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Phosphorylation of endogenous 
α‑synuclein induced 
by extracellular seeds initiates 
at the pre‑synaptic region 
and spreads to the cell body
Shiori Awa1,2,4,5, Genjiro Suzuki1,5*, Masami Masuda‑Suzukake1, Takashi Nonaka1, 
Minoru Saito2,3 & Masato Hasegawa1*

Accumulation of phosphorylated α‑synuclein aggregates has been implicated in several diseases, 
such as Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), and is thought to spread in a 
prion‑like manner. Elucidating the mechanisms of prion‑like transmission of α‑synuclein is important 
for the development of therapies for these diseases, but little is known about the details. Here, we 
injected α‑synuclein fibrils into the brains of wild‑type mice and examined the early phase of the 
induction of phosphorylated α‑synuclein accumulation. We found that phosphorylated α‑synuclein 
appeared within a few days after the intracerebral injection. It was observed initially in presynaptic 
regions and subsequently extended its localization to axons and cell bodies.　These results suggest 
that extracellular α‑synuclein fibrils are taken up into the presynaptic region and seed‑dependently 
convert the endogenous normal α‑synuclein that is abundant there to an abnormal phosphorylated 
form, which is then transported through the axon to the cell body.

In neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease (PD) and amyotrophic lateral 
sclerosis, the neurodegeneration is thought to be caused by the accumulation of abnormal protein aggregates 
characteristic of each  disease1,2. For example, abnormal α-synuclein protein aggregates are accumulated in neu-
ronal and/or glial cells in PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), and 
therefore these diseases are termed α-synucleinopathies3. In PD and DLB, accumulations of phosphorylated 
α-synuclein aggregates are mainly observed in neurons in the form of Lewy bodies (LBs) and Lewy neurites 
(LNs), while they are seen in oligodendrocytes as glial cytoplasmic inclusions (GCIs) in MSA. The abnormal 
α-synuclein deposits observed in the brains of individuals are accumulated as fibrous or filamentous forms with 
cross-β structures, existing in phosphorylated and partially ubiquitinated  states4. These abnormal α-synuclein 
species exhibit seeding activity for prion-like conversion, being similar in this respect to the infectious forms 
of prion protein causing Creutzfeldt–Jakob disease and bovine spongiform encephalopathy. Moreover, these 
abnormal aggregates can propagate throughout the brain in a prion-like  manner1,5. Various other neurodegen-
erative disease-related proteins, including amyloid-β, tau and TDP-43, are also thought to propagate through 
neural networks in a similar manner.

α-Synuclein is a natively unfolded protein of 140 amino acid residues, which is abundant in the brain, and 
is normally found in both soluble and membrane-associated  fractions3. In the brain, α-synuclein is mainly 
localized in presynaptic termini of  neurons3,6. Although its physiological function has not been fully clarified, it 
appears to be involved in the regulation of synaptic vesicle recycling and neurotransmitter  release7–10. In addition, 
α-synuclein is also thought to be involved in the regulation of dopamine, a type of neurotransmitter that is critical 
for the pathogenesis of PD. In familial forms of α-synucleinopathies, missense mutations and multiplication of 
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the SNCA gene encoding α-synuclein have been reported, indicating that structural changes or excessive amounts 
of α-synuclein protein are involved in the development of α-synucleinopathies11.

Recombinant soluble α-synuclein proteins form amyloid-like fibrils that are morphologically and physico-
chemically similar to those observed in patients’ brains. These synthetic α-synuclein fibrils can act as seeds 
and induce seeded aggregation of α-synuclein by converting normal monomers into abnormal  aggregates12–16. 
Introduction of synthetic α-synuclein fibrils into cultured cells or primary-cultured neurons leads the accumu-
lation of phosphorylated α-synuclein aggregates in the cells. Intracerebral injection of synthetic α-synuclein 
fibrils also induces phosphorylated and ubiquitinated α-synuclein pathologies even in wild-type (WT) mice. It 
has also been reported that extracts from the brains of individuals with α-synucleinopathies induce α-synuclein 
pathologies in cellular and animal  models13,17–20. When these α-synuclein aggregates were injected into one side 
of the brain, phosphorylated α-synuclein pathology also appeared on the contralateral side, and the pathology 
was concentrated at specific locations dependent upon the injection  site21. Moreover, the propagation of the 
pathology was dependent on synaptic  activity22. These findings suggest that α-synuclein aggregates may spread 
through neural circuits.

