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Feasibility, safety, and economic 
consequences of using minimal 
flow anaesthesia by Maquet 
FLOW‑i equipped with automated 
gas control
Yusuf Z. Colak * & Hüseyin I. Toprak

Low fresh gas flow rates are recommended because of their benefits, however, its use is limited due 
to associated risks. The main purpose of this study was to investigate whether 300 mL of fresh gas 
flow that practised with automated gas control mode is applicable and safe. The second aim is to show 
that automated mode can provide economic benefits. Sixty hepatectomy cases who suitable criterias 
were included to cohort study in three groups as prospective, sequential, observational. An operating 
room were allocated only for this study. 300 mL fresh gas flow with automated mode (groupA3), 
600 mL fresh gas flow with automated mode (groupA6) and, 600 mL fresh gas flow with manually 
(groupM6) was applied. Patients’ respiratory, hemodynamic parameters (safety), number of setting 
changes,  O2 concentration in the flowmeter that maintained  FiO2:0.4 during the low flow anaesthesia 
(feasibility) and comsumption data of anaesthetic agent and  CO2 absorber (economical) were collected 
and compared. p < 0.05 was accepted as statistical significance level. No significant differences were 
detected between the groups in terms of demographic data and duration of operation. Safety datas 
(hemodynamic, respiratory, and tissue perfusion parameters) were within normal limits in all patients. 
 O2 concentration in the flowmeter that maintained  FiO2:0.4 was statistically higher in groupA3 (92%) 
than other groups (p < 0.001) but it was still within applicable limits (below the 100%). Number of 
setting changes was statistically higher in groupM6 than other groups (p < 0.001). The anaesthetic 
agent consumption was statistically less in groupA3 (p = 0.018). We performed fresh gas flow of 
300 mL by automated mode without deviating from the safety limits and reduced the consumption 
of anaesthetic agent. We were able to maintain  FiO2:0.4 in hepatectomies without much setting 
changes, and we think that the automated mode is better in terms of ease of practise.

A significant portion of inhalation agents, which constitute the main components of anaesthetic drug costs 
(20–25%), are released into the atmosphere via the waste gas system without being metabolized by the patient. 
The amount of waste gas is directly proportional to the amount of fresh gas flow (FGF)1. All volatile agents have 
a greenhouse gas effect on the atmosphere, which is highest for desflurane. The total annual global emissions 
of volatile anaesthetics in 2014 were calculated to be equivalent to the  CO2 emissions of one-third of passenger 
cars in Switzerland, with approximately 80% stemming from  desflurane2. For this reason, low flow anaesthesia 
(LFA) and FGF < 1 L/min have been recommended by anaesthesiologists in recent years to minimize  wastage3. 
During inhalation anaesthesia, LFA improves the dynamics of inhaled anaesthetic gas, increases mucociliary 
clearance, maintains body temperature, and reduces water loss. Furthermore, according to the 2019 Worldwide 
Medical Trends Report, inflation in health products increases three times more than in other  products4. The 
use of LFA provides savings of up to 75%5. Thus, LFA is not only beneficial for patients but also economical and 
environmentally friendly. Similar comments can be made for minimal flow anaesthesia (MFA: 0.25–0.5 L/min). 
However, the routine use of FGF below 1 L/min is avoided for a variety of reasons, including differences in the 
concentrations inhaled by the patient and agent concentration in FGF adjusted by the vapourizer, the need for 
more frequent vapourizer and rotameter adjustments, vapourizer dial setting increment variability, and the risks 
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associated with LFA (accidental hypoxia, hypercapnia, inadequate depth of anaesthesia, and the accumulation 
of potentially toxic trace gases). By using modern anaesthesia machines with advanced monitoring of respira-
tory gas concentrations, LFA can be used in almost all patients without increased  risk6,7, and automated low 
flow anaesthesia (ALFA) is easy to use. ALFA has brought LFA within the realm of everyday practice. The use of 
ALFA obviates the need for frequent vapourizer and FGF adjustments that may distract busy clinicians, especially 
during the induction period. First, the anaesthesiologist selects a target alveolar concentration (FAt) of inhaled 
anaesthetic and a target  O2%. Next, proprietary software algorithms guide agent and carrier gas administration 
to attain the targets with the lowest  waste8.

