (1996).
	11.	 Reghunandanan, V., Reghunandanan, R. & Mahajan, K. K. Arginine vasopressin as a neurotransmitter in brain. Indian J. Exp. Biol. 

36, 635–643 (1998).
	12.	 Kiehn, J.-T. et al. Circadian rhythms in adipose tissue physiology. Compr. Physiol. 7, 383–427 (2017).
	13.	 Lee, A. et al. Night shift work and risk of depression: meta-analysis of observational studies. J. Korean Med. Sci. 32, 1091–1096 

(2017).
	14.	 Monk, T. H. & Buysse, D. J. Exposure to shift work as a risk factor for diabetes. J. Biol. Rhythms 28, 356–359 (2013).
	15.	 Hansen, A. B., Stayner, L., Hansen, J. & Andersen, Z. J. Night shift work and incidence of diabetes in the Danish Nurse Cohort. 

Occup. Environ. Med. 73, 262–268 (2016).
	16.	 Scheer, F. A. J. L., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. Adverse metabolic and cardiovascular consequences of circadian 

misalignment. Proc. Natl. Acad. Sci. U. S. A. 106, 4453–4458 (2009).
	17.	 Barclay, J. L. et al. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS ONE 7, e37150 

(2012).
	18.	 Oike, H., Sakurai, M., Ippoushi, K. & Kobori, M. Time-fixed feeding prevents obesity induced by chronic advances of light/dark 

cycles in mouse models of jet-lag/shift work. Biochem. Biophys. Res. Commun. 465, 556–561 (2015).
	19.	 Salgado-Delgado, R., Angeles-Castellanos, M., Saderi, N., Buijs, R. M. & Escobar, C. Food intake during the normal activity phase 

prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151, 1019–1029 (2010).
	20.	 CIRCA: Circadian gene expression profiles. http://​circa​db.​hogen​eschl​ab.​org/​mouse.
	21.	 Husse, J. et al. Tissue-Specific Dissociation of Diurnal Transcriptome Rhythms During Sleep Restriction in Mice. Sleep 40(6), 

zsx068 (2017).
	22.	 Oster, H. et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. 

Cell Metab. 4, 163–173 (2006).
	23.	 Houben, T., Deboer, T., van Oosterhout, F. & Meijer, J. H. Correlation with behavioral activity and rest implies circadian regulation 

by SCN neuronal activity levels. J. Biol. Rhythms 24, 477–487 (2009).
	24.	 Heyde, I. & Oster, H. Differentiating external zeitgeber impact on peripheral circadian clock resetting. Sci. Rep. 9, 1–13 (2019).
	25.	 Erzberger, A., Hampp, G., Granada, A. E., Albrecht, U. & Herzel, H. Genetic redundancy strengthens the circadian clock leading 

to a narrow entrainment range. J. R. Soc. Interface 10, 20130221 (2013).

http://www.sketchandcalc.com
http://circadb.hogeneschlab.org/mouse


9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1601  | https://doi.org/10.1038/s41598-022-05624-x

www.nature.com/scientificreports/

	26.	 West, A. C. et al. Misalignment with the external light environment drives metabolic and cardiac dysfunction. Nat. Commun. 8, 
417 (2017).

	27.	 Stephan, F. K. Circadian rhythms in the rat: constant darkness, entrainment to T cycles and to skeleton photoperiods. Physiol. 
Behav. 30, 451–462 (1983).

	28.	 Daan, S. & Pittendrigh, C. S. A Functional analysis of circadian pacemakers in nocturnal rodents. J. Comp. Physiol. 106, 253–266 
(1976).

	29.	 Yamaguchi, Y. et al. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342, 85–90 
(2013).

	30.	 Ebihara, S. & Tsuji, K. Entrainment of the circadian activity rhythm to the light cycle: Effective light intensity for a Zeitgeber in 
the retinal degenerate C3H mouse and the normal C57BL mouse. Physiol. Behav. 24, 523–527 (1980).

	31.	 Mrosovsky, N., Foster, R. G. & Salmon, P. A. Thresholds for masking responses to light in three strains of retinally degenerate mice. 
J. Comp. Physiol. [A] 184, 423–428 (1999).

	32.	 Mrosovsky, P. N. & Hattar, S. Impaired masking responses to light in melanopsin-knockout mice. Chronobiol. Int. 20, 989–999 
(2003).