The internalization of α-synuclein seeds by neural or glial cells is a key step in the prion-like propagation of 
α-synuclein aggregates, but so far little is known about the uptake mechanism. Several mechanisms have been 
proposed for the uptake of α-synuclein aggregates. One is the lymphocyte-activation gene 3 (LAG3)-mediated 
uptake  mechanism23. LAG3 is an α-synuclein fibril-binding protein. Deletion of LAG3 or application of anti-
bodies against LAG3 reduces the internalization of α-synuclein fibrils and the induction of the accumulation 
of α-synuclein aggregates in primary neurons. Deletion of LAG3 also attenuates the induction of α-synuclein 
pathology in mice injected with α-synuclein fibrils. However, another group recently reported that LAG3 is not 
expressed in neurons and the role of LAG3 in the spreading of α-synuclein pathology is not  valid24. Another 
mechanism for the uptake of α-synuclein fibrils is heparin sulfate proteoglycan-mediated  macropinocytosis25. It 
was also reported that α-synuclein fibrils are trafficked along the endolysosomal pathway in primary  neurons26,27.

Previous studies in WT mouse models injected with α-synuclein fibrils have demonstrated the spread 
of α-synuclein aggregates throughout the brain when observed after a long period of time, such as several 
 months12,13,28. However, much remains unclear about how the injected α-synuclein fibrils induce aggregation and 
accumulation of intrinsic α-synuclein. We also know only a little about when and where endogenous α-synuclein 
undergoes modifications such as phosphorylation and ubiquitination. In this study, we injected WT mice with 
α-synuclein fibrils, and observed the changes in intrinsic α-synuclein over time, focusing on the early period 
after α-synuclein fibril injection. We examined when α-synuclein fibrils are taken up by the neurons and how 
intrinsic α-synuclein aggregates are formed.

Results
To examine how neuronal cells take up α-synuclein fibrils and how the fibrils induce endogenous α-synuclein 
aggregates, we injected α-synuclein pre-formed fibrils (PFFs) into mouse brains and followed the induction 
of seed-dependent aggregation of α-synuclein. First, we prepared the fibrils to be injected. The S129A mutant 
mouse α-synuclein, in which serine 129 of mouse α-synuclein is replaced with alanine, was produced in E. coli 
and  purified29. Fibril formation was induced by agitating the monomer at 37 °C for 1 week. The resulting PFFs 
were injected into the hippocampal CA3c region of WT mice on one side (Fig. 1a). The reason for injecting into 
the hippocampus is that ordered neuronal layers are formed in the hippocampus, and we wanted to observe fibril 
uptake and seed-dependent aggregate formation, rather than prion-like  propagation30. In addition, we observed 
high expression of α-synuclein in the hippocampal presynaptic region, in line with previous findings (Supplemen-
tary Fig. 1)31,32. To observe early seed-dependent phosphorylation by fibril uptake, we injected higher amounts 
of PFFs into the mouse brain than most previous  reports12,13,28. To monitor seed-dependent aggregate formation 
by injected PFFs, we used antibodies that recognize α-synuclein phosphorylated at serine 129. Since the PFFs 
we used for injection have serine 129 replaced by alanine, it is considered that the antibodies do not recognize 
the injected α-synuclein PFFs, but only recognize the phosphorylation of endogenous α-synuclein29. While the 
accumulation and propagation of phosphorylated α-synuclein have been observed several months after the 
injection in previous intracerebral injection  experiments12,13,33, we focused here on when and where the uptake 
and the seed-dependent aggregation of α-synuclein take place by observing the appearance of phosphorylated 
α-synuclein in the first few days after the injection. We examined the appearance of phosphorylated α-synuclein 
at 3, 5, and 14 days after the intracerebral injection and found that the appearance of dots of phosphorylated 
α-synuclein had already begun after 3 days (Fig. 1b, c). Further phosphorylated α-synuclein in the form of dots, 
projections, and aggregates appeared over time. Co-localization with the neuronal marker NeuN revealed that 
phosphorylated α-synuclein accumulated in neurons. We also examined the appearance of phosphorylated 
α-synuclein at 3, 5, and 14 days after the intracerebral injection of WT α-synuclein PFFs and obtained similar 
results (Supplementary Fig. 2). In addition, we confirmed that no phosphorylated α-synuclein was induced by the 
injection of α-synuclein monomers even at 14 days after the injection (Supplementary Fig. 3). We also examined 
the appearance of phosphorylated α-synuclein at one day after the injection and found that α-synuclein had not 
been phosphorylated at this point (Supplementary Fig. 4).