O2 consumption can be calculated with a simplified Brody formula (VO = 10 ×  [BW]¾). However, the simpler 
estimate of oxygen consumption that has been used is 3–5 mL/kg/min for  adults9. According to these calculations, 
the  O2 consumption per minute of a 70 kg adult is approximately 250 mL Therefore, we presumed that 300 mL 
FGF will be sufficient to meet the  O2 requirements of adults and that the lowest FGF that can be practised in the 
Maquet Flow-i device is 300 mL via the automated gas control (AGC) mode. In our previous study, we showed 
that 600 mL FGF with AGC can be used without deviating from the safety limit of  FiO2:0.4 in donor hepatecto-
mies, and it reduced the costs by 38% compared with 1200 mL FGF with AGC 10.

The main purpose of this study was to investigate whether 300 mL of FGF in the AGC mode is applicable and 
safe in the normoxic range. The second aim was to show that the AGC mode with 300 mL of FGF can provide 
more economic and ecological benefits than the AGC or manual mode with 600 mL of FGF.

Materials and methods
Similar to our previous study (10), we selected adult patients scheduled for hepatectomy procedures under 
general anaesthesia who had an American Society of Anesthesiologists (ASA) physical status score of 1–2 with 
generally similar body weights (BW) to obtain a standardized patient population. The sample size, 20 patients 
in each group, was calculated to detect a difference in desflurane consumption of 30% with a standard deviation 
(SD) of ± 4 mL using an alpha level of 0.05 and a power of 0.80.

After ethical approval was received from the institutional review board (Malatya Clinical Research Ethics 
Committee) for our prospective, sequential, observational cohort study (NCT03465475), sixty hepatectomy 
patients with informed consent, aged 18–65 years who met the criteria were included in the study at Inonu 
University between 2020 and 2021 in accordance with the relevant guidelines and regulations. Patients with 
diabetes mellitus, those who had cardiovascular and pulmonary diseases, those who had a body mass index < 20 
or > 30, those who did not want to participate in the study, and those with urgent cases were excluded from the 
study. Patients undergoing laparoscopic procedures were not included in the study because these procedures 
could impair oxygenation. An operating room and an anaesthesia machine (Maquet Flow-i 40, Solna, Sweden® 
anaesthesia machine with a circular breathing system and a 700 mL  CO2 absorber canister) were allocated only 
for this study population, and we chose a sequential design, so we were able to calculate the total consumption 
of each group precisely. The anaesthesia and surgery teams that worked in the room during the study did not 
change. No premedications were ordered. The ages, heights, BWs, and sexes of the subjects were recorded. During 
the operation, electrocardiography (ECG), heart rate (HR/min), systolic arterial pressure (SAP, mmHg), diastolic 
arterial pressure (DAP, mmHg), mean arterial pressure (MAP, mmHg), peripheral oxygen saturation  (SpO2, 
%), body temperature (°C) (Carescape B650, GE Healthcare, Helsinki, Finland®), Pleth variable index (PVI) 
(to evaluate intravascular volume status), non-invasive peripheral haemoglobin (SpHb-g/dL), perfusion index 
(PI), oxygen reserve index (ORI), and patient state index (PSI) (to evaluate level of anaesthesia) (Root; Masimo, 
Irvine, CA, USA®) were monitored for patient safety. In addition, a regional cerebral oximetry  (rSO2L-rSO2R) 
measurement was made from the left and right frontal regions with the cerebral near-infrared spectroscopy 
(NIRS) method (INVOS 5100C; Medtronic, MN, USA®). The values were recorded at baseline; after anaesthesia 
induction; post-intubation; post-intubation plus 10 min; and post-intubation plus 1, 2, 3, 4, 5, and 6 h. Blood 
gas samples for  PaO2 were taken at the beginning of LFA  (PO21) and just before LFA was terminated  (PO22).