	33.	 Acosta-Galvan, G. et al. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines 
intensity of food anticipatory behavior. Proc. Natl. Acad. Sci. U. S. A. 108, 5813–5818 (2011).

	34.	 Buijs, F. N. et al. Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms. 
eNeuro 4(2), ENEURO.0028-17.2017 (2017).

	35.	 Buijs, F. N. et al. The suprachiasmatic nucleus is part of a neural feedback circuit adapting blood pressure response. Neuroscience 
266, 197–207 (2014).

	36.	 Janik, D. & Mrosovsky, N. Intergeniculate leaflet lesions and behaviorally-induced shifts of circadian rhythms. Brain Res. 651, 
174–182 (1994).

	37.	 Saderi, N. et al. The NPY intergeniculate leaflet projections to the suprachiasmatic nucleus transmit metabolic conditions. Neu-
roscience 246, 291–300 (2013).

	38.	 Yi, C.-X. et al. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. 
Endocrinology 147, 283–294 (2006).

	39.	 Abrahamson, E. E. & Moore, R. Y. Lesions of suprachiasmatic nucleus efferents selectively affect rest-activity rhythm. Mol. Cell. 
Endocrinol. 252, 46–56 (2006).

	40.	 Deurveilher, S., Burns, J. & Semba, K. Indirect projections from the suprachiasmatic nucleus to the ventrolateral preoptic nucleus: 
a dual tract-tracing study in rat. Eur. J. Neurosci. 16, 1195–1213 (2002).

	41.	 Chou, T. C. et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 
Off. J. Soc. Neurosci. 23, 10691–10702 (2003).

	42.	 Mahoney, C. E., Brewer, J. M. & Bittman, E. L. Central control of circadian phase in arousal-promoting neurons. PLoS ONE 8, 
e67173 (2013).

	43.	 Kriegsfeld, L. J., Leak, R. K., Yackulic, C. B., LeSauter, J. & Silver, R. Organization of suprachiasmatic nucleus projections in Syrian 
hamsters (Mesocricetus auratus): An anterograde and retrograde analysis. J. Comp. Neurol. 468, 361–379 (2004).

	44.	 Cao, J., Zhang, L.-N. & Zhao, Z.-J. Trade-off between energy budget, thermogenesis and behavior in Swiss mice under stochastic 
food deprivation. J. Therm. Biol. 34, 290–298 (2009).

	45.	 Gelegen, C., Collier, D. A., Campbell, I. C., Oppelaar, H. & Kas, M. J. H. Behavioral, physiological, and molecular differences in 
response to dietary restriction in three inbred mouse strains. Am. J. Physiol. Endocrinol. Metab. 291, E574-581 (2006).

	46.	 Williams, T. D., Chambers, J. B., Henderson, R. P., Rashotte, M. E. & Overton, J. M. Cardiovascular responses to caloric restriction 
and thermoneutrality in C57BL/6J mice. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 282, R1459–R1467 (2002).

	47.	 Ralph, M. R., Foster, R. G., Davis, F. C. & Menaker, M. Transplanted suprachiasmatic nucleus determines circadian period. Science 
247, 975–978 (1990).

	48.	 Hara, R. et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6, 269–278 
(2001).

	49.	 Stokkan, K.-A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 
291, 490–493 (2001).

	50.	 Bray, M. S. et al. Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. Int. J. Obes. 
2005(37), 843–852 (2013).

	51.	 Buijs, R. M. & Kalsbeek, A. Hypothalamic integration of central and peripheral clocks. Nat. Rev. Neurosci. 2, 521–526 (2001).
	52.	 Abe, K., Kroning, J., Greer, M. A. & Critchlow, V. Effects of destruction of the suprachiasmatic nuclei on the circadian rhythms in 

plasma corticosterone, body temperature, feeding and plasma thyrotropin. Neuroendocrinology 29, 119–131 (1979).
	53.	 Son, G. H. et al. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid 

production. Proc. Natl. Acad. Sci. 105, 20970–20975 (2008).
	54.	 Reddy, A. B. et al. Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology 45, 1478–1488 (2007).
	55.	 So, A.Y.-L., Bernal, T. U., Pillsbury, M. L., Yamamoto, K. R. & Feldman, B. J. Glucocorticoid regulation of the circadian clock 

modulates glucose homeostasis. Proc. Natl. Acad. Sci. 106, 17582–17587 (2009).
	56.	 Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).
	57.	 Shintani, M. et al. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin 

action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes 50, 227–232 (2001).
	58.	 Ando, H. et al. Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology 152, 

1347–1354 (2011).
	59.	 Motosugi, Y. et al. Tissue-dependent alterations of the clock gene expression rhythms in leptin-resistant Zucker diabetic fatty rats. 