α-Synuclein has been reported to be abundant in the presynaptic  region3. Therefore, to investigate whether 
the dot-shaped phosphorylated α-synuclein is localized at the presynaptic region, we examined its co-localization 
with the presynaptic marker synapsin I and found that it is indeed co-localized with synapsin I (Fig. 2). This indi-
cates that the phosphorylated α-synuclein found early after the intracerebral injection, such as 3 days, is located 
in presynaptic regions. This in turn suggests that the injected α-synuclein fibrils taken up into these regions 
converts the endogenous α-synuclein that is abundant there to the abnormal phosphorylated form. Next, we 
examined the co-localization of tau, an axonal marker, and phosphorylated α-synuclein in the brain of injected 
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Figure 1.  Seed-dependent phosphorylation of α-synuclein in mouse brain. (a) Schematic representation of seed-dependent 
phosphorylation of α-synuclein after the injection into mouse brain. α-Synuclein PFFs were injected into the CA3c region of mouse 
hippocampus. Mice were sacrificed after 1 to 14 days, and the brains were fixed and stained with anti-phosphorylated α-synuclein. (b) 
Appearance of phosphorylated α-synuclein (Phos-αS) in the CA3c region at 3 days (upper), 5 days (middle) or 14 days (lower) after 
the injection. Images show phosphorylated α-synuclein (green), NeuN (red), a neuronal cell body marker, DAPI (blue) and the merged 
image in the CA3c region. Regions surrounded by white rectangles in merged images are magnified and shown in the rightmost panel 
of each lane. (c) Appearance of phosphorylated α-synuclein in the CA3a region at 3 days (upper), 5 days (middle) or 14 days (lower) 
after the injection. Images show phosphorylated α-synuclein (green), NeuN (red), DAPI (blue) and the merged image in the CA3a 
region. Regions surrounded by white rectangles in merged images are magnified and shown in the rightmost panel of each lane. Scale 
bars, 10 μm.
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Figure 2.  Seed-dependent phosphorylation of α-synuclein in pre-synaptic regions of mouse neurons. (a) 
Appearance of phosphorylated α-synuclein (Phos-αS) in the CA3c region at 3 days (upper), 5 days (middle) 
or 14 days (lower) after the injection. Images show phosphorylated α-synuclein (green), synapsin I (red), a 
presynaptic region marker, DAPI (blue) and the merged image in the CA3c region. Regions surrounded by 
white rectangles in merged images are magnified and shown in the rightmost panel of each lane. (b) Appearance 
of phosphorylated α-synuclein in the CA3a region at 3 days (upper), 5 days (middle) or 14 days (lower) after 
the injection. Images show phosphorylated α-synuclein (green), synapsin I (red), DAPI (blue) and the merged 
image in the CA3a region. Regions surrounded by white rectangles in merged images are magnified and shown 
in the rightmost panel of each lane. Scale bars, 10 μm.
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mice and found that some projections of phosphorylated α-synuclein co-localized with tau more than 5 days 
after the injection (Fig. 3a, b). To verify the colocalization between phosphorylated α-synuclein and these neu-
ronal markers, we quantified the co-localization coefficients between these markers at 5 days after the injection 
(Figs. 1, 2, 3) and confirmed that synapsin I and tau co-localized with the phosphorylated α-synuclein at 5 days 
after the injection while NeuN did not (Fig. 3c, d). Moreover, co-localizations of phosphorylated α-synuclein with 
MAP2 or NF-L, other neurite markers, were examined, and it was found that some projections of phosphorylated 
α-synuclein also co-localized with MAP2 and NF-L (Supplementary Fig. 5). These results indicate that phospho-
rylated α-synuclein is localized in the axon. In the mouse brain injected with α-synuclein fibrils, phosphorylated 
α-synuclein, which looks to form aggregates, appeared in the cell body 14 days after the injection (Fig. 1b). We 
stained these phosphorylated α-synuclein with FSB which bound to b-sheet rich amyloid like  aggregates34. We 
found that the most of aggregate-like phosphorylated α-synuclein and some of process-like phosphorylated 
α-synuclein were stained with FSB while the most of dot-like structures were not (Supplementary Fig. 6). Thus, 
we thought that some of phosphorylated α-synuclein observed at 14 days after the injection were amyloid-like 
fibrillary aggregates. Accumulations of α-synuclein aggregates are also seen in oligodendrocytes as GCIs in the 
brain of MSA  patients3. Thus, we examined whether phosphorylated α-synuclein appearances are also seen in 
glial cells. We examined co-localization of Iba1, GFAP or CNPase and phosphorylated α-synuclein at 14 days 
after the injection and found that the accumulations of phosphorylated α-synuclein rarely colocalized at all with 
these glial cell markers (Supplementary Fig. 7). Thus, the phosphorylated α-synuclein that appeared soon after 
seed injection, such as within 14 days, was present mainly in neurons. This might be due to the high neuronal 
expression of endogenous α-synuclein, which may be important for prion-like propagation. We also examined 
whether these phosphorylated α-synuclein was ubiquitinated and confirmed that the most of the phosphorylated 
α-synuclein was ubiquitinated as seen in the brain of patients (Supplementary Fig. 8).