After preoxygenation, anaesthesia was induced with thiopental 5–8 mg/kg, fentanyl 1–2 mcg/kg, lidocaine 
1 mg/kg, and vecuronium 0.1 mg/kg, and when adequate anaesthesia depth was reached, an endotracheal tube 
of appropriate size was inserted. Invasive arterial monitoring was carried out in all patients. When we considered 
the oxygen requirement (approximately 3 mL/kg/min), leaks in the breathing circuit, and safety range, it was 
thought that 300 mL FGF would be sufficiently safe. Hedenstierna stated in his review that an inspired oxygen 
concentration of 30%–40%, or even less, should suffice if the lungs are kept  open11. Therefore, for the first 20 
patients, 300 mL FGF in the AGC mode (group A3) was applied; for the second 20 patients, 600 mL FGF in the 
AGC mode (group A6) was applied; and for the third 20 patients, 600 mL FGF (group M6) was applied manu-
ally. The target values in all patients were specified as  FiO2:0.4, 1 minimal alveolar concentration (MAC) on the 
desflurane vapourizer, and the respective FGF stated above. The AGC tool also allows the user to select 1 out 
of 9 different speeds with which the target FAdesf can be reached (with 9 being the fastest speed). The AGC 
mode at 6 speeds was applied to achieve the FAdesf target in groups A3 and A6. In group M6, these targets were 
reached manually, and an FGF rate of 6 L/min (3–3:oxygen–air) and a dial setting of 1 MAC on the desflurane 
vapourizer were performed. On achieving the target MAC value on the respiratory gas monitor, the flow rate 
was reduced to 600 mL/min. The vapourizer was adjusted to maintain 1 MAC during surgery at intervals of 
two minutes, and the flowmeter was adjusted for  FiO2:0.4 during the same period. Every change that needed 
to be made to settings was counted (NOSC) (to evaluate feasibility). For all patients, intraoperative mechanical 
ventilation was initiated with a tidal volume of 8 mL/kg, with the rate was titrated to maintain end-tidal carbon 
dioxide  (etCO2) of 35–40 mmHg. Analgesia management was achieved with remifentanil infusion. When the 
amount of inspired  CO2 ≥ 3 mmHg, the  CO2 absorbent was changed. The times to reach the targets were recorded 
in all groups to evaluate feasibility. The required  O2 concentration in the flowmeter to obtain the  FIO2:0.4 ratio 
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 (cFlowO2) during LFA/MFA was recorded every ten minutes in all patients to determine whether we were staying 
within the limits of safety and feasibility. At the end of the operations, the total operation durations and amounts 
of anaesthetic gas consumed were recorded individually for each patient (by the anaesthesia device), and after 
the surgeries for each group were completed, the empty desflurane and  CO2 absorbent bottles were calculated 
for economic consequences.

Statistical analysis. Quantitative data used in the study were summarized as median (min–max). The 
conformity of the quantitative variables to the normal distribution was examined using the Shapiro–Wilk test. 
In terms of quantitative variables, the Kruskal Wallis-H test was used to determine whether there was a statisti-
cal difference between independent groups. After the Kruskal Wallis-H test, whether there was a statistically 
significant difference between the groups was examined with the Conover test. p < 0.05 was accepted as statistical 
significance level. In the analysis, web-based softwares (“KruskalWallis” and "IAY: Istatistiksel Analiz Yazilimi”) 
were used developed by İnönü University Faculty of Medicine Biostatistics and Medical Informatics  Dept12,13.

Results
Throughout the study, the data of 60 patients (20 patients from each group) were collected. No significant dif-
ferences were detected among the groups in terms of age, BW and operation duration (Table 1). No significant 
differences were detected among the groups in terms of gender (p = 0.736).

No significant differences were detected among the groups in terms of haemodynamic, respiratory or tissue 
perfusion parameters  (SpO2, NIRS) (p > 0.05). The haemodynamic, respiratory, and tissue perfusion parameters 
were within normal limits in all patients at all times.  SpO2,  rSO2L and  rSO2R values did not fall below the basal 
values during the surgeries. GroupM6 post-intubation plus 10 min ORI value was statistically higher than 
groupA3 and A6 (p = 0.017).  SpO2,  rSO2L, and  rSO2R, which are indicators of tissue oxygenation, and the ORI 
values are given in Table 2.

No significant differences were detected among the groups in terms of  PaO2. Except for one patient in group 
A3, all  PaO2 values were over 100 mmHg. This patient’s  PaO2 value was 97.9 mmHg (Table 3).

