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Leveraging long short‑term 
memory (LSTM)‑based 
neural networks for modeling 
structure–property 
relationships of metamaterials 
from electromagnetic responses
Prajith Pillai, Parama Pal*, Rinu Chacko, Deepak Jain & Beena Rai

We report a neural network model for predicting the electromagnetic response of mesoscale 
metamaterials as well as generate design parameters for a desired spectral behavior. Our approach 
entails treating spectral data as time‑varying sequences and the inverse problem as a single‑input 
multiple output model, thereby compelling the network architecture to learn the geometry of the 
metamaterial designs from the spectral data in lieu of abstract features.

Metamaterials (MMs) are artificial, mesostructured multi-material systems which demonstrate highly engineer-
able electromagnetic (EM) responses when excited by a suitable stimulus. The capability to arbitrarily program 
spectral responses, more specifically linear and nonlinear EM properties in response to external fields, arises 
from patterning these artificial composites as periodic 2D or 3D arrays of subwavelength conducting elements or 
unit cells. These unit cells (also known as ‘meta atoms’), are spaced by distances that are of the order of a fraction 
of the interrogating wavelength within the spectral region of interest (anywhere from the microwave to visible). 
This enables the manipulation of target functionalities such as the effective electrical permittivity and effective 
magnetic permeability in a manner not supported in naturally occurring  materials1–3. This unique customiz-
ability leads to phenomena such as negative refractive indices and resonant phenomena at desired wavelengths, 
thereby opening up new frontiers for powerful photonic tools for  imaging4,  sensing5, wavefront  control6, and 
nonlinear optical  generation7.

Complex fabrication methods for tailored control of electric and magnetic properties demand that metama-
terial device topologies be preemptively  articulated6,8–10. Traditional MM design processes rely heavily on the 
designer’s knowledge and intuition and typically commence with an initial candidate geometry. The spectral 
behavior of this preliminary design is calculated by solving Maxwell’s equations via standard numerical tech-
niques such as the finite-difference time domain (FDTD) method, finite element method (FEM), and the bound-
ary element method (BEM). A mismatch between the desired response and the preliminary design performance 
entails tweaking geometrical and material parameters iteratively till a satisfactory outcome is achieved. These 
iterations typically involve large, time-consuming trial-and-error searches over complex candidate geometries 
and configurations. In recent times, commercially available electromagnetic solver software packages have been 
widely adopted by the MM community for designing metamaterials but there too, only a fraction of candidate 
geometries can be explored and is largely dependent on the designer’s intuitive reasoning. Of late, numerous 
studies have been directed towards the selection of a metamaterial design algorithm that searches vast parameter 
spaces for a best-fit solution to achieve performance characteristics in a manner that is efficient and computa-
tionally  inexpensive11,12. This has led to the development, optimization and implementation of data-driven MM 
design frameworks as an area of active research. Deep learning-based models which compute abstract repre-
sentations of data by learning via multiple layers of nonlinear transformations, have been the go-to approach. 
These models typically require curated datasets consisting of metamaterial geometries and their EM responses 
for  training11,13–15. An efficient MM design scheme encompasses two aspects: the forward problem (predicting 
the EM response for a given geometry) as well as the inverse problem (generating the structural parameters 
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for a desired EM response). The forward model is viewed akin to a prototyping method that avoids rule-based 
methods of numerically solving Maxwell’s equations whereas an inverse model presents a viable paradigm to 
arrive at a design that captures user-specified spectral properties.

In this work, we explore the unique property of recurrent neural networks (RNNs)16–18 to leverage the inher-
ent sequential nature of the spectral responses. We base our methodology on deep learning models that have 
been used for solving one-to-many sequence problems e.g. image captioning, wherein the image information 
is provided as an input to either a convolutional neural network (CNN) or a multilayer perceptron (MLP). The 
NN (CNN or MLP) then passes the image information to an RNN (typically, long short term memory (LSTM)) 
in the form of features and corresponding captions are generated based on the information from the current 
timestep as well as the previous timesteps. We leverage the ability of LSTMs for learning long-term dependencies 
for retaining the sequential features through memory cells. The spectral sequence passed through the input gate 
of the LSTM extracts the most important features and discards the unimportant features through forget gates. 
LSTM networks have been widely used in sequence-to-sequence learning tasks which is essentially how we pose 
our spectrum-design-spectrum  problem19.