At 14 days after the injection into mouse brain, phosphorylated α-synuclein was accumulated on the con-
tralateral side as well as on the injected side (Fig. 4a). There were many phosphorylated dot-shaped α-synuclein 
accumulations in the dentate gyrus (DG) and CA3c region on the injected side and these dot-shaped accu-
mulations were co-localized with synaptoporin, which is particularly enriched in mossy fiber synapses in the 
 hippocampus35. We could not find phosphorylated dot-shaped α-synuclein accumulations positive for syn-
aptoporin on the contralateral side (Fig. 4a, b). However, many NeuN-positive phosphorylated α-synuclein 
accumulations were observed in the CA3c region on the contralateral side (Fig. 4c). The CA3c region, into 
which α-synuclein PFFs were injected in our study, is known to receive input from the ipsilateral DG, CA3c and 
contralateral CA3c. The areas where large amounts of phosphorylated α-synuclein were observed are consistent 
with these regions, suggesting that phosphorylated α-synuclein was retrogradely transported from the CA3c 
 region36. To verify this, we investigated the accumulations of phosphorylated α-synuclein in other regions that 
are neuroanatomically connected to the CA3c region. Accumulations of phosphorylated α-synuclein were also 
found in the lateral septal nucleus (LSN) and the entorhinal cortex (EC), supporting the idea that phosphorylated 
α-synuclein was retrogradely transported from the CA3c region (Fig. 4d)36,37. To examine whether the increase 
of phosphorylated α-synuclein continues also at late stages, we investigated the accumulation of phosphorylated 
α-synuclein in contralateral hippocampus at one month after the injection (Supplementary Fig. 9). We found 
that phosphorylated α-synuclein began to be accumulated in contralateral DG and the aggregates like forms of 
phosphorylated α-synuclein in contralateral CA3c seemed to be increased suggesting that both the amount and 
area of phosphorylated α-synuclein increase with time as previously  reported12,13,22.