None of the patients had bleeding that impaired the haemodynamics and required blood transfusion. The 
body temperatures were in the normal range (min–max: 36.1–37.2 °C). The PSI levels were between 25 and 50 
in all patients, and no differences were detected among the groups (p = 0.810).

cFlowO2 that maintained  FiO2:0.4 and provided adequate oxygenation during LFA/MFA was 92% (min 
81%–max 100%) in group A3, 63% (min 57%–max 67%) in group A6, and 66% (min 59%–max 70%) in group 
M6, and there was a statistically significant difference between group A3 and the other groups (p < 0.001). Two 
patients in group A3 needed 100% oxygen from the flowmeter for a short time during the operation to maintain 
 FiO2:0.4. A very short-lived (less than 1 min) very high FGF (> 10 L/min) ensured the target  FiO2 in groups 
A3 and A6. The target  FiO2 was attained within 1–2 min, and 1 MAC end-tidal gas concentration was reached 
in approximately 5–6 min in all groups (p = 0.632). As a result, the target set in all groups was sustained, but 
the vapourizer and flowmeter were adjusted multiple times (more than 10 changes) to reach target values in 
groupM6. There was a significant difference in terms of NOSC values between group M6 and the other groups 
(p < 0.001).

There was a difference of a few millilitres between the empty anaesthetic agent (AA) bottles counted and 
the data from the anaesthesia machine, so we used the data from the anaesthesia machine. The median AA 
consumption was 57.1 mL in groupA3 and statistically less then the other groups (p = 0.018) (Table 4). Total AA 
consumption was 1305 mL in group A3, 1680 mL in group A6, and 1540 mL in group M6. The amount of  CO2 
absorber used was 26 kg in group A6, 24.5 kg in group M6 and 36.2 kg in group A3. There was a significant dif-
ference in terms of  CO2 absorber values between group A3 and the other groups (p < 0.001).

Discussion
Oxygenation and the depth of anaesthesia are two main concerns in LFA and MFA. The  O2 level in the atmos-
phere is 21%, and the  PaO2 in the blood of humans is approximately 100 mmHg. Considering oxygen as a drug, 
many studies have shown that both low and high oxygen levels are  risky10. Therefore, oxygenation should be 
performed as close to the normal levels as possible. We believe that oxygen demand should be determined and 
applied according to the patients’ demands under anaesthesia. The most commonly used formula for this purpose 
is Brody’s  formula14. The average weight of the subjects in all groups was similar, approximately 65 kg. Basal 
metabolic  O2 consumption was calculated as approximately 250 mL/min. In group A3, FGF was set at 300 mL; in 
group A6 and group M6, FGF was set at 600 mL. When the  O2 and air in FGF were adjusted to maintain  FiO2:0.4, 
these FGFs delivered more oxygen than required (250 mL  O2) for all patients. As mentioned in our findings, 
 cFlowO2 values to achieve the  FIO2:0.4 ratio showed that there was a safety range even at 300 mL FGF (group A3 

Table 1.  The age, BW, and operation duration between the groups (median, min–max).

Group A3
(n = 20)

Group A6
(n = 20)

Group M6
(n = 20) p

Age (year) 27 (18–47) 28 (22–51) 28.5 (19–43) 0.813

BW (kg) 66 (44–80) 61 (42–79) 67 (48–81) 0.416

Op. duration (min) 343 (257–540) 356 (247–521) 345 (250–580) 0.959
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Table 2.  Indicators of tissue oxygenation,  SpO2,  rSO2L,  rSO2R, and ORI (median. min–max). AAI, after 
anaesthesia induction; Pin, post intubation. *a: different according to the A6 group, b: different according to 
the M6 group. Statistically significant “p” values   are in bold and italic.

GroupA3
(n = 20)

GroupA6
(n = 20)