A convolutional neural network (CNN) may also perform well for the problem statement and dataset at hand, 
although a detailed comparison is out of the scope of this current work. Spectral responses may be discretized 
as per the user’s requirement (depending on how the Maxwell’s equations are solved using numerical methods) 
thereby resulting in sequences of variable lengths and the model will still be able to perform inverse predictions, 
owing to the unique advantage(s) offered by RNNs.

We report a dual-model framework comprising a forward model for predicting the response spectra for a 
given set of design parameters (here, geometrical dimensions) and a tandem network for generating design 
parameters corresponding to a desired EM response. Our forward model is trained using geometry as the input 
and the corresponding EM spectral response as the output, and we subsequently pose the training for the inverse 
problem as a single-input, multi-output (SIMO) model using a tandem network of an encoder and a decoder 
with sequential input data (EM responses). Our training approach for the tandem network is similar to autoen-
coder architectures used for dimensionality reduction and learning latent  representations20. The dimensions are 
obtained as intermediate outputs of the trained inverse model. Automating the solution of inverse problems, i.e., 
starting with a desired spectral behavior and working backwards to arrive at its corresponding MM topology, is 
often a challenge due to the observation of near-identical spectra for distinct device geometries. This may lead 
to a one-to-many mapping scenario between the EM response space and the design space, i.e., more than one 
design may yield almost completely overlapping response  spectra21,22. We address this complexity by using a 
tandem encoder-decoder architecture as shown in Fig. 1 which leverages the powerful internal architecture of 
LSTMs to identify relevant information from long, sequential data. We apply our architecture to a broadband, 
near ‘perfect’ metamaterial absorber designed to operate in the terahertz spectral regime.

Figure 1.  Structure of the deep learning model for deriving structure-property relationships of metamaterials. 
The architecture represents a tandem network comprising an inverse design network connected to a forward 
modeling network in an encoder-decoder configuration for predicting the geometrical dimensions by providing 
the absorption spectra as the input. Geometrical design parameters are obtained from the intermediate layer of 
the network structure.
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Results
The goal is to develop a design framework that can extract precise MM structural dimensions for a given target 
response. More specifically, we applied our framework to a metamaterial film composed of individual split-ring 
resonators (SRRs) which has been designed for near-unity absorption over a range of terahertz wavelengths 
(see “Methods”). The training for the forward model took approximately 6 h on a standard Intel Core i5 CPU 
@1.5 GHz with 8 GB of RAM. In order to validate our hypothesis, namely, efficient learning using LSTMs by treat-
ing the spectral response as a sequence of absorption values, we compare our model’s predictions to a baseline 
architecture using a feed forward neural network without an LSTM. Figure 2 clearly depicts the superiority of the 
LSTM-based forward network in predicting the spectral response. We hypothesize that architectures consisting 
solely of networks of fully connected multi-layer perceptrons with the geometrical parameters as generic features, 
may be learning some dependency (order) between the layers. However, they are unable to efficiently leverage 
the inherent sequential nature of the data. This contrasts with the manner in which LSTMs tackle sequential 
data owing to their superior architecture. Therefore, for the inverse model as well, the LSTM layer is a fitting 
choice considering the sequential nature of the input spectral data. We checked the precision of our forward 
model’s predictions via comparison with ground truth data generated by ‘virtual’ experiments wherein we solved 
for Maxwell’s equations (for the geometry under consideration) and computed the corresponding spectral per-
formance using FEM simulations. The overall objective function for the tandem network was to minimize the 
sum of the losses from the encoder output (geometry) and the decoder output (spectra). In other words, while 
training, the tandem network learns to yield the dimensional information for the SRR structures while attempt-
ing to reproduce the spectral input given. This necessitates the network to learn a latent representation of input 
spectra that closely resembles the desired geometry. Table 1 summarizes the mean square error (MSE) losses 
for the forward and tandem model. One may argue that an encoder-only model will be sufficient for mapping 
the spectra to the dimensions however a comparison between an encoder-only and a tandem shows that the 
tandem performs better when trained with a combined loss albeit at the cost of slightly higher computational 
times (Table S3). The tandem approach also allows for modification of the encoder architecture to incorporate 
multiple data forms (electric field values, topological images, field profiles etc.).