For confirmation, we performed similar experiments using primary-cultured mouse  cells38. First, we exam-
ined whether α-synuclein is also expressed at presynaptic regions in primary-cultured cells from mouse  brain31. 
We found little expression of synapsin I or α-synuclein at 7 days in vitro (DIV), whereas large amounts of 
α-synuclein were expressed in presynaptic regions at 14 DIV (Supplementary Fig. 10)39. We therefore introduced 
α-synuclein monomers or PFFs into primary-cultured mouse cells at 14 DIV and examined the appearance of 
phosphorylated α-synuclein the following day. We found that phosphorylated α-synuclein appeared only in the 
PFFs-transfected cells and was co-localized with synapsin I (Fig. 5a). These findings suggest that extracellular 
α-synuclein fibrils are taken up from presynaptic regions in primary neurons and induce the phosphoryla-
tion of intrinsic α-synuclein, which is abundant in presynaptic regions. Next, we examined the appearance of 
phosphorylated α-synuclein 3 or 7 days after fibril introduction. The phosphorylated α-synuclein appeared 
as processes like LNs at 3 days and as processes and aggregates like LBs at 7 days after introduction (Fig. 5b). 
We also examined the co-localization of tau and phosphorylated α-synuclein and found that phosphorylated 
α-synuclein mainly appeared in presynaptic regions and axons at 3 days and in axons and cell bodies at 7 days 
after introduction (Fig. 5b). As described above, in mouse brain injected with α-synuclein PFFs, phosphoryl-
ated α-synuclein forms aggregates in the cell body 14 days after the injection (Fig. 1b). These results suggest that 
phosphorylated α-synuclein is likely to be retrogradely transported from the presynaptic region through the axon 
both in primary-cultured cells and in mouse brain. To verify this, we used ciliobrevin D (CilD), a dynein inhibi-
tor, and S-Trityl-L-cysteine (STLC), a kinesin inhibitor, because dynein and kinesin are known to be involved in 
retrograde and anterograde axonal transport,  respectively40–43. Cells were treated with drugs at a day after PFFs 
introduction and fixed at two days after drug treatment. We found the cells treated with CilD had small phospho-
rylated α-synuclein processes while the cells treated with DMSO or STLC had large processes like LNs (Fig. 5c). 
Taken together, these results suggested that when extracellular α-synuclein fibrils (seeds) are initially taken up 
in presynaptic regions, intrinsic α-synuclein, which is abundant there, is phosphorylated in a seed-dependent 
manner and then retrogradely transported through the axon to the cell body, where it forms large aggregates.
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Figure 3.  Seed-dependent phosphorylation of α-synuclein in axons of mouse neurons. (a) Appearance of phosphorylated α-synuclein 
(Phos-αS) in the CA3c region at 3 days (upper), 5 days (middle) or 14 days (lower) after the injection. Images show phosphorylated 
α-synuclein (green), tau (red), an axon marker, DAPI (blue) and the merged image in the CA3c region. Regions surrounded by white 
rectangles in merged images are magnified and shown in the rightmost panel of each lane. (b) Appearance of phosphorylated α-synuclein in 
the CA3a region at 3 days (upper), 5 days (middle) or 14 days (lower) after the injection. Images show phosphorylated α-synuclein (green), 
tau (red), DAPI (blue) and the merged image in the CA3a region. Regions surrounded by white rectangles in merged images are magnified 
and shown in the rightmost panel of each lane. (c) and (d) Quantification of the colocalization coefficient between phosphorylated 
α-synuclein and indicated markers at 5 days after the injection in the CA3c region (c) and the CA3a region (d) (mean ± S.E.M; n = 3). 
Statistical analysis was performed using one-way ANOVA and Tukey post hoc test. **P < 0.01, ***P < 0.001. Scale bars, 10 μm.
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Figure 4.  Difference in appearance of seed-dependent phosphorylated α-synuclein between the ipsilateral and contralateral sides. 
(a, b) Appearance of phosphorylated α-synuclein (Phos-αS) in the dentate gyrus (DG) and CA3 regions of the ipsilateral (ipsi, left) 
and contralateral (cont, right) sides. At 14 days after the injection, mice were sacrificed and the brains were fixed. Slices were double-
stained with anti-phosphorylated α-synuclein and anti synaptoporin (SPO) antibodies. Images show phosphorylated α-synuclein 
(upper, green) and synaptoporin (lower, red). Magnified images of the regions surrounded by white rectangles are shown in b. The 
merged images with DAPI (blue) are also shown. (c) Slices were double-stained with anti-phosphorylated α-synuclein and anti NeuN 
antibodies. Images show phosphorylated α-synuclein (green), NeuN (red), and the merged image with DAPI (blue). (d) Appearance 
of phosphorylated α-synuclein in the lateral septal nucleus (LSN, left) and the entorhinal cortex (EC, right) regions. Images show 
phosphorylated α-synuclein (red), NeuN (green), and the merged image with DAPI (blue). Regions surrounded by white rectangles in 
merged images are magnified and shown in the rightmost panel of each lane. Scale bars, 100 μm (a), 50 μm (b, c and d).
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Figure 5.  Seed-dependent phosphorylation of α-synuclein in pre-synaptic region of primary-cultured neurons. (a) 
Seed-dependent phosphorylation of α-synuclein (Phos-αS) in the pre-synaptic region. Primary-cultured cells grown 
in vitro for 14 days were treated with α-synuclein monomer (upper) or pre-formed fibrils (PFFs) (lower), and after 
one day, the cells were fixed and stained with anti-synapsin I (green) and anti-phosphorylated α-synuclein (red). 
Nuclei were stained with DAPI. Merged images are shown. (b) Seed-dependent phosphorylation of α-synuclein in 
axons. Primary-cultured cells grown in vitro for 14 days were treated with α-synuclein pre-formed fibrils (PFFs), and 
after 3 days (upper) or 7 days (lower), the cells were fixed and stained with anti-tau (green) and anti-phosphorylated 
α-synuclein (red). Nuclei were stained with DAPI. Merged images are shown. (c) Confocal laser microscopy analysis of 
cells treated with DMSO or drugs. Primary-cultured cells were treated with DMSO (left), CilD (center) or STLC (right) 
and stained with anti-phosphorylated α-synuclein (upper, green) and anti-synapsin I (lower, red). Nuclei were also 
stained with DAPI (lower, blue). Scale bars, 20 μm.
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Discussion
In previous models employing the injection of PFFs into the mouse brain, the pathology has usually been evalu-
ated several months after the  injection12,13,33,44. In this study, we focused on the initial phase after the injection, 
and sought to determine how extracellular fibrils are taken up and how they seed intrinsic α-synuclein. Remark-
ably, we found that phosphorylated α-synuclein pathology appeared at presynaptic regions only 3 days after the 
injection. In agreement with previous findings, we found that endogenous α-synuclein is highly expressed at 
presynaptic regions in both mouse brain and primary-cultured neurons (Supplementary Fig. 1 and 10)3,39,45. 
The seed-dependent aggregate formation associated with prion-like propagation requires the presence of high 
concentrations of monomers, suggesting that presynaptically incorporated α-synuclein seeds efficiently induce 
intrinsic α-synuclein aggregation and  phosphorylation21,39. If α-synuclein aggregate is taken up from the presyn-
aptic regions, it is likely to be transported to the cell body by retrograde axonal  transport43. This idea seems to 
be consistent with previous reports that extracellular α-synuclein is taken into the cell and transported to the 
cell body by the endolysosomal pathway, because endolysosomes are also thought to be transported from the 
synapse to the cell body by retrograde axonal  transport26,27,46. In this study, time-course observations of injected 
mouse brain and primary-cultured cells revealed that the amount of phosphorylated α-synuclein increased con-
comitantly with retrogradely transport through the axon to the cell body. If the structure of intrinsic α-synuclein, 
which is abundant at the presynaptic region, is abnormally altered by seeds, then phosphorylated and transported 
to the cell body by the endolysosomal pathway along with other damaged proteins and organelles, it would be 
interesting to know the physiological role of the α-synuclein phosphorylation on the protein quality control.