GroupM6
(n = 20) p

Basal

SpO2 (%) 99 (97–100) 99 (97–100) 98 (97–99) 0.295

rSO2L (%) 71 (60–85) 71.5 (55–83) 69.5 (61–84) 0.992

rSO2R (%) 72 (54–84) 71.5 (55–83) 70 (58–82) 0.741

ORI 0 (0–0.06) 0 (0–0.15) 0 (0–0.05) 0.793

AAI

SpO2 (%) 100 (99–100) 100 (99–100) 100 (99–100) 0.429

rSO2L (%) 75 (62–93) 74.5 (55–95) 73.5 (64–91) 0.850

rSO2R (%) 79 (55–90) 75 (60–87) 74.5 (62–89) 0.490

ORI 0.5 (0.3–0.85) 0.51 (0.19–1) 0.545 (0.24–1) 0.926

Pin

SpO2 (%) 100 (98–100) 100 (98–100) 100 (98–100) 0.253

rSO2L (%) 82 (69–95) 82.5 (61–95) 78.5 (69–93) 0.750

rSO2R (%) 86 (65–95) 83.5 (57–92) 80 (67–92) 0.349

ORI 0.41 (0.21–0.57) 0.44 (0.14–0.78) 0.41 (0.19–1) 0.609

PIn10 min

SpO2 (%) 98 (97–100) 99 (97–100) 99 (97–100) 0.197

rSO2L (%) 79 (59–93) 76 (59–93) 76 (64–85) 0.850

rSO2R (%) 78 (53–92) 75.5 (59–84) 72.5 (63–90) 0.477

ORI 0.24b (0–0.52)* 0.21b (0.04–0.69)* 0.33 (0.1–0.52) 0.017

PIn-1 h

SpO2 (%) 98 (96–100) 99 (96–100) 98.5 (97–100) 0.215

rSO2L(%) 82 (65–95) 79.5 (66–95) 83.5 (67–95) 0..417

rSO2R (%) 84 (56–95) 79 (61–90) 81.5 (65–93) 0.438

ORI 0.29 (0–0.69) 0.32 (0–0.62) 0.325 (0.04–0.58) 0.851

PIn-2 h

SpO2 (%) 99 (97–100) 99 (97–100) 99 (96–100) 0.490

rSO2L (%) 81 (64–95) 81.5 (66–95) 81 (70–94) 0.928

rSO2R (%) 82 (63–95) 81 (55–89) 82 (64–94) 0.602

ORI 0.46 (0–1) 0.42 (0.23–1) 0.44 (0.28–1) 0.852

PIn-3 h

SpO2 (%) 99 (97–100) 99 (97–100) 98.5 (98–100) 0.256

rSO2L (%) 80 (61–95) 81.5 (70–95) 81 (65–95) 0.911

rSO2R (%) 81 (59–95) 81 (61–91) 80 (64–93) 0.852

ORI 0.62 (0.11–1) 0.42 (0.25–0.96) 0.47 (0.31–1) 0.512

PIn-4 h

SpO2 (%) 100 (98–100) 100 (97–100) 99 (97–100) 0.188

rSO2L (%) 83 (61–95) 80.5 (65–95) 80 (64–96) 0.527

rSO2R (%) 84 (58–94) 81 (56–90) 80 (64–92) 0.262

ORI 0.81 (0.18–1) 0.59 (0.3–1) 0.54 (0.39–1) 0.847

PIn-5 h

SpO2 (%) 100 (97–100) 100 (97–100) 99.5 (98–100) 0.752

rSO2L (%) 83.5 (68–95) 79 (66–95) 80.5 (67–94) 0.138

rSO2R (%) 84 (62–95) 82 (18–92) 78 (65–91) 0.166

ORI 0.69 (0.31–1) 0.74 (0.34–1) 0.7 (0.41–1) 0.895

Table 3.  PaO2 Values (mmHg, median, min–max).

GroupA3 GroupA6 GroupM6 p

PaO21 177 (97.9–210) 173.5 (110–199) 176 (121–192) 0.945

PaO22 172 (139–192) 181.5 (156–199) 174.5 (145–194) 0.143
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 cFlowO2 = 92%) and it was still within applicable limits (below the 100%). The haemodynamic and oxygenation 
parameters  (SpO2 and  rSO2) included in our study did not exceed the safety limits in any patient, and the  SpO2, 
 rSO2, and ORI values did not fall below the basal values (measured in room air) during the operation. Group 
M6 post-intubation plus 10 min ORI value was statistically higher than the other groups but this difference is 
clinically insignificant. These findings support our calculations as given above. In addition, PSI values   showed an 
adequate depth of anaesthesia in all groups. Therefore, we can say that we had adequate oxygen and AA delivery 
in all groups, and we were able to maintain this situation safely throughout the operation.

Two patients needed 100%  O2 for a short time, and one patient’s  PO21 was 97.9 mmHg in group A3, but the 
 SpO2 and NIRS values of these patients were 97%, 98%, and 97% and L79%-R79%, L80%-R80%, and L71%-R76%, 
respectively, during the same time period. However, the BW of these patients was close to the group mean. Con-
sidering that we eliminated body weight differences, we speculate that this situation may depend on breathing 
system leaks. System leaks become very important at this low flow rate. The Maquet Flow-i40 anaesthesia machine 
has advanced sensors and warning systems and does not allow the use of the AGC mode if the leakage amount 
is above 150 mL/min. If possible, there should be no breathing system leakage when working at such low flows.