In order to further illustrate the performance of our model, we randomly selected two cases from our test set 
and compared the predicted geometrical values vs the ground truth (Table 2).

The results validate our architecture as an efficient and accurate model for the design and discovery of com-
plex metamaterial structures. As a qualitative indicator of computational efficiency, the COMSOL full-wave 
simulations for ~ 500 designs took around 54 h on a standard Intel Core i5-8250U CPU @ 1.60 GHz with 8 GB 

Figure 2.  Network predictions of the frequency dependent absorption spectra (green curves) and the simulated 
spectra (black curves). The plots in the top row show examples of structure–property prediction results in 
comparison with a DNN-only forward model whereas the bottom row depict the forward prediction results of 
the same set of examples using the proposed RNN (LSTM) model.

Table 1.  Mean squared error (MSE) losses for the tandem and forward model.

Train Validation Test

Geometrical dimensions (tandem model) 144.58 135.29 143.92

Forward Model 0.00366 0.00375 0.00372
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of RAM; our model took approximately 6 h to train (for a 1000 epochs) and less than 0.5 s to predict spectra for 
the 463 distinct designs in the test set. MM devices, such as the broadband absorber considered by us, have vast 
scope for a multitude of applications across domains as diverse as high-speed communications, photovoltaics, 
novel healthcare devices, stealth applications for defense amongst others, however, their technology penetration 
has been limited so far due to complex design processes that require advanced skills and knowledge base(s). The 
advent of data-driven models makes it possible to generate designs based on user-defined, on-demand device 
performances within fractional time durations.

Methods
Preparing the training data. Our candidate design is a metamaterial film optimized for near-unity 
absorption at 1.6 THz for a wide range of incidence  angles23. This is achieved by arranging gold split-ring reso-
nators (SRRs) in a periodic array on a dielectric substrate. Split-ring resonators (SRRs) are a widely studied 
metamaterial element which have negative magnetic permeabilities thereby accommodating a wide range of 
practical devices such as filters, modulators, switches, amongst others. As the name suggests, SRRs support 
inductive-capacitive (LC) resonances, which arise primarily from a capacitive gap (or ‘split’) in the resonator’s 
perimeter combined with the symmetry of the circulating current loops along the outer perimeter. The absorber 
design comprises two metallic layers on either side of an 8-micron thick dielectric polyimide spacer wherein the 
top layer contains the lattice of square-shaped, 200-nm thick gold SRRs and the bottom layer is a 200-nm thick 
continuous film of gold. Figure 3 depicts a schematic of the device along with its dimensions. The dimensions 
of the SRRs, defined chiefly via four parameters, namely, the linewidth of the gold features (w), the thickness of 
the dielectric substrate (t), the length of the gold layer (l) and the width of the capacitor region (c), dictate the 
spectral response of the absorber. We use a commercially available numerical package (COMSOL Multiphysics 
5.3) to compute full-wave EM simulations for obtaining the spectral response of our device by solving Maxwell’s 
equations using the finite element method with appropriate boundary conditions. On excitation with a linearly 
polarized wave, we observe a large absorption peak centered at 1.6 THz as shown in Fig. 3.