On the other hand, the possibility that α-synuclein aggregates are taken up from sites other than presynap-
tic sites cannot be ruled out. Some aggregates may be taken up directly into the cell body by endocytosis and 
other aggregates may be taken up from the postsynaptic region. When phosphorylated α-synuclein is used as 
a marker of abnormal pathology, as in the present study, the incorporated aggregates must act as seeds, and 
seed-dependent conversion of normal α-synuclein into abnormal form must occur. Free α-synuclein is required 
for seed-dependent aggregation, but free α-synuclein is abundant in presynaptic  regions5. It will be necessary 
to analyze the uptake of extracellular α-synuclein aggregates via other pathways and to assess their function as 
seeds by other methods, such as the use of fluorescently labeled fibrils or microfluidic chambers which separate 
synaptic terminals from cell bodies.

Previous studies have favored the idea that α-synuclein phosphorylation occurs after the formation of LBs or 
 LNs3,47. However, in this study we found that α-synuclein is already phosphorylated in the presynaptic regions. 
Notably, there are reports of phosphorylated α-synuclein beginning to accumulate in presynaptic regions and 
axons in patients’  brains48–50. It is unclear whether this is the case in living patients, but if it is, it would be physi-
ologically significant, because if the abnormal structure of α-synuclein induced by the seed is already phospho-
rylated in presynaptic regions, the kinase responsible for α-synuclein phosphorylation is likely to be localized 
at these regions. As a next step, it will be important to investigate the fate of α-synuclein transported to the cell 
body, including degradation by proteasomes or autophagy, aggregate formation, or release by endocytosis.

In this study, we injected higher amount of α-synuclein PFFs into the mouse brain than has been the case 
in the  past12,13,28, in order to observe pathological induction of phosphorylated α-synuclein at an earlier stage. 
If the amount of α-synuclein PFFs to be injected is above a certain threshold, we think that the timing of the 
initiation of α-synuclein phosphorylation will not change much depending on the amount of α-synuclein to be 
injected. It has been reported that phosphorylated α-synuclein appears as early as one week after the injection, 
even with a much smaller amount of PFFs injection than  ours51. On the other hand, we have reported that the 
amount of phosphorylated α-synuclein pathology increases with increasing injection  volume52. When injecting 
a large amount of α-synuclein and/or observing the induction of pathogenesis early after the injection, it may be 
necessary to distinguish between the injected PFFs and the induced pathology, such as the use of S129A PFFs 
or antibodies specific for intrinsic α-synuclein.