We used the same flow rates in group A6 and group M6 and reached the targets via the AGC mode in group 
A6. The same targets were reached manually in group M6. In the comparison between these two groups, we 
found no statistically significant difference in haemodynamic, respiratory or consumption data. However, mul-
tiple adjustments were needed to achieve the targets in group M6. Additionally, when the absorbent canister 
was replaced, adjustments were made again to meet the targets, and canister changes were frequent in LFA/
MFA. Therefore, the NOSC values   were very high in group M6. We have seen that the AGC mode is successful 
in achieving the targets set at the incident inception and maintaining these targets throughout the operation. 
Therefore, we believe that the AGC mode is better than manual adjustments in terms of the ease of use.

We set an FGF of 300 mL/min in group A3. According to the modified baker and simionescu classification, 
this value is approximately equal to MFA. When we performed a similar comparison for group A6 and group 
M6, the FGF (600 mL/min) was approximately equal to LFA, according to the same classification. LFA saves 
up to 75% compared to higher  FGFs5. In our previous  study10, we compared medium-flow anaesthesia with 
LFA and achieved a 42% profit in AA cost, in the present study, profit was ~ 33%. The profit decreased as the 
compared values decreased, but still a significant decrease was found in the A3 group in terms of AA cost. In 
the present study, this comparison is between 600 mL FGF and 300 mL FGF but would be much more saving at 
an FGF higher than 600 mL. As expected,  CO2 absorbent consumption was higher in group A3, but total cost 
(AA +  CO2 absorbent) of group A3 was less than the other groups since  CO2 absorbent was very inexpensive 
compared to the AA.

The impact of inhaled AA on the overall global environmental pollution has been known for more than a 
 decade15. Lowe and Ernst, while describing the closed system anaesthesia practice they applied in 1981, stated that 
the reduction in fluorocarbon emissions from operating rooms is an additional ecological  benefit16. Desflurane 
may have a greater potential environmental impact than the other drugs because of the higher concentrations 
required and its intrinsic properties as a greenhouse gas (GHG) (9). The GHG impact of desflurane is 15 times 
that of isoflurane and 20 times that of sevoflurane on a MAC-hour basis when applied in an  O2/air mixture. (3). 
FGF is the main determinant of the amount of waste gas released into the atmosphere. Therefore, it should focus 
on the amount of FGF to reduce the environmental impact of waste  AA17. In the last few years, we have started 
to feel the effects of global warming seriously. If the use of LFA is not limited to clinical studies and becomes 
widespread all over the world, it is obvious that there will be environmental gains as well as economic gains. ALFA 
is easy to use and may increase LFA/MFA use by reducing concerns about oxygenation and the depth of anaes-
thesia. In addition, less pollution of the operating room air is another benefit in terms of personal safety. Gauger 
et al. stated that spontaneous abortion rates increased in anaesthetists who were exposed to waste gases  more18.

Our study had some limitations. First, minimal circuit leaks were inevitable. Second, the anaesthesia machine 
did not measure the amount of  CO2 absorbent consumed, so we had to choose a sequential design, but no 
significant differences were detected among the groups in terms of demographic data and operating durations.

Conclusions
With our high-tech anaesthesia devices and monitors, using LFA/MFA in almost all patients is a logical option 
to improve our environment and relationship with nature, ensure our future, and minimize costs. Using ALFA 
may reduce some concerns about hypoxia and anaesthesia depth during operation, increase low flow rate usage 
and provide an ease of use. In the present study, we performed FGF of 300 mL in AGC mode without deviating 
from the safety limits and reduced the AA cost. We were able to maintain  FiO2:0.4 in patients undergoing hepa-
tectomies without many setting changes, and we think that the AGC mode is better than manual adjustments 
in terms of ease of use.

Table 4.  AA consumption in groups (mL, median, min–max). *a: different according to the A6 group, b: 
different according to the M6 group. Statistically significant “p” values   are in bold and italic.

Group A3 Group A6 Group M6 p

AA Cons 57.1a,b (37.4–113.8)* 75.4 (49.1–139.6) 76.8 (25.4–116.8) 0.018
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