We subsequently populated our dataset by generating variants of this design through parametric sweeps of 
the unit cell dimensions (w, t, l, c) and computing the corresponding EM response curves, each of which were 
discretized into 161 data points. A total of 5163 geometries were modeled out of which 3091 conformed to SRR 
morphologies and demonstrated spectral responses with characteristic resonance peak(s) whereas the remaining 
variants were treated as geometric outliers and subsequently omitted. Our resultant geometry-spectrum dataset 
was subsequently split into training, validation, and test sets in the ratio 0.7:0.15:0.15.

Table 2.  Predicted vs ground truth (actual) values of SRR geometrical parameters. All values are in 
micrometers. D1 and D2 are randomly selected geometries from the test set.

D1 D2

l w t c l w t c

Predicted values 22.49 3.99 9.62 10.51 27.46 5.39 7.88 10.73

Ground truth 23.90 4.75 9.00 11.50 27.90 5.25 8.10 10.60

Figure 3.  Schematic of a terahertz dielectric absorber comprising of a dual metallic and a dual dielectric layer 
 structure23 composed of split-ring resonator unit cells arranged in a regularly spaced array (left). Dimensional 
parameters of an SRR unit cell (center) of a metamaterial optimized to demonstrate near-unity absorption at 1.6 
THz (right).
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Neural network structure. The forward model is a combination of a multilayer perceptron (MLP) and 
a bidirectional long short-term memory (LSTM) layer wherein the inputs comprise of 16 features obtained by 
combining the four geometrical parameters (‘l’, ‘t’, ‘w’, ’c’) using ratios and products. The DNN has two hidden 
layers with 161 neurons and 500 neurons respectively. Additional network parameters are mentioned in Table S1 
of the supplementary document. The LSTM forward model has a single dense layer with 161 neurons and a 
bidirectional LSTM layer with 200 units. We studied the change in the loss of the DNN-only baseline model as a 
function of the number of input features (Table S2) and we observed that the lowest losses were obtained for the 
case of the 16 expanded dimensions as the input. In order to be consistent and perform a comparison with the 
baseline model, we retained these dimensions as the input features for our final network model as well. A dense 
layer is connected to a bidirectional LSTM using a reshape layer and the final output is then obtained through 
a time-distributed wrapper on the final feed-forward layer with a linear activation function. The reshape layer 
and the time-distributed wrapper serve to align the dimensions of the LSTM and MLP layers. The regularization 
parameter and the learning rate (along with the Adam optimizer) was set at 0.00001 and 0.0001 respectively. The 
architecture was trained for 1000 epochs and the mean squared error (MSE) was selected as the loss function.

Once successfully trained, the forward model was connected to an inverse model to form a tandem neural 
network which used a single input multiple output (SIMO) model. The tandem network consisted of an encoder 
and a decoder, wherein the decoder had the weights saved from the pre-trained forward model. We treat the 
161-dimensional absorption spectra as the sequential input and output to the encoder-decoder architecture. 
The geometrical features are the desired outputs which are obtained from the last layer of the proposed encoder. 
The encoder input sequences encompassing the architecture for the inverse predictions are encoded to the MM 
geometry using a combination of the LSTM layer and an MLP. Within the encoder, the MLP transforms the 
LSTM output averaged over the timesteps into the dimensions (geometry). The network is forced to learn the 
geometry by applying a loss function to the encoder architecture. The loss function is selected as MSE for both 
the outputs and trained for 1000 epochs. The mean absolute error on the predicted geometrical parameters in 
the test data set is 1.0195, 0.60492, 0.66194, 0.5482 for l, w, t, and c respectively. We performed the fivefold cross 
validation to ensure that the models are generalized.

Data availability
All data generated during this study are available from the authors on reasonable request.