Here, we show the spread of retrograde phosphorylated α-synuclein in neurons, but it is not clear whether 
phosphorylated α-synuclein itself is neurotoxic. In the brain of α-synucleinopathies patients or animal models, 
it has been reported that neurodegenerations were followed by retrograde degeneration of  axons53,54. It would 
be interesting to show that the retrograde propagation of phosphorylated α-synuclein that we have reported 
here is related to retrograde neurodegeneration by examination of neuroinflammation. In fact, we examined 
the induction of inflammation, which is thought to be related to neurodegeneration, by Iba1 staining in the 
early stage after PFFs injection, but unfortunately, the expression of Iba1 was increased even when α-synuclein 
monomer was injected, and no obvious differences were observed between monomer and PFFs injected mice. In 
the future, detailed analysis of the induction of inflammation, synaptic terminal abnormalities, axonal degenera-
tion or neurodegeneration in the α-synuclein PFFs introduced mice or cells and clarification of the cytotoxicity 
of α-synuclein aggregates and/or phosphorylated α-synuclein will lead to clarification of the pathogenesis of 
α-synucleinopathies and development of therapeutic methods.

It is thought that tau and TDP-43, as well as α-synuclein, propagate through the brain in a prion-like 
 manner5,55–57. As described above, α-synuclein is abundant in presynaptic regions, whereas tau is abundant in 
neurites and TDP-43 is mostly localized in the nucleus. Consistent with previous reports, we found in the present 
study that localization and expression levels are important for prion-like  propagation39. If TDP-43 aggregates 
are taken up from the presynaptic region like α-synuclein, they would need to be transported to the nucleus or 
cell body by retrograde axonal transport to act as seeds. In addition, the expression of TDP-43 in neurons is not 
likely to be as high as that of α-synuclein32. These considerations may explain why prion-like propagation of 
TDP-43 is less commonly observed in WT mice than that of α-synuclein.

If many neurodegenerative diseases are caused by aggregates spreading in the brain through prion-like propa-
gation, aggregate uptake or seed-dependent aggregation could be an attractive target for disease treatment. If 



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1163  | https://doi.org/10.1038/s41598-022-04780-4

www.nature.com/scientificreports/

α-synuclein seeds are taken up at presynaptic regions, as we have shown here, and seed-dependent aggrega-
tion occurs at these regions soon afterwards, these steps could be good targets for treatment or prevention for 
neurodegenerative diseases. The accumulation of phosphorylated α-synuclein occurred in a very short period 
of time in the mouse and cellular models that we used in this study, and so these models might be helpful for 
drug screening of therapeutics specific to this step. We believe our findings will be useful in studies aimed at the 
treatment of neurodegenerative diseases involving accumulation of protein aggregates.

Methods
Animals. Mice (C57BL/6J for injection experiments and Jcl:ICR for primary-cultured cells) were obtained 
from Japan SLC. All experimental protocols were performed according to the recommendations of the Animal 
Care and Use Committee of Tokyo Metropolitan Institute of Medical Science, and all animal experiments were 
carried out in accordance with ARRIVE guidelines (The ARRIVE guidelines 2.0). All experimental protocols 
were approved by the Animal Care and Use Committee of Tokyo Metropolitan Institute of Medical Science 
(approval number 21-037).

Expression and purification of recombinant WT and S129A mutant mouse α‑synuclein. WT 
and S129A mutant mouse α-synuclein encoded in pRK172 plasmids were transformed into  E. coli  BL21 
(DE3). Recombinant proteins were purified as described  previously44. Protein concentration was determined 
by HPLC.

Preparation of α‑synuclein fibrils. α-Synuclein fibrils were prepared as  follows44. Purified recombinant 
α-synuclein proteins were dissolved in 30 mM Tris–HCl, pH 7.5 and 0.1%  NaN3 to a final concentration of 6 mg/
ml. The samples were incubated at 37 °C under shaking for 7 days. The assembled α-synuclein was centrifuged 
at 113,000 g for 20 min, and the pellets were washed with saline and centrifuged again. The pellets were resus-
pended in saline. To determine the concentration of insoluble α-synuclein, proteins were disaggregated with 6 M 
guanidine hydrochloride and subjected to HPLC. α-Synuclein fibrils were sonicated for 30 seconds twice at 30% 
intensity using a Sonifier SFX250 cup horn sonicator (BRANSON) before use.

α‑Synuclein injection into mice. Six-week-old male C57BL/6J mice were purchased from Japan SLC. 
α-Synuclein samples (10 mg/ml, 5 μl) were injected into the hippocampus Cornu Ammunis 3c (CA3c) region 
(anterior–posterior, -2.0  mm; medial–lateral, 1.5  mm; dorsal–ventral, -2.0  mm from the bregma and dura). 
Injection into mouse brain was performed as described  previously13. Monomer-injected WT mice were used as 
negative controls. At 3, 5 or 14 days after the injection, mice were deeply anesthetized with isoflurane (Pfizer) 
and sacrificed, and the brain was perfused with saline. Sections were fixed in 10% formalin neutral buffer solu-
tion (Wako).