Chronobiol. Int. 28, 968–972 (2011).
	60.	 Wang, Q., Yin, Y. & Zhang, W. Ghrelin restores the disruption of the circadian clock in steatotic liver. Int. J. Mol. Sci. 19, 3134 

(2018).
	61.	 Tahara, Y., Otsuka, M., Fuse, Y., Hirao, A. & Shibata, S. Refeeding after fasting elicits insulin-dependent regulation of Per2 and 

Rev-erbα with shifts in the liver clock. J. Biol. Rhythms 26, 230–240 (2011).
	62.	 Chaves, I. et al. Insulin-FOXO3 signaling modulates circadian rhythms via regulation of clock transcription. Curr. Biol. 24, 1248–

1255 (2014).
	63.	 Crosby, P. et al. Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell 177, 896-909.e20 

(2019).
	64.	 Landgraf, D. et al. Oxyntomodulin regulates resetting of the liver circadian clock by food. Elife 4, e06253 (2015).
	65.	 Reinke, H. & Asher, G. Crosstalk between metabolism and circadian clocks. Nat. Rev. Mol. Cell Biol. 20, 227–241 (2019).
	66.	 Chung, S. et al. Cooperative roles of the suprachiasmatic nucleus central clock and the adrenal clock in controlling circadian 

glucocorticoid rhythm. Sci. Rep. 7, 46404 (2017).
	67.	 Son, G. H., Cha, H. K., Chung, S. & Kim, K. Multimodal Regulation of circadian glucocorticoid rhythm by central and adrenal 

clocks. J. Endocr. Soc. 2, 444–459 (2018).
	68.	 Kiessling, S., Sollars, P. J. & Pickard, G. E. Light stimulates the mouse adrenal through a retinohypothalamic pathway independent 

of an effect on the clock in the suprachiasmatic nucleus. PLoS ONE 9, e92959 (2014).



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1601  | https://doi.org/10.1038/s41598-022-05624-x

www.nature.com/scientificreports/

	69.	 Heyde, I., Begemann, K. & Oster, H. Contributions of white and brown adipose tissues to the circadian regulation of energy 
metabolism. Endocrinology 162(3), bqab009 (2021).

	70.	 Oster, H., Yasui, A., van der Horst, G. T. J. & Albrecht, U. Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant 
mice. Genes Dev. 16, 2633–2638 (2002).

	71.	 Sallinen, M. et al. Sleep–wake rhythm in an irregular shift system. J. Sleep Res. 12, 103–112 (2003).
	72.	 Akerstedt, T., Kecklund, G. & Knutsson, A. Spectral analysis of sleep electroencephalography in rotating three-shift work. Scand. 

J. Work. Environ. Health 17, 330–336 (1991).
	73.	 de Souza, R. V., Sarmento, R. A., de Almeida, J. C. & Canuto, R. The effect of shift work on eating habits : a systematic review. 

Scand. J. Work. Environ. Health 45, 7–21 (2019).
	74.	 Gupta, C. C., Coates, A. M., Dorrian, J. & Banks, S. The factors influencing the eating behaviour of shiftworkers: what, when, where 

and why. Ind. Health 57, 419–453 (2019).
	75.	 Oster, H., Damerow, S., Hut, R. A. & Eichele, G. Transcriptional profiling in the adrenal gland reveals circadian regulation of 

hormone biosynthesis genes and nucleosome assembly genes. J. Biol. Rhythms 21, 350–361 (2006).

Author contributions
I.H. performed and supervised all experiments and prepared the figures. H.O. designed the project and supported 
data analysis and presentation. I.H. and H.O. wrote the paper.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​05624-x.

Correspondence and requests for materials should be addressed to H.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-05624-x
https://doi.org/10.1038/s41598-022-05624-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Induction of internal circadian desynchrony by misaligning zeitgebers
	Results
	Locomotor activity period is largely independent of feeding time. 
	Phase shifts in peripheral clock gene expression depend on feeding regimes. 
	Within-tissue clock gene programs are disrupted under diverging zeitgeber input. 

	Discussion
	Methods
	Animals. 
	Behavioural measurements. 
	Tissue and serum collections. 
	RNA isolation and quantitative real-time (q)PCR. 
	Data analyses and statistics. 

	References