Received: 20 May 2021; Accepted: 23 August 2021

References
 1. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and negative refractive index. Science 305(5685), 788–792 (2004).
 2. Smith, D. R. & Pendry, J. B. Reversing light with negative refraction. Phys. Today 57, 37 (2004).
 3. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303(5663), 1494–1496 (2004).
 4. Colburn, S., Zhan, A. & Majumdar, A. Metasurface optics for full-color computational imaging. Sci. Adv. 4(2), 2114 (2018).
 5. Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360(6393), 1105–1109 (2018).
 6. Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Design and fabrication of blazed binary diffractive elements with 

sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999).
 7. Krasnok, A., Tymchenko, M. & Alu, A. Nonlinear metasurfaces: A paradigm shift in nonlinear optics”. Mater. Today 21(1), 8–21 

(2018).
 8. Haegglund, C. et al. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption. 

Nano Lett. 13, 3352–3357 (2013).
 9. Vignolini, S. et al. A 3D optical metamaterial made by self-assembly. Adv. Mater. 24, 23–27 (2011).
 10. Ye, X., Chen, J., Diroll, B. T. & Murray, C. B. Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied 

by correlated optical microspectrophotometry and electron microscopy. NanoLett. 13, 1291–1297 (2013).
 11. Ma, W., Cheng, F., Xu, Y., Wen, Q. & Liu, Y. Probabilistic representation and inverse design of metamaterials based on a deep 

generative model with semi-supervised learning strategy. Adv. Mater. 31(35), 1901111 (2019).
 12. Piccinotti, D., MacDonald, K. F., Gregory, S. A., Youngs, I. & Zheludev, N. Artificial intelligence for photonics and photonic materi-

als. Rep. Prog. Phys. 84, 12401 (2021).
 13. Jiang, J. et al. Freeform diffractive metagrating design based on generative adversarial networks. ACS Nano 13, 8872–8878 (2019).
 14. Liu, Z., Zhu, D., Rodrigues, S. P., Lee, K. T. & Cai, W. Generative model for the inverse design of metasurfaces. Nano Lett. 18, 

6570–6576 (2018).
 15. Wen, F., Jiang, J. & Fan, J. A. Robust freeform metasurface design based on progressively growing generative networks. ACS Pho-

tonics 7, 2098–2104 (2020).
 16. Lipton, Z.C., Berkowitz, J., Elkan, C. A critical review of recurrent neural networks for sequence learning. arXiv preprint, arXiv: 

1506.00019 (2015).
 17. AP S. C., Lauly, S., Larochelle, H., Khapra, M., Ravindran, B., Raykar, V.C., Saha, A. An autoencoder approach to learning bilingual 

word representations. In Advances in neural information processing systems, pages 1853–1861 (2014).
 18. Junyoung, C., Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint, arXiv : 1412.3555 

(2014)
 19. Wang, C., Yang, H., Bartz, C. & Meinel, C. Image captioning with deep bidirectional LSTMs. Proc. ACM Int. Conf. 24, 988–997 

(2016).
 20. Wang, W., Huang, Y., Wang, Y., Wang, L. Generalized autoencoder: A neural network framework for dimensionality reduction. 

Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pages 490–497 (2014).
 21. Müller, J. L. Linear and Nonlinear Inverse Problems with Practical Applications (Society for Industrial and Applied Mathematics, 

2012).
 22. Liu, D., Tan, Y., Khoram, E. & Yu, Z. Training deep neural networks for the inverse design of nanophotonic structures. ACS Pho-

tonics 5, 1365–1369 (2018).
 23. Tao, H. et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. 

Phys. Rev. 78(24), 241103 (2008).



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18629  | https://doi.org/10.1038/s41598-021-97999-6

www.nature.com/scientificreports/

Author contributions
P.Pa., D.J. proposed and designed the study. P.Pa., R.C., P.Pi., and D.J. performed the simulations and wrote the 
manuscript. All authors read and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 97999-6.

Correspondence and requests for materials should be addressed to P.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-97999-6
https://doi.org/10.1038/s41598-021-97999-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Leveraging long short-term memory (LSTM)-based neural networks for modeling structure–property relationships of metamaterials from electromagnetic responses
	Results
	Methods
	Preparing the training data. 
	Neural network structure. 

	References