Primary‑cultured cells and introduction of α‑synuclein proteins into cells. Dissociated cultures 
of embryonic (E15) mouse cortical cells were prepared from pregnant Jcl:ICR mice using Neuron Dissociation 
Solutions (FUJI FILM Wako) according to the manufacturer’s protocol. Briefly, dissected brain was digested 
with enzyme solution for 30 min at 37 °C, then centrifuged. Dispersion solution was added and tissues were 
suspended, then isolation solution was added. Cells were collected by centrifugation, resuspended and plated on 
poly-L-lysine-coated cover glasses. Cells were maintained at 37 °C in 5%  CO2 in Neurobasal Medium (Gibco) 
supplemented with 1 × B27 (Gibco) and 1 × Glutamax (Gibco). They were cultured for 7 or 14 days in vitro (DIV) 
in 6-well plates, and then treated with sonicated α-synuclein fibrils diluted in culture medium. Cells were col-
lected or fixed at 1, 3 or 7 days post treatment. For the inhibition of the axonal transport, cells were treated with 
20 μM CilD (Merck Millipore) or 20 μM STLC (Merck Millipore) as previous  reports41,42. Two days after the 
drug treatments, cells were fixed and stained.

Antibodies. Antibodies used in the present study were as follows. Anti-phospho-α-synuclein antibodies 
against pSer129 were 81A (Bio Legend) and EP1536Y (abcam). An anti-α-synuclein antibody was Syn202 (Santa 
Cruz). Anti-NeuN (abcam), anti-synapsin I (abcam), anti-tau (tauC, in house), anti-synaptoporin (Synaptic 
Syatems), anti-MAP2 (abcam), anti-Neurofilament L (Cell Signaling Technology), anti-inoinized calcium-bind-
ing adapter molecule 1 (Iba1) (Wako), anti-glial fibrillary acidic protein (GFAP) (abcam) or anti-2’,3’-Cyclic-
nucleotide 3’-phosphodiesterase (CNPase) (Cell Signaling Technology) were also used. Alexa488- or Alexa568-
conjugated secondary antibodies (Thermo) were used.

Immunofluorescence staining and FSB staining of mouse brains. Fixed brains were sectioned at 
30-µm thickness using a VT1200 vibratome (Leica). Free-floating sections were mounted on glass slides and 
processed for antigen retrieval by heating at 105 °C in 0.01 M sodium citrate buffer, pH 6.0, for 1 min. Sections 
were then permeabilized with 0.5% Triton X-100 in phosphate-buffered saline and blocked with Blocking One 
Histo (Nacalai tesque). The sections were treated with primary antibodies diluted in PBST at room temperature 
overnight. After washing with PBST, the sections were treated with Alexa488- or Alexa568-conjugated second-
ary antibodies (1:1000; Thermo) for 1 h. After washing, the sections were coverslipped using Vectashield with 
DAPI (Vector). Images were acquired on a BZ-X710 fluorescence microscope (Keyence) and analyzed with 
BZ-X analyzer (Keyence). The colocalization coefficient was calculated by Image J. For FSB staining, the sections 
treated with first and second antibodies were stained with 0.001% FSB (Dojindo) for 30 min and washed twice 
with 50% ethanol. Images were acquired on a LSM780 confocal microscope (Zeiss).
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Immunocytochemistry. Introduction of α-synuclein fibrils was conducted as described above, using 
mouse primary-cultured cells grown on coverslips. Cells were fixed with 4% paraformaldehyde, permeabilized 
with 0.5% Triton X-100 in phosphate-buffered saline and blocked with Blocking One Histo. The cells were 
treated with the primary antibodies for 1 h, then washed and treated with secondary antibodies conjugated with 
Alexa Fluor for 1 h. The cells were mounted using Vectashield with DAPI to counterstain nuclear DNA and 
analyzed with a BZ-X710 (Keyence) and BZ-X analyzer (Keyence). To avoid the fluorescence of drugs, images of 
the cells treated with drugs were acquired on a LSM780 confocal microscope.

Statistical analysis. Statistical analysis of data was carried out using R version 3 (The R Foundation for 
Statistical Computing). Three independent experiments were carried out and the colocalization coefficient was 
calculated by Image J. The differences between means of two groups were analyzed using one-way ANOVA and 
Tukey post hoc test. P values below 0.05 were considered to be statistically significant. The data are mean ± stand-
ard error of mean (S.E.M).

Data availability
The data that support the findings of this study are available either within the body of the manuscript, within 
the supplementary information files, or are available from the corresponding author upon reasonable request.
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